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Abstract

In this paper, we presented a brief review of crossed modules [7], cat'-groups
[6], pullback crossed modules [4], pullback cat'-group [1], profinite crossed modules
[5], cat'-profinite groups [5], pullback profinite crossed modules [5], pullback cat'-
profinite groups [3]. We defined the pushout cat'-profinite groups and gave the left

adjoint constructions.
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1. Introduction

Crossed module was introduced by J. H. C. Whitehead in [7]. In [6], Loday refor-
mulated the notion of a crossed module as a cat!-groups and showed that the category
XMod is equivalent to the category Catl.

In section 2, we recall the basic properties of crossed modules and their morphisms and
cat'-groups and their morphisms. Section 3 includes the definition of pullback crossed
modules, which is defined by Brown and Higgins in [4], and the definition of pullback
cat!-groups is due to Alp in [1]. We introduced profinite crossed modules and cat!-
profinite groups which are defined by Korkes and Porter in [5] in Section 4. Section 5

includes pullback profinite crossed modules which is defined by Korkes and Porter in
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[5] and pullback cat!-profinite groups which is defined by Alp in [3]. In Section 6, we
gave the definitions of pushout profinite crossed modules which is defined by Korkes and
Porter in [5] and pushout cat!-profinite groups. In section 7, we presented left adjoint
construction of pushout cat!'-profinite group and combined the pictures of pullback cat!-

profinite groups and pushout cat!-profinite group together.
g 2

2. Crossed Modules and Cat1-Groups

In this section we recall the descriptions of two equivalent categories which are XMod,
the category of crossed modules and their morphisms; Cat1, the category of cat!-groups
and their morphisms.

A crossed module X = (9 : S — R) consists of a group homomorphism 9, called the
boundary of X, together with an action o : R — Aut(S) satisfying, for all s,s" € S and
r € R,

XMod 1: 9(s") = r1(ds)r
XMod 2: 95 = ¢lgd.

The standard examples of crossed modules can be found in [1].
A morphism between two crossed modules X; and X, is a pair (o, p), where ¢ : S; —

So and p: Ry — Ry are homomorphisms satisfying
a0 = pdh, o(s") = (0s)"".

When Xy = X; and o, p are automorphisms then (o, p) is an automorphism of &;. The
group of automorphisms is denoted by Aut(X}).

The notion of a crossed modules is reformulated as a cat!-group by Loday in [6]. For
computational purposes we find it convenient to define a cat!-group C = (e;t,h : G — R)

as a group G with two surjections ¢,h : G — R and an embedding e : R — G satisfying:

Cat 1: te = he =idp,
Cat 2: [kert,kerh] = {1}

A morphism C; — Cs of catl-groups is a pair (vy,p) where v : G; — G2 and

p: R — Ry are homomorphisms satisfying

hoy = ph1, tay = pt1, eap=rer
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The crossed module X associated to C has S = kert and 9 = h |s. The cat'-group
associated to X has G = R x S, using the action from X, and

t(r,s) =r, h(r,s) =r(0s), er = (r,1).

3. Pullback Crossed modules and Pullback Cat!-groups

Let X = (0 : S — R) be a crossed R-module and ¢ : @ — R be a morphism of groups.
Then *X = (9° : 1*S — Q) is the pullback of X by ¢, where ¢*S = {(¢,s) € @ x S x Q |
tq = 0s} and 9*(q, s) = g. The action of @ on ¢**S is given by

(q1,9)7 = (¢ "q1q,5"). (3.1)

The verification of the crossed module axioms is given in [4].

A pullback cat!-group is defined by Alp in [1] as follows.

e**

)

**G R Q
s L
6** t**
\ )
h
Q@ G
\[t
R
Let C = (e;t,h: G — R) be a cat!-group and let ¢ : @ — R be a group homomorphism.
Define (**C = (e**;t**, h** : 1**G — Q) to be the pullback of G where

R

G ={(q1,9,02) € Q x G x Q| tq1 = tg, 1q2 = hg},

t**(q1,9,92) = q1, h"*(q1,9,q92) = q2 and e**(q) = (g, etq, q). Multiplication in (**G
is componentwise. The pair (m,¢) is a morphism of cat!-groups where 7 : (**G —
Ga (qlaga q2) =g

A verification of the cat!-group axioms is given in [1].
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4. Profinite crossed modules and cat'-profinite groups

A profinite crossed module [5] PX = (0 : S — R) is a crossed module in which
S and R are profinite groups, S acts continuously on R and 0 is a continuous group

homomorphism.

Examples of profinite crossed module were given in [5].

Proposition 4.1 Let 0: A — G and § : B — G be two profinite crossed modules and
let (¢,Id) : (0: A — G) — (0 : B — G) be a morphism of profinite crossed modules.
Then by defining a continuous B— action on A by ba =) ¢ we have ¢ : A — B is a

profinite crossed module [5].

Proof. We can show two crossed modules axioms as follows:

A—2% .p
o )
GG

where 0 = §¢ and ¢p(9a) =9 ¢(a). We can verify the axioms of crossed modules as follows:
XMod1:

¢("a) = ¢("a)
= "(¢a)
= bp(a)b!
XMod2:

bazg, = 0(daz)g.
_ 5¢(a2)(a1)

— dag ai

—1
= a20a109
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IfPX =(0:8 — R)and PX' = (& : S — R’) are profinite crossed modules and
(g,m): (0:8 — R) — (& : 8 — R') is a morphism between them in which the pair
(u,m) are both continuous then the pair (u,n) is called a morphism of profinite crossed
modules [5].

A cat!-profinite group [5] is a cat!-group C = (e;t, h : G — R) in which G is a profinite
group and ¢t and h are continuous endomorphisms of G.

A morphism of cat!-profinite groups is a morphism ¢ : C = (e;t,h: G — R) — C' =
(e/;t',h' : G — R') of the underlying cat!-groups such that ¢ is a continuous morphism

of profinite groups.

5. Pullbacks of Profinite Crossed modules and cat!-profinite groups

Let PX = (0: S — R) be a profinite crossed module and ¢ : @ — R be a continuous
homomorphism of profinite groups. Then (**X = (9** : t**S — Q) is the pullback of PX
by ¢. So that .**;.S C @ x S is a closed subgroup given by

S ={(¢g,s) € Q x S| 1g=0s}
and @ acts continuously on the right of :**S by
(qla 5)‘1 = (q_lﬁhq, qu)a

since 9**(q1, s) = ¢1. The verification of crossed module axioms can be found in [5].

A pullback cat!-profinite group is defined by Alp in [3] as follows. Let PC = (e;t, h :
G — R) be a cat!-profinite group and ¢ : Q — R be a continuous homomorphism. Then
et R "G — (Q is a pullback of G where t**G C Q X G x (Q and

G ={(q1,9,02) € Q x G x Q| 1q1 =tg, tq2 = hg}.

Now we can define tail, head and emmbedding as follows:

t**(q1,9.92) = @
R (q1,9.02) = a2
e (q) = (q,eq,q).

The verification of cat!-group axioms can be found in [3].
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6. Pushouts of Profinite Crossed Modules and Cat!-profinite groups

Let PX = (0 : S — R) be a profinite crossed module over R and let ¢ : R — H
be a continuous homomorphism of profinite groups. Consider profinite group ¢.(S)

topologically generated by the profinite space S x H with relations
1. (s1,h)(s2,h) = (8182, h)
2. ("s,h) = (s, ho(r))
3. (s1,h1)(s2,h2)(s1,h1) ™" = (s2, h1(¢Ds1)hi " hy)

for all h, hy,he € H, 5,581,582 € S and r € R.

Define a continuous homomorphism § : ¢.(S) — H by extending 6(s, h) = h(¢ds)h~!
to the whole of ¢,(S) and define a continuous H— action on the left of ¢.(S) by
h(s,h1) = (s, hhy) for h,hy € H,s € S and a continuous homomorphism v : S — ¢.(9)
by (s) = (5,1) [5]

Proposition 6.1 [5] With the notation above, § : ¢.(S) — H is a profinite crossed

module over H.

Proof.  The statement about continuity are fairly trivial and the axioms of crossed

module were checked in [5] as follows.

XMod1:
5("(s,h1)) = 6(s,hhy)
= hhy(¢0s)(hhy)"
= h(d(s,h1))h ™t
XMod2:
darg  — 8(dax)g,
— 6¢(az)(a1)
= dazg,
= agalagl

A pushout cat!'- profinite group is defined as
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Let C = (e,t,h: G — R) be a cat!- group and let ¢ : R — H be a continuos group

homomorphism Define €.y, tix, s : ¢xxG — H to the pushout of G where

(b**:{(hl,s,hg)EHXSXH}

t**(h1557h2) = I
h**(h1557h2) = hs
exx(h) = (h,e¢p ' h,h).

The pair (1, ¢) is a pair morphism of cat!-profinite groups where

Y : G — .G, s+— (hi, s, he). We can show that t,. and h., are homomorphisms.

t**{(hl, S1, hg)(hs, S92, h4)} = t**(hlhg, §182, h2h4)
= hihs
= t**(hl,Sl,hg)t**(hg,SQ,fm).

Now we can give the verification of cat!-group axioms as follows:
CAT1:

BaxCux(h) = hae(hi,ed"*h h) =h
taxCax(h) = tuu(h1,ed 1 h,h) = h.

S0, tysCux = NuxCysx = idg then CAT1 is satisfied.
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CAT2:

Suppose a = (h},s1,h1) € kert,., b = (ha, s2,hy) € ker hyw. Then h] = by = 1 so,
by the definition of ¢.., we have s; € kert, sa € ker h. Then [a,b] = (1, [s1, 2], 1) =
(1w, 1s,1m).

7. Construction of the left adjoint

Proposition 7.1 The category of cat!-profinite groups is cocomplete.

Proposition 7.2 The functor ¢, : Cat! ProGrp/U — Cat! ProGrp/R has a left adjoint
Gsw : Cat! ProGrp/R — Cat* ProGrp/U.

The proofs of above propositions are clear since left adjoint construction of pullback
cat!-groups was given in [2].

Combining pictures together we get the following diagram.

e**

)

**G h** Q
Q € h R
\£ P o]
. t
R WG g
t**
¢
H
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QU™ = taam
hasth)m = GLh™™.

Since

ot (q1,9,92) = @)
= (¢t)(9)
= (t"¢)(9)
= " (¢g)
= t"(q1,9,92)

= @
tam(qr, 9, g2) = twb(g)

= twl(q1,9,q2)

= @

diagram is commutative.

(6]
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