
Turk J Math

28 (2004) , 101 – 110.

c© TÜBİTAK
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Abstract

We give a complete description of conjugacy classes of finite subgroups of the

mapping class group of the sphere with r marked points. As a corollary we obtain

a description of conjugacy classes of maximal finite subgroups of the hyperelliptic

mapping class group. In particular, we prove that, for a fixed genus g, there are at

most five such classes.
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1. Introduction

Let M0,r be the mapping class group of the sphere with r ≥ 3 marked points, where
we allow maps to permute the set of marked points. In [3] Gillette and Van Buskirk
proved, using purely algebraic methods, the following theorem.

Theorem 1 M0,r contains an element of finite order n if and only if n divides one of
r, r − 1, r − 2.

Later on the stronger version of this theorem was obtained as a by-product of certain
considerations of Harvey and Maclachlan [5].
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Theorem 2 Every element of finite order in M0,r is contained in a maximal cyclic
subgroup of order r, r−1 or r−2, and all such subgroups of the same order are conjugate.

In this paper we extend the above results. For every finite subgroup N ofM0,r we find
a maximal finite subgroup M of M0,r containing N . Furthermore, we give a complete
description of conjugacy classes of finite subgroups of M0,r. As a corollary we obtain a
description of conjugacy classes of maximal finite subgroups of the hyperelliptic mapping
class group.

2. Maximal finite subgroups of M0,r

This section is devoted to the proof of the following theorem.

Theorem 3 Finite subgroup N ofM0,r is a maximal finite subgroup ofM0,r if and only
if N is isomorphic to one of the following:

1. the cyclic group Zr−1 if r 6= 4,

2. the dihedral group Dr

3. the dihedral group Dr−2 if r = 5 or r ≥ 7,

4. the alternating group A4 if r ≡ 4 or 10 (mod 12)

5. the symmetric group S4 if r ≡ 0, 2, 6, 8, 12, 14, 18 or 20 (mod 24)

6. the alternating group A5 if r ≡ 0, 2, 12, 20, 30, 32, 42 or 50 (mod 60)

Let N be a finite subgroup of M0,r. By the positive solution to the Nielsen realisation
problem [4], we could assume that N is a group of automorphisms of the Riemann sphere
P1. From the classification of such groups we have the following five possibilities:

1. N ∼= Zn is generated by a rotation of order n,

2. N ∼= Dn is generated by two rotations of order n and 2 respectively,

3. N ∼= S4 is the symmetry group of a cube (octahedron),

4. N ∼= A5 is the symmetry group of a dodecahedron (icosahedron), and
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5. N ∼= A4 is the symmetry group of a tetrahedron.

In each case we shall find a maximal finite subgroup M of M0,r containing N . What is
more, from the below analysis it will be clear how to construct each of maximal subgroups
listed in the above theorem.

1. As a fundamental set for the action of a cyclic group N we can choose the interior
of the bigon F with vertices in the south and north poles together with one of its edges
(Figure 1).

Figure 1. Fundamental set for the action ofZn

Let P be the set of these marked points Pi, which have trivial stabiliser in N and
say it has s elements. Without loss of generality, we can assume that N acts on the unit
sphere S2 in R3 by orthogonal rotations having the pair of poles as fixed points.

We claim that we can also assume that P is a set of points on the equator which are
vertices of a regular s-gon. To prove this, we will show how to ”move” points of P to
such symmetric position without changing the geometry of the action of N .

The canonical projection π : S′ → S′/N , where S′ is obtained from S2 by removing
the poles, is a covering. Since π(S′) is homeomorphic to a two–punctured sphere, we
could find a homeomorphism f : π(S′)→ π(S′) isotopic to the identity which maps π(P)
onto π(P ′), where P ′ is a set of s points on the equator which are vertices of a regular

s-gon. Now f has a lifting and if we extend it to f̃ : S2 → S2 we see that f̃Nf̃−1 = N

acts on f̃(S2) = S2 in such a way that P ′ is the set of marked points (Figure 1). Call
this model for the action of N regular.
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We would like to point out that although two topological models for the action of N
(with the set of marked points with trivial stabiliser equal to P and P ′ respectively) are
models for the action of the same subgroup N of M0,r, they could correspond to non
isomorphic realisations of N as an automorphism group of punctured Riemann sphere.

Now, using regular model for the action of N , it is obvious that N is contained in the
cyclic group N ′ of order s.

If s = r − 2 or s = r (i.e. both poles are marked or not), N ′ is contained in the
dihedral group N ′′ generated by N ′ and a half turn leaving the equator invariant; we fall
into the second case. Therefore we could assume that s = r − 1. To complete the case it
is enough to prove that for r 6= 4, N ′ is a maximal subgroup ofM0,r.

If a group Zn acts on the sphere with r marked points then at least one of them has
trivial stabiliser (since r ≥ 3) and its orbit has length n, so n ≤ r. This proves that the
action of Zr−1 cannot be extended to the action of any cyclic group. Similarly, if we have
the action of a dihedral group Dn then the stabiliser of at least one of the marked points
has order one or two, so n ≤ r. What is more, there is no action by the group Dr−1.

The only cyclic subgroups of A4, S4, A5 are, respectively, Z2,Z3 and Z2,Z3,Z4 and
Z2,Z3,Z5, so we could restrict ourselves to the case r ≤ 6. The maximal order of a
stabiliser in A4 is 3, so the minimal length of an orbit is 4 and we see that the action of
A4 is possible only for r ≥ 4. Similarly, actions of S4 and A5 are possible only for r ≥ 6
and r ≥ 12, respectively. Therefore the possible extension of the action of Zr−1 could
exits only for r = 4. Conversely if r = 4, using the above technique of obtaining regular
action, we could extend action of Z3 to the action of A4.

2. If N is a dihedral group, then using similar methods such as in the case of cyclic
groups we could construct a regular model for the action of N , i.e. such that the action
of the canonical cyclic subgroup K of N is regular and N is generated by K and a half
turn, leaving the equator invariant.

Now, it is clear that, depending on whether the poles are marked or not, this group is
contained in Dr−2 or Dr. Using similar arguments like in the case of a cyclic group, we
prove that Dr for r ≥ 3 and Dr−2 for r = 5 or r ≥ 7 are maximal. If r = 3 then Dr−2

is a cyclic group and if r = 4 or r = 6 then we could extend the action of Dr−2 to the
action of D4 and S4 respectively.

3. If N is the group of orientation preserving symmetries of a cube, then we have three
orbits of points with nontrivial stabiliser in N : the centres of faces, the centres of edges
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Table 1. Possible values of k

F E V cube dodecahedron tetrahedron

(a) – – – r/24 r/60 r/12
(b) + – – (r − 6)/24 (r − 12)/60 (r − 4)/12
(c) – + – (r − 12)/24 (r − 30)/60 (r − 6)/12
(d) + + – (r − 18)/24 (r − 42)/60 (r − 10)/12
(e) – – + (r − 8)/24 (r − 20)/60 (r − 4)/12
(f) + – + (r − 14)/24 (r − 32)/60 (r − 8)/12
(g) – + + (r − 20)/24 (r − 50)/60 (r − 10)/12
(h) + + + (r − 26)/24 (r − 62)/60 (r − 14)/12

and the vertices with stabilisers of order 4, 2 and 3, respectively. Since the length of
an orbit is equal to the index of the stabiliser, these orbits have lengths 6, 12 and 8,
respectively.

Let k be the number of marked points in a fixed fundamental set F , which have
trivial stabiliser. Suppose that centres of faces, edges and vertices are marked points.
Then counting lengths of orbits, we have r = 24k+ 8 + 12 + 6, i.e. k = r−26

24 . In similar
way, according to whether centres of faces, edges or vertices are marked points or not, we
obtain other possible values of k (Table 1).

Observe that for the fixed number r of distinguished points, only one of the above
cases could occur. Since there is no monomorphism of S4 into Zn, Dn, A4, A5, every such
group is maximal.

4. The case of the group of orientation preserving symmetries of a dodecahedron is fully
analogous to the case of a cube and we obtain also eight possibilities (Table 1).

5. If N is the group of rotations of a regular tetrahedron, then by the same reasons as
before, we have eight possibilities (Table 1).

Observe that, since the centres of faces are vertices of the dual tetrahedron, it is not
difficult to show that groups in cases (b), (e) and (d), (g) are conjugate.

However the problem of maximality here is more involved due to the fact that there
are natural monomorphisms ofA4 into S4 and A5 induced by embeddings of a tetrahedron
into a cube and dodecahedron (Figure 2).
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Figure 2. Embeddings of a tetrahedron

Suppose that N has an extension N ′ ∼= S4. Since S4 contains only one subgroup
isomorphic to A4, if we realise N ′ as the group of rotations of a cube, we see that such
extension could exist only when vertices and centres of faces of the tetrahedron (defined
as points of S2 with stabiliser in N of order 3) are of the same type (marked or not),
because after extension they fall into one orbit. In particular, in cases (b), (d), (e), (g)
such extension could not exist.

The same conclusion is true for the extension of N to the action of A5; however now
one has to be more careful, because A5 contains five subgroups isomorphic to A4.

Conversely, using the same method as in the case of a cyclic group, it is easy to obtain
in cases (a), (c), (f), (h) extension of N to the action of S4.

3. Conjugacy classes of finite subgroups of M0,r

Let N be a finite subgroup of M0,r. From the previous section, it follows that N is
isomorphic either to the cyclic group Zn or to the dihedral group Dn or to the symmetry
group of a cube (octahedron) S4 or the symmetry group of a dodecahedron (icosahedron)
A5 or else the symmetry group of a tetrahedron A4. We are now ready to extend this
description to conjugacy classes.

Theorem 4 The set of conjugacy classes of subgroups isomorphic to N has exactly two
elements if N ∼= Z2 with r even or N ∼= Dn with 2n|r or 2n|r − 2 and one element for
the remaining cases.
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A necessary condition for two subgroups N1, N2 of M0,r to be conjugate is that corre-
sponding orbits of points with nontrivial stabiliser are of the same type, i.e. they are
marked or not. Counting for each possible type of the action the number of points of a
fundamental set with trivial stabiliser one can see that for, most cases, different actions
live on spheres with different numbers of distinguished points. The only exceptions are
those of the first part of the theorem.

If r is even, then according to whether poles are marked or not, we have two non-
conjugate actions of Z2. Now suppose 2n|r. If we have an action of Dn then there are
two possibilities to distribute r marked points: the first is that all marked points form
one orbit of length 2n, and the second when marked points form two orbits of order n.
This two possibilities give two non-conjugate actions of Dn. Similar situation holds for
2n|r − 2.

Conversely, let N1 and N2 be two isomorphic subgroups of M0,r with the same
structure of orbits of points with nontrivial stabiliser. From the previous section it follows
that there exist homeomorphisms fi : X → Xi for i = 1, 2, such that N ′i = fiNif

−1
i acts

on the sphere Xi in a ”regular” way (i.e. X1 = X2 = S2, sets of marked points coincide,
both groups act by orthogonal rotations and as a groups of isometries of S2, N1 = N2).
Let ϕ : X1 → X2 be the identity map. Observe that ϕ is the identity as a map of S2,
though as an element ofM0,r it could permute marked points. So for ψ = f−1

1 ϕ−1f2 we
have

ψN2ψ
−1 = f−1

1 ϕ−1f2N2f
−1
2 ϕf1 = f−1

1 ϕ−1N ′2ϕf1 = f−1
1 N ′1f1 = N1.

Cororally 5 Two maximal finite subgroups ofM0,r are conjugate if and only if they are
isomorphic.

4. Conjugacy classes of maximal finite subgroups of Mh
g

Suppose that a closed, connected orientable surface Tg of genus g ≥ 2 is embedded in
R3 in such a manner that it is invariant under the half turn ρ about the y-axis (figure 3).

The hyperelliptic mapping class groupMh
g is defined to be the centraliser of ρ in the

mapping class group of Tg . By [1] the quotientMh
g/〈ρ〉 is isomorphic to the mapping class

group M0,2g+2 of a sphere with 2g + 2 marked points P1, . . . , P2g+2. For simplicity we
will identify Mh

g/〈ρ〉 with M0,2g+2. Let π : Mh
g →M0,2g+2 be the canonical projection
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Figure 3. Hyperelliptic involution ρ

and K,L be sets of maximal finite subgroups of Mh
g and M0,r respectively.

Lemma 6 The map ϕ : K → L given by ϕ(K) = π(K) = K/〈ρ〉 is a bijection.

Proof. Observe that since ρ is central in Mh
g , it is contained in each maximal finite

subgroup of Mh
g , so ϕ is well defined. Clearly ϕ is surjective, so let us prove that it is

also injective. If π(K) = L for K ∈ K and L ∈ L then K ≤ π−1(L). Comparing orders,
we obtain K = π−1(L). 2

Lemma 7 Under the above assumptions, ϕ induces a bijection between conjugacy classes
of subgroups in K and L.

Proof. Obviously conjugate elements of K are mapped onto conjugated elements of
L. The converse statement, follows from bijectivity of ϕ. 2

Therefore, using above lemmas and known description of liftings of finite subgroups
ofM0,2g+2 toMh

g [2], we could reformulate theorems of previous sections in terms of the

group Mh
g .

Theorem 8 Finite subgroup N of Mh
g is a maximal finite subgroup of Mh

g if and only
if N is isomorphic to one of the following:

1. Z4g+2
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2. V2g+2 = 〈x, y | x4, y2g+2, (xy)2, (x−1y)2〉

3. U2g = 〈x, y | x2, y4g, xyxy2g+1〉 if g ≥ 3

4. Z2 ×A4 if g ≡ 1 (mod 6)

5. SL(2, 3) = 〈x, y | x4, y3, (xy)3, yx2y−1x2〉 if g ≡ 4 (mod 6)

6. Z2 × S4 if g ≡ 3 or 11 (mod 12)

7. W1 = 〈x, y | x2, y3, (xy)4(yx)4 , (xy)8〉 if g ≡ 2 or 6 (mod 12)

8. W2 = 〈x, y | x4, y3, yx2y−1x2, (xy)4〉 if g ≡ 5 or 9 (mod 12)

9. W3 = 〈x, y | x4, y3, (xy)8, x2(xy)4〉 if g ≡ 0 or 8 (mod 12)

10. Z2 ×A5 if g ≡ 5, 9, 15 or 29 (mod 30)

11. SL(2, 5) = 〈x, y | x4, y3, (xy)5, yx2y−1x2〉 if g ≡ 0, 14, 20 or 24 (mod 30).

Two maximal finite subgroups of Mh
g are conjugate within Mh

g if and only if they are
isomorphic.

Groups in the first part of the theorem are respectively liftings of (1) Zr−1, (2) Dr,
(3) Dr−2, (4)–(5) A4, (6)–(9) S4, (10)–(11) A5, where r = 2g + 2. The reason for the
assumption g ≥ 3 in case (3) is that for g = 2 the underlying group Dr−2 is not maximal.

Cororally 9 If g ≡ 0, 5, 9, 14, 15, 20, 24 or 29 (mod 30) then Mh
g contains exactly five

conjugacy classes of maximal finite subgroups. For g = 2 there are three and for other
values of g there are exactly four such classes.
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