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Shyuichi Izumiya, Nobuko Takeuchi

Abstract

We define new special curves in Euclidean 3-space which we call slant helices

and conical geodesic curves. Those notions are generalizations of the notion of

cylindrical helices. One of the results in this paper gives a classification of special

developable surfaces under the condition of the existence of such a special curve as

a geodesic. As a result, we consider geometric invariants of space curves. By using

these invariants, we can estimate the order of contact with those special curves for

general space curves. All arguments in this paper are straight forward and classical.

However, there have been no papers which have investigated slant helices and conical

geodesic curves so far as we know.
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1. Introduction

In [3] we have studied singularities of the rectifying developable (surface) of a space
curve. The rectifying developable is defined to be the envelope of the family of rectifying
planes along the curve. We have also studied the Darboux developable of a space curve
whose singularities are given by the locus of the end points of modified Darboux vectors
of the curve [3, 5, 6].

In this paper we define the notion of slant helices and conical geodesic curves which are
generalizations of the notion of helices (cf., §2). We introduce the notion of the tangential
Darboux developable of a space curve which is defined by the Darboux developable of the
tangent indicatrix of the space curve (cf., §3). We study singularities of the tangential
Darboux developable of a space curve as an application of the classification theorem of
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developable surfaces in [6]. We find a geometric invariant of a space curve which is deeply
related to the singularities of the tangential Darboux developable of the original curve.

In §2 we describe basic notions and properties of space curves. We review the
classification of singularities of the rectifying developable and the Darboux developable
of a space curve in §3. In §4 we study slant helices and conical geodesic curves as curves
on developable surfaces. We can construct several examples of slant helices. As we would
need a large number of pages for drawing those pictures, so we give only one example in
§5.

This is one of the papers of the authors joint project entitled “Geometry of ruled
surfaces and line congruence”.

All manifolds and maps considered here are of class C∞ unless otherwise stated.

2. Basic notions and properties

We now review some basic concepts on classical differential geometry of space curves
in Euclidean space. For any two vectors x = (x1, x2, x3) and y = (y1, y2, y3), we denote
x · y as the standard inner product. Let γ : I −→ R3 be a curve with γ̇(t) 6= 0, where
γ̇(t) = dγ/dt(t). We also denote the norm of x by ‖x‖. The arc-length parameter s of
a curve γ is determined such that ‖γ′(s)‖ = 1, where γ ′(s) = dγ(s)/ds. Let us denote
t(s) = γ′(s) and we call t(s) a unit tangent vector of γ at s. We define the curvature of
γ by κ(s) = ‖γ′′(s)‖. If κ(s) 6= 0, then the unit principal normal vector n(s) of the curve
γ at s is given by γ′′(s) = κ(s)n(s). The unit vector b(s) = t(s)×n(s) is called the unit
binormal vector of γ at s. Then we have the Frenet-Serret formulae:


t′(s) = κ(s)n(s)
n′(s) = −κ(s)t(s) + τ (s)b(s)
b′(s) = −τ (s)n(s),

where τ (s) is the torsion of the curve γ at s. For any unit speed curve γ : I −→ R3, we

define a vector field D̃(s) = (τ/κ)(s)t(s)+b(s) along γ under the condition that κ(s) 6= 0
and we call it the modified Darboux vector field of γ. We also denote the unit Darboux
vector field by D̄(s) = (1/

√
τ2 + κ2)(s)(τ (s)t(s) + κ(s)b(s)) (cf., [8], Section 5.2).

A curve γ : I −→ R3 with κ(s) 6= 0 is called a cylindrical helix if the tangent lines of
γ make a constant angle with a fixed direction. It has been known that the curve γ(s)
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is a cylindrical helix if and only if (τ/κ)(s) = constant. If both of κ(s) 6= 0 and τ (s) are
constant, it is, of course, a cylindrical helix. We call such a curve a circular helix . We
now define new special curves as follows: A curve γ with κ(s) 6= 0 is called a slant helix if
the principal normal lines of γ make a constant angle with a fixed direction. We remark
that the principal normal lines of a cylindrical helix is perpendicular to a fixed direction,
so that a cylindrical helix is a slant helix. We also call a curve γ with κ(s) 6= 0 a conical
geodesic curve if (τ/κ)′(s) is a constant function.

We have the following characterization of slant helices.

Proposition 2.1 Let γ be a unit speed space curve with κ(s) 6= 0. Then γ is a slant helix
if and only if

σ(s) =
(

κ2

(κ2 + τ2)3/2

(τ
κ

)′)
(s)

is a constant function.

Proof. We can show that γ is a slant helix if and only if the spherical image of the
principal normal n : I −→ S2 is a part of a circle in S2 . By a straightforward calculation,
the geodesic curvature of n in S2 is given by σ(s). Therefore, the image of n is a part of
a circle in S2 if and only if σ(s) is a constant function. 2

If σ(s) ≡ 0, then we have (τ/κ)′(s) ≡ 0. It follows that γ is a cylindrical helix. We
have already studied geometric properties of cylindrical helices in [3, 5], so that we are
interested in the case when (τ/κ)′(s) 6= 0. We now consider the meaning of the above
invariants (τ/κ)′(s) and σ(s) for a general curve. Let γi : Ii −→ R3 (i = 1, 2) be
regular curves. We say that γ1(s0) and γ2(t0) have at least (k + 1)-point contact if

γ
(p)
1 (s0) = γ

(p)
2 (t0) for 0 ≤ p ≤ k. We also say that γ1(s0) and γ2(t0) have (k + 1)-point

contact if they have at least (k + 1)-point contact and γ(k+1)
1 (s0) 6= γ

(k+1)
2 (t0).

Proposition 2.2 For a regular curve γ : I −→ R3 with κ(s0) 6= 0 and (τ/κ)′(s0) 6= 0,
we have the following assertions:

(1) There exists an open interval s0 ∈ J ⊂ I and a unique conical geodesic curve
δ : J −→ R3 such that δ(s0) = γ(s0), the curvature of δ(s) is κ(s), the torsion of δ at s0

is τ (s0) and γ(s0), δ(s0) have at least a 5-point contact.
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(2) There exists an open interval s0 ∈ J ⊂ I and a unique slant helix δ : J −→ R3

such that δ(s0) = γ(s0), the curvature of δ(s) is κ(s), the torsion of δ at s0 is τ (s0) and
γ(s0), δ(s0) have at least a 5-point contact.

Proof. (1) We denote that (τ/κ)(s0) = b and (τ/κ)′(s0) = c. We consider the natural
equation: {

κδ(s) = κ(s)
τδ(s) = κ(s)(cs+ a),

where a = b − cs0 under the initial conditions δ(p)(s0) = γ(p)(s0). The solution curve
δ : J −→ R3 satisfies the required conditions.

(2) We denote that σ(s0) = d. We also consider the natural equation:
κδ(s) = κ(s)(
τδ
κδ

)′
(s) = dκδ(s)

(
1 +

(
τδ
κδ

)2

(s)
)3/2

,

under the initial conditions δ(p)(s0) = γ(p)(s0). The solution curve δ : J −→ R3 satisfies
the required conditions. 2

We call the conical geodesic curve (respectively, the slant helix) given in Proposition
2.2 the osculating conical geodesic curve (respectively, the osculating slant helix) of γ at
s0 .

3. Developable surfaces associated to a space curve

In this section we consider three developable surfaces associated to a space curve.
Developable surfaces are ruled surfaces. A ruled surface in R3 is (locally) the map
F(γ,δ) : I × R → R3 defined by F(γ,δ)(t, u) = γ(t) + uδ(t), where γ : I → R3, δ : I →
R3 \ {0} are smooth mappings and I is an open interval or a unit circle S1. We call γ
the base curve and δ the director curve. The straight lines u 7→ γ(t) + uδ(t) are called
rulings.

Let γ be a unit speed space curve with κ(s) 6= 0. A ruled surface F(γ, eD)(s, u) =

γ(s) + uD̃(s) is called the rectifying developable of γ. We also define a ruled surface
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F(b,t)(s, u) = b(s) + ut(s) which is called the Darboux developable of γ. We consider the
Darboux developable of the unit tangent vector n(s) of γ which is given by F(D̄,n)(s, u) =

D̄(s) + un(s). We call it the tangential Darboux developable of γ.
First, we consider the rectifying developable of a unit speed space curve γ(s) with

κ(s) 6= 0. We can calculate that D̃
′
(s) = (τ/κ)′(s)t(s), so that (s0, u0) is a singular point

of F(γ, eD) if and only if (τ/κ)′(s0) 6= 0 and u0 = −1/((τ/κ)′(s0)).

In [3] we have studied singularities of the rectifying developable of γ and given a
local classification. However, we have not been able to interpret the geometric meaning
of singular points of a rectifying developable. Here, we can say that the singular point
of the rectifying developable of γ corresponds to the point s0 that γ and the osculating
conical geodesic curve at s0 have at least 6-point contact. Moreover, we have the following
proposition:

Proposition 3.1 For a unit speed curve γ : I −→ R3 with κ(s) 6= 0, the following are
equivalent.

(1) The rectifying developable F(γ, eD) : I ×R −→ R3 of γ is a conical surface.

(2) γ is a conical geodesic curve.

Proof. The singular locus of F(γ, eD) is given by σ(s) = γ(s) − (1/(τ/κ)′)(s)D̃(s).

By the Frenet-Serret formulae, we have σ′(s) = (τ/κ)′′(s)((τ/κ)′)−2(s)D̃(s). Therefore,
σ′(s) ≡ 0 if and only if (τ/κ)′′(s) ≡ 0. We can easily show that F(γ, eD) is a conical surface

if and only if σ(s) ≡ 0. This completes the proof. 2

Secondly, a classification of singularities of the Darboux developable of a space curve
is given in the following theorem.

Theorem 3.2 [3, 6, 7] Let γ : I −→ R3 be a unit speed curve with κ(s) 6= 0. Then we
have the following:

(1) The Darboux developable of γ is locally diffeomorphic to the cuspidal edge C × R
at F(b,t)(s0, u0) if and only if τ (s0) 6= 0, (τ/κ)′(s0) 6= 0 and u0 = (τ/κ)(s0), where
C × R = {(x1, x2) | x1

2 = x2
3 } ×R.

(2) The Darboux developable of γ is locally diffeomorphic to the swallowtail SW at
F(b,t)(s0, u0) if and only if τ (s0) 6= 0, (τ/κ)′(s0) = 0, (τ/κ)′′(s0) 6= 0, and u0 = (τ/κ)(s0),
where SW = {(x1, x2, x3) | x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v }.
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(3) The Darboux developable of γ is locally diffeomorphic to the cuspidal crosscap
CCR at F(b,t)(s0, u0) if and only if u0 = τ (s0) = 0, (τ/κ)′(s0) 6= 0, where CCR =
{(x1, x2, x3) | x1 = u3, x2 = u3v3 , x3 = v2 }.

Cuspidal edge Swallowtail Cuspidal crosscap

Figure 1

As a corollary of Theorem 3.2, we have the following local classification theorem of
the tangential Darboux developable of a generic space curve.

Theorem 3.3 Let γ : I −→ R3 be a unit speed curve with κ(s) 6= 0. Then we have the
following:

(1) The tangential Darboux developable of γ is locally diffeomorphic to a cuspidaledge
C × R at F(D̄,n)(s0, u0) if and only if u0 = σ(s0) 6= 0, σ′(s0) 6= 0.

(2) The tangential Darboux developable of γ is locally diffeomorphic to a swallowtail
SW at F(D̄,n)(s0, u0) if and only if u0 = σ(s0) 6= 0, σ′(s0) = 0, σ′′(s0) 6= 0.

(3) The tangential Darboux developable of γ is locally diffeomorphic to a cuspidalcross
cap CCR at F(D̄,n)(s0, u0) if and only if u0 = σ(s0) = 0, σ′(s0) 6= 0.

Proof. We respectively denote K(s) and T (s) as the curvature and the torsion of the
space curve t(s). By a straightforward computation, we have

K(s) = (
√
κ2 + τ2)(s), T (s) =

(
κ2

τ2 + κ2

( τ
κ

)′)
(s).

It follows that σ(s) = (T/K)(s).
Applying the result in Theorem 3.2 to the space curve t(s), we complete the proof. 2
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We can also interpret that the swallowtail point of the tangential Darboux developable
corresponds to the point s0 so that γ and the osculating slant helix at s0 have 6-point
contact. We also have the following proposition:

Proposition 3.4 For a unit speed curve γ : I −→ R3 with κ(s) 6= 0, the following are
equivalent.

(1) The tangential Darboux developable F(D̄,n) : I×R −→ R3 of γ is a conical surface.

(2) γ is a slant helix.

Proof. The singular locus of the tangential Darboux developable F(D̄,n)(s, u) is given

by σ(s) = D̄(s) + σ(s)n(s). Therefore, F(D̄,n)(s, u) is a conical surface if and only if

σ′(s) ≡ 0. By the Frenet-Serret formulae, we can show that D̄′(s) = −σ(s)n′(s). Hence,
σ′(s) ≡ 0 if and only if σ′(s) ≡ 0. By Lemma 2.1, the assertion holds. 2

4. Curves on developable surfaces

In this section we study slant helices and conical geodesic curves from the view point of
the theory of curves on developable surfaces. In the previous sections, we have remarked
that the rectifying developable of a cylindrical helix is a cylindrical surface. It has been
classically known that γ is a geodesic of the rectifying developable of γ itself (cf. [2]).
The following proposition shows that the converse is also true.

Proposition 4.1 Let S be a ruled surface and γ(s) a regular curve on S with non-
vanishing curvature. Then the following conditions are equivalent:

(1) S is the rectifying developable of γ(s).
(2) γ(s) is a geodesic of S which is transversal to rulings and S is a developable

surface.

Proof. Suppose that S is a developable surface. Then the tangent plane of S at p ∈ S
is constant along the ruling through p. Let γ(s) be a geodesic of S which is transversal to
rulings, then the principal normal of γ(s) at p = γ(s0) is parallel to the normal of S at
p. This means that the rectifying plane of γ(s) at p = γ(s0) is the tangent plane of S at
p. Since the tangent plane at p is constant along the ruling through p, S is an envelope
of the family of rectifying planes of γ(s). This completes the proof. 2
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We have the following classification of special developable surfaces under the condition
that there exists a slant helix as a geodesic on the surface.

Theorem 4.2 Let S be a developable surface and γ(s) a regular curve on S with non-
vanishing curvature. Suppose that γ(s) is a slant helix of S and a geodesic which is
transversal to rulings. Then

(1) S is a part of a cylindrical surface if γ is a cylindrical helix.

(2) S is a part of a circular cone if γ is not a cylindrical helix and (τ/κ)′′(s) ≡ 0.

(3) S is a part of the tangent developable of a cylindrical helix if γ is not a cylindrical
helix and (τ/κ)′′(s) 6= 0.

Proof. Since γ is a geodesic of S, S is the rectifying developable of γ by Proposition
4.1. Here γ(s) is a slant helix. Then

σ(s) =
(

κ2

(κ2 + τ2)3/2

(τ
κ

)′)
(s)

is equal to a constant number c. By the proof of Proposition 3.5, we have D̄′(s) =
−σ(s)n′(s) = −cn′(s), where D̄(s) is the unit Darboux vector and n(s) the unit principal
normal vector of γ(s). By definition, there exists a constant vector a such that n′(s) ·a =

0. It follows from the relation D̄′(s) = −cn′(s) that the Darboux vector also makes a
constant angle with a fixed direction given by a.

If c = 0, then (τ/κ)′(s) ≡ 0. In this case, γ(s) is a cylindrical helix. It also follows that

D̄
′(s) ≡ 0. This means that the Darboux vector D(s) has a constant direction. Since the

direction of rulings for the rectifying developable of γ(s) is given by the direction of the
Darboux vector D(s), S is a part of a cylindrical surface. This completes assertion (1).

On the other hand, if γ(s) is not a cylindrical helix, then c 6= 0. By Proposition 3.2,
S is a part of a conical surface if (τ/κ)′′(s) ≡ 0. The direction of rulings of S is given
by the Darboux vector D(s) which makes a constant angle with a fixed direction. This
means that the above conical surface is a circular conic.

For the proof of assertion (3), we consider the locus of the singular points of the
rectifying developable of γ, which is given by

σ(s) = γ(s) − 1
(τ/κ)′(s)

D̃(s),
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where D̃(s) is the modified Darboux vector of γ(s). We can calculate that

σ′(s) = − (τ/κ)′′(s)
((τ/κ)′)2(s)

D̃(s) 6= 0,

then σ(s) is a regular space curve. It also follows from the previous arguments that the
Darboux vector of γ(s) makes a constant angle with a fixed direction. Here, the Darboux
vector gives the direction of rulings of S. Since σ(s) is the locus of singular points of the
rectifying developable of γ, S can be consider a part of the tangent developable of σ(s).
This means that the tangent direction of σ(s) is parallel to the direction of the Darboux
vector of γ(s). Hence, σ(s) is a cylindrical helix. This completes the proof. 2

The following proposition also holds as a corollary of Propositions 3.2 and 4.1.

Proposition 4.3 Let S be a developable surface and γ(s) is a geodesic on S with non-
vanishing curvature which is transversal to rulings. Then S is a part of a conical surface
if and only if γ(s) is a conical geodesic curve.

5. Examples

In this section we give an example of slant helices and draw their pictures by using
Mathematica. We can construct many examples of slant helices because the evolute of
a cylindrical helix is a slant helix. The following example is, however, the example of a
slant helix which is different from examples by such a construction.

Example 5.1 We consider a space curve defined by

γ(θ) =
(
−a

2 − b2
2a

(
cos((a + b)θ)

(a+ b)2
+

cos((a − b)θ)
(a− b)2

)
,

−(a2 − b2)
2a

(
sin((a+ b)θ)

(a+ b)2
+

sin((a − b)θ)
(a− b)2

)
,−
√

(a2 − b2)
ab

cos(bθ)

)
.

We can calculate the curvature and the torsion as follows:

κ(θ) =
√
a2 − b2 cos(bθ), τ(θ) =

√
a2 − b2 sin(bθ).
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Therefore, we have

σ(θ) =
−b

a2 − b2 ,
τ

κ
(θ) = tan(bθ),

(τ
κ

(θ)
)′

=
−b

cos2(bθ)
6= 0, and

(τ
κ

(θ)
)′′

=
2b2

cos2(bθ)
6= 0.

Therefore γ(θ) is a slant helix and it is not a cylindircal helix. By Theorem 4.2, it is
a geodesic of the tangent developable of a cylindrical helix. In fact, the corresponding
tangent developable is the rectifying developable of γ(θ) by Proposition 4.1. We now draw
the picture of γ(θ) (a = 2, b = 1) in Fig. 2a. We also draw the rectifying developable of
γ(θ) in Fig. 2b.
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By the general theory of the developable surface, a developable surface is the tangent
developable of the singular locus. We can also draw the singular locus of the rectifying
developable of γ(θ) in Figure 3a. Finally we draw both of γ(θ) and the singular locus of
its rectifying developable in Fig. 3b.

Since we can easily construct a conical surface from a sheet of paper, we can draw
conical geodesic curves. If we draw a straight line on the sheet of paper, the corresponding
curve on the conical surface is a conical geodesic curve.
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