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On the Unique Continuation Property for the Higher
Order Nonlinear Schrodinger Equation With Constant

Coefficients*
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Abstract
We solve the unique continuation property: If w is a solution of the higher
order nonlinear Schrédinger equation with constant coefficients with ¢1 < t2 which
is sufficiently smooth and such that supp u(., ¢;) C (a, b), —00 < a < b < o0,
7 =1, 2, then u=0.
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1. Introduction
We consider the initial value problem

iU+ QU + 10 Uz + |ul?u = 0, z,teR

(HSCHROD) {
u(zx, 0) = up(x),

where a, n € R, n # 0 and u is a complex valued function. The above equation is a

particular case of the equation

iU+ QU + TN Uz + 7 |u|?u+ 08 |u|? up +ieu?Tu, =0, r,teR
(@)
u(zx, 0) = up(x),
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where «, 1, 7, §, with n # 0 and u is a complex valued function. This equation was first
proposed by A. Hasegawa and Y. Kodama [10] as a model for the propagation of a signal
in a optic fiber (see also [22]). The equation (@) can be reduced to other well known
equations. For instance, setting a =y =1, n=€¢ =9 =0 in (Q) we have the semi linear

Schrédinger equation, i. e.,
iUt + U + |u)>u = 0. (@1)

If we let n =~ = 01in (Q) we obtain the derivative nonlinear Schrédinger equation
iUt + QUgg + 16 |ul?uy +ieu?T, = 0. (Q2)

Letting « = v = ¢ = 0 in (Q), the equation that arises is the complex modified Korteweg-

de Vries equation,
g + N U + 6 |u]? uy = 0. (@s3)

The initial value problem for equations (Q1), (Q2) and (Q3) has been extensively studied
in the last few years. See for instance [1, 7, 14, 31] and the references therein. In 1992,
Laurey C. [24] considered equation (@) and proved local well-posedness of the initial
value problem associated for data in H*(R) with s > 3/4, and global well-posedness in
H*(R), where s > 1. In 1997, Staffilani G. [33] established local well-posedness for data
in H*(R) with s > 1/4, improving Laurey’s result. Similar results were given in [5, 6] for
(Q) where w(t), B(t) are real functions. Recently, Vera O. [35] showed that C°° solutions
u(z, t) are obtained for all ¢ > 0 if the initial data ug(x) decays faster than polynomially
on R={z € R: z >0} and has certain initial Sobolev regularity.
For the case of the (HSCHROD) we consider the Gauge transformation

- o o8B 2
u(z, t) = ezﬁw_zzmtvcc—a—t,t)
31
= (),
where Hziﬁx—iQ%t, uzw—‘g—;tandfzt,tohave
3 2
o O o
up = —zQWeev—%eevu—i—eevg
a® 4 ) 0
Upy = —9—7726 ’U+2Z%€ 'Uu'i‘e oy
3 2
Y a” 8 S Qe 9
Upps = —zﬁe ’U—3W€ vu—i—?n%e Vpp + € Vppp-
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Replacing in (HSCHROD), we obtain

ive + iV + 020 =0, uw EER

(KdVm) {
v(p, 0) = vo(p),

then the (HSCHROD) equation is reduced to the complex modified Korteweg-de Vries
type equation. This is our main motivation, to think that the (HSCHROD) equation
has the unique continuation property.

A partial differential equation Lu = 0 in some open, connected domain Q of R™ is said
to have the weak unique continuation property (UCP) if every solution u of Lu = 0 (in
a suitable function space), which vanishes on some nonempty open subset of Q, vanishes
in §.

This paper is concerned with unique continuation results for the higher order nonlinear
Schrodinger equation with constant coefficients. The equation (HSC H ROD) with initial

data and periodic boundary conditions has the form

iU+ O Ugg + 07 Ugge + [uPu+idu, =0 (1.1)
u(zx, 0) = uo(x) (1.2)
OFu(0,t) = d*u(1,t), k=0,1,2, (1.3)

where a, 1, § € R, # 0 and u is a complex valued function on the domain [0, 1], t € R.

For the UCP the first results are due to J. C. Saut and B. Scheurer [30]. They
considered some dispersive operators in one space dimension of the type L = ¢ D; +
it D+ L R(x, t, D), (z,t) € R" xR, where a #0, D =12 D, =12 and

i Oz i ot
R(z, t, D) = Z?io ri(z, t) DI, r; € L (R : L} (R)). They proved that, if u € L (R :

loc

H2k+1

e (R)) is a solution of Lu = 0, which vanishes in some open set 21 of R, x Ry, then

u vanishes in the horizontal component of €2;. As a consequence of the uniqueness of the
solutions of the KdV equation in L (R : H3(R)), their result immediately yields the

loc

following theorem

Theorem 1.1. Ifu € LS (R : H3(R)) is a solution of the KdV equation

Ut + Ugpr + UU; = 0, (1.4)

and vanishes on an open set of R, x Ry, then u(z, t) =0 for x e R, t € R.
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In 1992, Zhang B. [36, 37] proved using inverse scattering transform and some results
from Hardy function theory that if u € LS (R : H™(R)), m > 3/2 is a solution of the
KdV equation (1.4), then it cannot have compact support at two different moments unless
it vanishes identically. As a consequence of the Miura transformation, the above results

for the KdV equation (1.4) are also true for the modified Korteweg-de Vries equation
Ut + Upge — U2 Uy = 0. (1.5)

A variety of techniques such as spherical harmonics [32], singular integral operators [25],
inverse scattering [36], and others have been used. However the Carleman’s methods
which consist of in establishing a priori estimates containing a weight has influenced a
lot the development on the subject. In 2002, C. Kenig et al. [17] studied the generalized
KdV equation

Ut + Ugge + F(Ugz, Uz, uy, 2, 1) =0, xR, tE [t1, to] (1.6)

under suitable assumptions on F and on the class of solutions considered in [18]. For
this case, they used a unique continuation result due to [30]. C. Kenig et al. [19] studied
uniqueness continuation properties of solution for the nonlinear Schrédinger equations of

the form
tur+Au+ Flu,w) =0, (x,t) e RxR. (1.7)

More precisely, they showed the following theorem.

Theorem 1.2. Let uq, uz € C([0, 1] : H*(R™)), s > maz{n/2"; 2}, be two solutions of
the equations (1.7), where F € CIIHY(C : C) with

IVE(u, @)| < c(jul™ " +[ul™™), pi,p2> 1. (1.8)
If there exists a convex cone I' strictly contained in a half-space such that

ui(x, 0) =wuz(x, 0) : wi(zw, 1) =wus(z, 1), Ved T4y, v €R",  (1.9)

then uy = us.

Subsequent work in these type of equation were given by [8, 18, 23] (and see references
therein). According to the characteristic of equations (1.1)—(1.3) and considering the
above argument, the following basic question arises: Let u = u(z, t) be a solution for the

higher order nonlinear Schréodinger equation with constant coefficients

QU+ O Ugy + 00 Ugge + [uPu+i0u, =0, (z,t) €R X (1, ta)
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with ¢; < t2 which is sufficiently smooth and such that
supp (., t;) C(a,b), —oco<a<b<oo, j=1,2.

Isu=07

In this work, motivated by the work of C. Kenig et al. [18], we pretend to give an
answer to this question. This paper is organized as follows: Before describing the main
results, section 2 outlines briefly the notation and terminology to be used subsequently
and presents a statement of some Lemmas. We prove the local existence theorem. In

section 3, we obtain the main theorem. Our main result reads as follows.

Theorem 1.3. Suppose that u(z, t) is a sufficiently smooth solution of the (1.1)—(1.3).
If

supp u( ., t;) C (—o0, b), ji=1,2. (1.10)
or
supp u( ., t;) C (a, 00), ji=1,2, (1.11)

then u(z, t) = 0.

2. Preliminaries

The notation we use is standard: We write the time derivative by u; = %—? = Ou.

Spatial derivatives are denoted by u, = g—g = Ou, Ugpy = 2273 =0%u,. .., %1} = 9%y and
we abbreviate u; = &’ u.
If E is any Banach space, its norm is written as || - ||g. For 1 < p < + 00, the usual class

of ptP-power Lebesgue-integrable (essentially bounded if p = + 0o) real-valued functions
defined on the open set £ in R™ is written by LP(2) and its norm is abbreviated as
|| - ||p- The Sobolev space of L?-functions whose derivatives up to order m also lie in L?
is denoted by H™.

We denote [H™(Q), H™2(Q)] = HA=Om+0m2(Q) for all m; > 0(i =1, 2), ma <
mi, 0 < 0 < 1 (with equivalent norms) the interpolation of H™({)-spaces. If a function
belongs, locally, to LP or H™ we write f € L} ~or f e H”. C(0,T : E) to denote

the class of all continuous maps w : [0, T] — E equipped with the norm ||ul|c(, ;) =

sup g<i<rllulle. u(z, t) € C*1(R?) if du, 0*u, O3u, du € C(R?). u(x, t) € CP 1 (R?)
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if u € C**(R?) and u with compact support. Throughout this paper c¢ is a generic
constant, not necessarily the same at each occasion (it will change from line to line),
which depends in an increasing way on the indicated quantities. The next proposition is

well known and it will be used frequently

Proposition 2.1. Let K be a non empty compact set and F a close subset of R such
that K N F = (. Then there is ¢ € C§°(R) such that v = 1 in K, ¢ = 0 in F and
0<¢z)<1, VxeR.

Definition 2.2. Let L be an evolution operator acting on functions defined on some
connected open set Q0 of R? = R, xR;. L is said to have the horizontal unique continuation
property if every solution u of Lu = 0 that vanishes on some nonempty open set 01 C )

vanishes in the horizontal component of 1 in §2, i.e., in
Qp = {(LL', t) S Q/ dzq, (J,'l, t) S Ql}

The following results, Theorem 2.3 and Corollary 2.4 will be important in the proof of
the main theorem of this paper. The proof is given in the paper of J. C. Saut and B.
Scheurer [30].

Theorem 2.3. Assume that u = u(zx, t) satisfies the equation

2
Ou+0®u+ > r; Pu=0,  (2,t)€(a,b)x (t, ta) CRxR (2.1)
7=0
with
rj € L®((t, t2) : L2, (a, ). (2.2)

If u vanishes on an open set Q1 C (a, b) X (t1, t2), then u vanishes in the horizontal

components of Q1 in (a, b) X (t1, t2), i. e., the set
{(z, t) € (a, b) X (t1, t2) : Jx1 such that (1, t) € Q1 }. (2.3)

As a consequence they obtained the following result.

Corollary 2.4. Ifu is a sufficiently smooth solution of the equation (2.1) with

suppu(.,t) C (a, b), Vit e (t1, ta), (2.4)
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then u = 0.

Remark. The key step is the following Carleman’s estimate: Assume that (0, 0) € Q
then

// 0, + 03u)? ¢ dx dt

Q

2)\// |62u|262)‘“"dxdt+)\2// |6u|262)‘“"dxdt+)\4// lul? X dxdt  (2.5)
Q Q Q

with A6 > M, 0 < 6 < & and p(z, t) = (v — 6)? + 5% 2.

Lemma 2.5. Equation (1.1)—=(1.3) has the following conservation law

1
at/ u?dx = 0. (2.6)
0

Proof. Straightforward. O
Lemma 2.6. For allu € H'(Q2)
1/2 1/2
full ety < ellullyZa (lullzagay + 110 2 ) 72, (2.7)

and for all u € H3(1),

11/12 1/12
ullzsa) < ellullE2 (1lull g + 11 6% s ) (2.8)
7/12 5/12
10ul| ey < ellul P42, (lullao + 1| 0%ul 22y (2.9)
Proof. See [34]. O
Lemma 2.7.
‘ / el @& (g, €%) dg < c||ulls/mrey
R L8 (R?)
where ~ denotes the Fourier transform in R.
Proof. See [15] O
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Lemma 2.8. For any u € Co'(R?),
[lul|Lsa) < el[{8: + 0° + a}ul| s/r(ge)
with ¢ independent of a € R.

Proof. See [18]. O

Theorem 2.9 (Local Existence). Let ug € H'(0, 1) with ug(0) = uo(1). Then there exist
T > 0 and u such that u is a solution of (1.1)~(1.3). u € L>(0, T; H'(0, 1)) and the

initial data u(x, 0) = ug(zx) is satisfied.

Proof. For € > 0 we approximate the equation (1.1)—(1.3) by the parabolic equation

i 0pu + ad*uf +ind3uc + |u)Pu +i6Out +iedu =0 (2.10)
uf(z, 0) = up(x) (2.11)
oFuc(0, t) = o*u(1,t), k=0,1,2. (2.12)

Multiplying equation (2.10) by u€, we have
iu€ Oput 4 auf 0%uc + inuf OPut + [ut +i5uf Ouc +ieu du =0
— i u put + aut 02u — inuc Puc + [u|t —idu duf —ieu It =0
(applying conjugate).

Subtracting and integrating over z € Q = (0, 1), we obtain
1 1 T
i(?t/ |u6|2dx+i77/ E@‘O’uedx—i—in/ u® QBucdx
0 0 0
1 T
—i—ie/ Ea‘*uﬁdxﬂe/ uf 04uc dx = 0. (2.13)
0 0

Each term in (2.13) is calculated separately. Integrating by parts, there is

1 1
/ uE Ousdr = —/ uc %uf dx
0 0

1 1
/ u€ PBucdr = —/ Puc2ucdx
0 0
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1 1
/F84u6dx=/ |0%uf|? dx
0 0

1 1
/u684u€dx=/ |0%uf|? dx
0 0

then in (2.13), we obtain

1 1 1
i O / |u|2da — in/ Ouc O*uSdx — in/ Ou® P?ucdx
0 0 0

1 1
—i—ie/ |82u6|2dx+i6/ |0%u|2dx = 0.
0 0
hence
1 1
i8t||u6||%2(071) —in/ o(|0uc|?) dﬂc+2ie/ |0%u|2dx = 0,
0 0
thus

O ||“6||%2(0,1) +2e ||52“6||%2(0,1) =0.

Integrating over ¢ € [0, T'], we obtain

||“6||%2(0,1) + 26/0T ||52“6||%2(0,1)dt = ||“6||%2(o71)-
In particular,

[l Lo (0, 7: L2(0,1)) < € : Ve [|0%uf| | p2(0, 7: 120, 1)) < €
if and only if

[[u|[Lo(0, 7 L2(0, 1)) < € : Ve |0 |12 < ¢,
or

u® € L0, T : L*(0, 1))
Veus € L2(0, T : H?(0, 1)).
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On the other hand, multiplying (2.10) by 0?u¢ and integrating over z € Q = (0, 1) we

have
1 1 1
z/ 0%uc Btuedx—i—a/ |62u6|2dx+i77/ %uf DPusdx
0 0 0
1 L T 1
+/ [uf|? uf 82u6dfc+i5/ Ou 02ue d:c—i—ie/ %uc 0*udr = 0. (2.16)
0 0 0

Each term is treated separately. Integrating by parts, we have

1 1
/ O?uc Opusde = —/ Ouc 0y (0u) dw
0 0
1 L 1 L 1
/ |u|? uf 2ucdr = —/ O(|uf?) uf ducdx — / |u|? |ous [P da:
0 0 0

1 1
/ %€ O ufdr = —/ |03uc|?dx.
0 0

Replacing in (2.16) we obtain
1 1 1
- 2/ Ouc 9 (Ou) dx + a/ |0%uf|2dx + i 77/ %€ Pudx
0 0 0
1 L 1 1
—/ O(|ufl?) uf Quedx — / |u|?|Ou|Pdx + i 5/ Ouc D?ucdx
0 0 0

1
—ie/ |03u|2dx = 0. (2.17)
0

Applying conjugate in (2.10), we get

— i O’ + a 0%uf —in OBuc + |u|>uf — i 6 duf — ieduc = 0. (2.18)
We multiply (2.18) by 9%u¢ and we integrate over x € Q = (0, 1) to fird
1 1 1
- 2/ O*uf Dyucdr + a/ |0%uf|2dx — in/ 0*uf PBucdr
0 0 0

1 1 1
+/ |uf|? uf O*uSde — i 5/ Ouc O*udr — ie/ O*uf Prucdr = 0 (2.19)
0 0 0
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Each term is treated separately. Integrating by parts, we hav

1 1
/ O*uf Dyucdr = —/ ou* 0y (Ou)dx
0 0
1 1 1
/ |u¢|? uf O*ucdr = —/ 6(|u6|2)Fu;dx—/ |u|?|Ou’ |2 dx
0 0 0

1 1
/ O*uf Qucdr = —/ |03uc|?dzx.
0 0
Replacing in (2.19) we obtain
1 1 1 1
2/ ou’ Bt((?uﬁ)dx—i—a/ |82u6|2dx—i77/ *us 63u€dx—/ O(|u|?) uf Oucdx
0 0 0 0
1 1 1
—/ |u6|2|8u6|2dx—i5/ ouc Bzuedx—i—ie/ |03 |2 dz = 0. (2.20)
0 0 0

Subtracting (2.17) and (2.20), using Lemma 2.7 and performing straightforward calcula-

tions we obtain

O ||5“6||%2(0,1) +2e ||53“6||%2(0,1)

1
= —QIm/ O(|uf|?) u Qudx

0
1
4/ e 2 0uc|? da
0

<
< Ao, pllous o,y
e11/12 € € e17/12 €
<4 [ [l o, 1) + 107wl oo, 0] 2 | o 1 el 20,1

83 € 5/12 2
+ [10°u | £2(0, 1))

11/6

€ € € 1/6 €|7/6
= A1 1y [l 22, 1) + 10%u 22, 1] Nl 7

L2(0,1) [lluellLQ(O,l)
. 5/6

+ 1187 |20, 1]

= 4C4||U6||%2(o,1) [||U6||L2(0,1) + ||53U6||L2(0,1)]

= 4c!||uf| |i2(o, T Act[uf| |%2(0, 1) | |53“6||L2(07 -
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Using that 2ab < a? + b2, and Lemma 2.6, we obtain
B0 (10w |F2(0,1) + € |10°u| 220,14y < e

Integrating over ¢ € [0, T'] we have

T
0 s+ [ 1% gy dt <
then
||5“6||%2(0,1) te ||53“6||%2(0,T; L20,1) = ¢ (2.21)
In particular
|Ou][ Lo 0,7 L2(0,1)) S € : Ve ||83u6||L2(0,T: £2(0,1)) < ¢

if and only if

[|0u]| o< (0,7: L2(0,1)) < € : Ve ||83u6||L2(Q) <c
or

out € L*(0, T : L?(0, 1))

Ou e L*(0, T : L*(0, 1)),
where

u® € L0, T : H'(0,1))N L0, T: H3(0, 1)). (2.22)
Hence from (2.14)—(2.15) and (2.22) we have the existence of subsequence u¢ “f e such
that

u® Sy weakly in  L>®(0, T : L*(0, 1)) — L?(0, T: L*(0, 1)) = L*(Q)

ou® = ou weakly in  L®(0, T: L?(0, 1)) — L*(0, T : L*(0, 1)) = L*(Q).

Thus from the equation (2.10) we deduce that

Out = Oyu  weakly in  L2(0, T: H%(0, 1)).

On the other hand, we have H'(0, 1) <> L2(0, 1) — H~2(0, 1). Using Lions-Aubin’s

compactness Theorem

u® — u strongly in  L*(Q).

276



BISOGNIN, VILLAGRAN

Then
Juf|? u® = uufu — udu = |ul>uv in D0, 1).

The other terms are calculated in a similar way and therefore we can pass to the limit
in the equation (2.10)—(2.12). Finally, u is solution of the equation (1.1)—(1.3) and the

theorem follows. O

3. The Main Theorem

The first result is concerned with the decay properties for the higher order nonlinear

Schrodinger equation with constant coefficients. The idea goes back to Kato T. [14]. O

Lemma 3.1. Let |a| < 37. Let u be a solution to (1.1)—(1.3) and €?* ug € L*(R), then
Py e C([0,1]: L*(R)) (3.1)

Proof. Let ¢, € C*(R) be defined by

(@) P , for z<n
PnlT) =
" 2Bz for x> 10n

with
pa(e) <P7 0 0< ¢l (2) < Boala) = e (@) < B pulz)  =2,3.(32)
O
Example.
Multiplying the equation (1.1) by @y, we have
iTOu n + AT u @, +inTdup, + |ul*, +i6TOu @, =0
— w0 oy + aud® T, —inuddTe, + |ul* o, —idudtp, =0
(applying conjugate).

Subtracting and integrating over x € R we have

i(?t/ |u|2<pndx+a/ﬂ(92ucpndx—a/uBQEcpndx—i—in/ﬂBSucpndx
R R R R

+in/u836<pndx+i5/8(|u|2) pndz = 0. (3.3)
R R
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1.45 - 9 d 0
12 E
eZB;
0.95 | - €
n=0 0 n 10n
T T
@3 7]
eZﬁx
eZBx
eﬁx eﬁx
0 n 10n 0 n 10n
Figure 1. These are sample figures for different values of n.

n

Figure 2. This is a figure
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Each term is calculated separately using integrating by parts:

/Uazucpndx = —/ﬂ@ucp;dx—/ |ou|? o, dx

R R R

/uazﬂcpndx = —/uaﬂcp;dx—/ |0u|? p,dx

R R R

/Ua3ucpndx = /Uauwcp;;dx—i—/ |6u|2<p;dx—/8662ucpndx
R R R R

/u(??’ﬂcpndx = /uaﬂcp;;dx—i—/ |8u|2<p;dx—/6uazﬂcpndx.
R R R R

Replacing in (3.3), we have

i(?t/ |u|2cpndx—a/ﬂ(9ucp;dx—a/ |6u|2<pndx+a/uﬁﬂcp;dx

R R R R

+a/ |8u|2<pndxin/ﬂ(9ucp;;dx+in/ |6u|2cp;dx—in/6682ucpndx
R R R R

in/uaﬂcp;;dx—i-in/|6u|2<p;dx—i77/Buazﬂcpndx—ié/|u|2<p;dx=O,
R R R R

hence
i(?t/|u|2(pndx—2ialm/U@ucp;dx+in/5(|u|2)(p;:dx
R R .
+2i77/ |6u|2§0;d1’—7;77/6(|8u|2)(pndx_i5/ |U|2(P:ld$20;
R R &
then
Bt/|u|2<pndx—2alm/ﬂ(9ucp;dx_n/|u|2(p::/dx
R R .
+277/ |‘9“|2‘P%df+77/ |5UI2<p;dx—5/ |ul? ¢, da = 0,
R R &
thus

o, / ul? gz + 37 / 0ul? gdz — 7 / g dz — & / el de
R R R R

= 2alm/68ucp;dx§ |a|/|u|2<p;dx+|a|/|8u|2<p;dx
R R R
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hence we have

0 [ uf? oud+ (30— lal) [ (ou gl = [ il =5 [ fup ol s
R R R R
< lal [ luf¢lds
R
then
00 [ luPouda + (1= ) [ 006, v
R R
< 0 [ P s [ JuPede+ ol [ fuPeda.
R R R
Using that || < 37 and (3.2), we obtain

0 [ uonde+5 30— lal) [ |0uP puds < (15 + 65+ 101 9) [ luPonda.
R R R

Integrating over ¢ € [0, 1] we have

1 1
/ at/|u|2sondxdt+ﬁ<3n—|a|>/ /|au|2sondxdt
0 R 0 R
1
< (nﬁ3+5ﬁ+|a|ﬁ)/0 /R|u|2<pnd:cdt

hence
1
/|u|2<pndxdt+ﬁ(377—|a|)/ /|8u|2cpndxdt
R o JRr

1
2 3 2
< /Rluol ondx+(np +5ﬁ+|a|ﬁ)/0 /R|u| on dx dt (3.4)

then

1
/|u|2<pndxdt§/|u0|2<pndx+(7753+5ﬁ+|a|ﬁ)/ /|u|2cpndxdt.
R R o Jr

Using straightforward calculations, we have

/|u|2<pndx§ [/ |u0|2cpndx] et
R R
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where ¢ =733+ 3§ 3 + |a| 3. Thus

sup /|u|2<pndx§ [/ |u0|2cpndx] et < [/ |u0|2e2ﬁwdx] e,
tefo,1] /R R R

Now, taking n — co we obtain

sup /|u|2ezﬁwdx§ [/ |u0|2e2ﬁwdx] e,
tef0,1] /R R

where
2 < 2 C1
sup ||u||L2(e2Bmdm) = ||u0||L2(e2Bmdm) e
t€(0,1]
This way
sup ||ullp2(e260 dz) < |[uol[L2(e20+ da) €7
t€(0,1]
withe=2 (983 +6 8+ |a|B). O

Remark. Since (3.4) we see that if % ug € L2(R), then e”®u € H'(R). Hence there is
a gain in regularity.

We have the following extension to higher derivatives.

Lemma 3.2. Let |a| < 371 and m € N. Let u be a solution of the (1.1)—(1.3) equation
such that

sup |[u(., O)||gm®) < +o0
t€(0,1]

and
eﬁmuo,...,eﬁmﬁmu0€L2(R), VB3>0
then

sup |[u(t)||em-1r) < €m = cm(uo, 1)
t€(0,1]

with 1 = 3° + 3 B|ull Le@x o, 1)) V]| L@x 0, 1))-
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Proof. Differentiating m times in variable x we have
i 0p(0™u) + a 0™ 2u +in 0™ Bu 4+ 0™ (|uPu) + 36 0™ u = 0.
Multiplying by 0™ ¢,,, we obtain

i 0™ 0 (0™ ) o + O T U@, 4+ in 0TI B up,
+ 0™ T O™ (|ul*u) op + 8 0™TI" i, =0

—10™u 0 (0™U) Y, + QA Uy Unp2 On — i 0" U I3,

+ 0T 0™ (|ul?u) op, —i6 0" ud™ T, =0 (applying conjugate).

Subtracting and integrating over x € R, we have
104 / |0 u|*p, dx + a/ Imu O™ 2w, da — a/ 0" u " @, dx
R R R
—i—in/ " wd™ B, dx + in/ wd™PBup,dr + 2ilm/ O™ O™ (Jul*u) pndx
R R R
+i§/ (|0 u|*)n dz = 0. (3.5)
R
Each term is calculated separately integrating by parts

/Bmﬂ(?m+2ucpn dx = —/Bmﬂamﬂucpﬁzdx—/ |0 |20, da

R R R

/Bmu(?erzﬂcpndx = —/Bmu(?m"’lﬂcp;dx—/ |0 |0, da

R R R

/Bmﬂam+3ucpndx = /Bmﬂam+1ucp:;dx+/ |6m+1u|2<p;dx—/8m+166m+2ucpndx
R R R R

/Bmu(?er?’Ucpndx = /Bmu(?m"’lﬂcp;;dx—i—/ |5m+1u|2cp;dx—/Bm“uam”ﬂcpndx.
R R R R
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Replacing in (3.5), we have
i(?t/ |8mu|2cpndx—a/Bmﬂﬁmﬂucp;dx—a/ |8m+1u|2cpndx+a/u@mﬂﬂcp;dx
R R R R
+a/ |8m+1u|2cpndx+i77/Bmﬂamﬂucp:;dx—i—in/ |0 u|? @ dx
R R R
—in/8m+166m+2ucpndx+i77/BmuamHUcpde—i-in/ |0 %), da
R R R

—in/8m+1u8m+2ﬂcpndx+2ilm/Bmﬂam(|u|2u) cpndx+i5/8(|8mu|2) ondr =0,
R R R

hence
i(?t/ |8mu|2cpndx—2ialm/Bmﬂam"’lucp;dx—i—in/6(|8mu|2)cp;;dx
R R R
+2i77/ |8m+1u|2cp;dx—i77/8(|8m+1u|2) ondx
R R
+2ilm/Bmﬂam(|u|2u)cpndx—i§/ |0™u|?p! dz = 0,
R R
then
8,5/ |8mu|2cpndx—2alm/Bmﬂamﬁucp;dx—n/ |0 u|? ! da
R R R
+277/ |8m+1u|2cp;dx+77/ |8m+1u|2cp;dx+2lm/Bmﬂam(|u|2u) ondx
R R R
—5/ |0l da = 0,
R
thus

8,5/ |8mu|2cpndx+377/ |8m+1u|2cp;dx—77/ |0 u|?@!! da
R R R
+2Im/amuam(|u|2u) cpndx—é/ 0™ ul g, dx
R R
= 2alm / Tyl dz < ol / 0™ ul @, + | / |07l e,
R R R
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hence we have
Bt/ Iamul%ndwﬂi%n—lal)/|5"‘+1UI2<p;dw—77/ |0 ul? g da
R R R
+2Im/8m68m(|u|2u) cpndx—é/ |0 )%, dx < |a|/ |0 |, du,
R R R
then
8,5/ |0 )@, da
R
< —Gu-la [ 0" P ddn sty [ 107 gldn 5 [ 107l ¢ da
R R R
+|a|/|8mu|2<p;dx—2lm/Bmﬂﬁm(|u|2u)cpndx.
R R
Using that || < 37 and (3.2) we obtain

8,5/ |0 u| @, da
R

<8 +55+1a1) [ |0 uPpuds —20m [ 0™w0" (uf*u) pd
R R
But
m 2 jls 7’L' m—n 2 ')
O™ (Jul*u) = ma (Jul®) 0"u
= n! !
_ S 7’L' m—mn 2 n 2am
n=1
hence

QIm/ O w O™ (|ulu) ¢, dx
R

- n! m-— gm—n 2\ an

284

m n' — AT—T 9 - oo 1o

(3.7)



BISOGNIN, VILLAGRAN

Replacing (3.7) in (3.6), integrating over ¢ € [0, 1] and doing straightforward calculations

as in above Lemma, the result follows. o

Lemma 3.3 (Carleman’s Estimate). Let u € Cg''(R?) and 1) € R, then
1A ul| sgzy < (127 + 10} ul| Ls/rrey = []€” Lul|ps/r(gey (3.8)

for all X € R, with ¢ independent of A.

Proof. We will prove that if u € C5"' (R?), then
||e)‘mu||L8(R2) < ||6)\w{6t+7763}U||L8/7(R2), VAeR (39)

with ¢ independent of \. O

Claim 1. It suffices to consider the cases A = £1 in (3.9).
In fact, we observe that the case A = 0 follows from the case A # 0 by taking the limit
as A — 0. So we can restrict ourselves to the case A # 0.

We consider the case A > 0 (the proof A < 0 is similar). Assume that
||€mU||L8(R2) < ||6I {6t+7783}u||L8/7(R2), Yu e CS’I(RQ) (3.10)

with ¢ independent of \.
Let ur(z, t) =u (%, %) , then

1 rz t z t
3 _ 3
{0: + n0° Yux(z, t)—)\g [Btu (X’ )\3>+n8u<x, )\3>].

We consider the change of variable

x t
=— s = —;
LD 3
then
9y 9y 19
6(3/, S) B ox ot B A B 1
O(z, t) o o T
Js Js 1
9z ot 0 5
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hence dyds = )\—& dx dt, then \* dyds = dx dt. This way

1/8
[/ le® uy|® dx dt]
R2

1/8
\1/8 [/2 |e’\yu,\|8dyds]
R

|le” uxllLsr2)

A2 1M || s (g2) (3.11)
and
ACE
1o (00t bl = g 1€ 10, + 00" ull oy
)\1/2 ||6>\y{65+7’]83}u||L8/7(R2), (312)
hence (3.11) and (3.12) in (3.10) we obtain (3.9). 0

Claim 2. To prove (3.10) it suffices to establish the inequality
lullioee) < el {01+ 08 = 3082 +3n0 = nhulloms Yue CFARD).  (313)
In fact, let v(z, t) = e* u(x, t), hence
{0; +n0® —=300* +3n0 —n}v = e {0; +nd*}u

then (3.10) follows. O

Claim 8. Tt suffices to prove the inequality (3.13) without the term on the right hand side
involving the derivatives of order 1 in the z-variable. Indeed, to prove (3.13) is suffices

to show
lwl|Leeey < e[ {0 +n0® —300* — n}w||Ls/7 @2, Vw e Cp ' (R?). (3.14)

In fact, let y = —?f—n—i—t and s =t, then x = 37n(s — y) and ¢ = s. Hence

9y 9y -1 1
oy, s) _| ™ \_| " |__ 1
O(z, t) 3n
Os Os
5 ot 0 1
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then dyds = — % dz dt. Thus for w(y, s) ~ u(z, t) we have

1 1 1

Ozt = —3—8ywy : Bguz W@jw : Bi’u: — 5T Bz’w i Owu = 0sw — 31 0,u.
Hence (3.13) can be written in the equivalent form
|[wl[Lswz) < ¢ {a —Latia?—n}w Yw e Cy'(R?). (3.15)
(R2) = s 27773 Y 377 Y L8/T(w2) ) 0

Now, making the change of variables z = —3ny and ¢t = s, we obtain in (3.15)
lwl|Lsmey < c|[{0s + 105 — 31002 —nhw||psr@ey,  Ywe Cy ' (R?) (3.16)

and the claim follows. O

To complete the proof of Lemma we just need to prove (3.14), i. e,
lwl[zs@e) < c|[ {0 +n0; — 3002+ 300y —nhw||s/7me), Ywe CyH(R?).  (3.17)

Taking the Fourier transform, in space and time variables, on the right hand side of (3.17)

we have
(it —in& +3n€—n)b. (3.18)

We consider the pair of points

P = (i) =+ (= (%)Q (3.19)

where the symbol in (3.18) vanishes. It suffices to prove (3.17) for any w € S(R?), with

w=0ina neighborhood of Py.

So we are then reduced to showing the multiplier inequality

1 R AAY
||T’LU||L8(R2) = H |: - 3 B ’L/U\:| < C||w||Ls/7(R2) (320)
i(T—n&)+3n& —n Le(k2)
for such w’s.
It suffices to prove (3.20) assuming that
supp@ C {(§, €)= §=>0}, (3.21)
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since the proof for the case

supp@ C {(&,¢): € <0} (3.22)

is similar.
Remark. Using a variant of Littlewood-Paley theory we have the following. Let

(&, €) = xnyz.1) (1€ = &1/27F) @(&, ©), (3.23)
where x4 (-) is the characteristic function of the set A. Then for each 1 < p < oo we have
1/2
||l o2y ~ < > ILk(U)|2> : (3.24)
keZ+t L?(R2)

Thus it suffices to establish (3.20) for each Lyw with a constant independent of k, since

using Minskowski’s integral inequality (8/7 < 2 < 8) one has

|| Twl|Ls(re2)

1/2
<Z |Lk(Tw)|2>

keZ+

12

L8(R?)

1/2
= <Z |T(Lkw)|2>

keZ+t L8(R?)

1/2
< <Z ||T(Lkw)||%8(]R2)>
kez+t
1/2
< ¢ <Z ||Lkw||%8/7(R2)>
keZ+
1/2
< ¢ < zz: LLk1u|2>
kezt L8/7(R2)
< C||’LU||L8/7(R2). (325)
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Therefore, we shall prove the multiplier estimate (3.20) when
= . —k—1 + —k
suppw € {(§,¢): £20, 27 T <|g-& <277} (3.26)

We split the proof of (3.26) into two cases

Case 1. k < 0. In this case, if £ € suppt% then
362 —1| > |6 &f|IE+&f | =277 27", (3.27)
Using Lemma 2.8 we just need to bound the multiplier

1 1
i(T—n&)+3n&—n i(r—ne)+2-2ky
272k — (3n&% — 1)
[i (T —=n&3) +3n&2 —nl[i (T —n&3) + 272y
272k — (362 -1)
i(T—n&) +3nE% —nlli(t —n&3) +272ky)

(3.28)

Using the change of variable 7 = X + 1 &3 we have

i (2, 0)-(€.7) [27%F - (38 —1)] -
n/ﬂ%/ﬂ%e [i (T —1&3) +3n&2 —nlli (T —n&3) +272ky) w(§, 7)dEdr

i (2, 6)-(€, A1 €%) [272F — (362 —1)] ~ 3
77/R/Re ! [i)\+377§2—77][i)\+2—2k77]w(&)\—1—775)d§d)\

int i (,8)-(6,m €%) [272F - (362 -1)] = 3

= Uz, t). (3.29)
Let
= 3y _ 27%F - (38 -1 = 3y.
then in (3.29) we obtain
U(z, t) = n/Re“t [/R et @D EnE) Ty (¢, €3) de| d. (3.31)
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Because Minskowski’s integral inequality we have

[ [ ¢ o
R R

[[¥]|smey = 77‘
LS(R2)

< n/ /ei@vf)'(ﬁv"?)@(g, &) de dA.
R ||J/R L8(R2)
From Lemma 2.7 we obtain
191lzxee) < e [ lln Lm0 (3.32)

Now for A and k fixed we consider the multiplier in (3.30) in the variable £, with
€>0, |g-gfl=27" P& —1~27

which has the norm bounded by

2—2k
CPP
2—2k
dx < - |l d\
cn/Rllw)‘HLS”(]R?) = 077/R|)\|2+772_4k ||w)\||L8/7(]R2)
< cllwllpsmgey (3.33)

where Wy (x, t) = e~ ‘A aw(x, t). Thus (3.33) with (3.32) yields the proof of case 1.

Case 2. k > 0. In this case, if £ € supp;? then
B -1~ e—&f|IE+&5 =27 [€-&] . (3.34)

Using Lemma 2.8 to subtract

1
3.35
i(r—n&3) 42k ( )
and argue in a similar way as before. The corresponding multiplier to (3.30) is
2—2k 1—-3 2
(2 P+ 138 (3.36)

[iA+37n82 —n][ix+272ky]
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which has norm bounded by
2—2k:
C 57
A2 +n2- 2k

The Lemma follows. O

Lemma 3.4. Let u € C**(R?) and n € R such that

supp u C [-M, M] x [0, 1] (3.37)
and

u(z, 0) = u(z, 1) =0, VzeR (3.38)
then

1€l Lsex o, 1) < e[l {0 +10%} ul| /7o, 1) (3.39)

for all A € R, with c independent of A.

Proof. Let ¢. € C§°(R) with

supp @ C [0, 1]
we(t)=1 for te (e, 1—e¢),

0<p(t)<1 and |p.(t)] <c/e, c positive constant.

Example.
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Let ue(z, t) = p(t) u(z, t), hence
supp ue(@,t) C  supp @e(t) Nsupp u(z, t) € supp u(z, t) € [-M, M] x [0, 1].
Then, on one hand we have that

||6)‘Iu6||L8(R2) — ||€)\IU||L8(RX[O71]) as € l 0 (3.40)

and on the other hand,

{00 +n0}uc(w, t) = {0 + 1 }pe(t) ulx, )] = @e(t) {0 + 1 0%} u+ @ (t) u(3.41)

Hence,

lpe(t) {0 + 10} ull ps/rey — |1{0: + 1 0°} ul] /7 (e

and using (3.37)

1L(t) ull Ls/7(re)

7/8
= //Iwe wt|8/7dfcdt]
[ 1 M
= [ ] e hute, e
|Jo J-m
M 7/8
= // |8/7|u:c t)|8/7dxdt+/ / |<Ple(f)|8/7|U($,t)|8/7dxdt1
-M
7/8
{// i [ [t e

7/8

Defining

Glt) = /M lu(z, )] de

—-M

then, by (3.38) we have that G(0) = G(1) =0. G is continuous and differentiable with

M
G'(t) = g/_M lu(x, t)|Y " 0pu(z, t) sgn(u(x, t)) dz,

292



BISOGNIN, VILLAGRAN

hence G’(t) is continuous,
GO <clt] |G B <cll—t

and

€ 1
/ G(t) dt+/ G(t)dt < cé. (3.43)
0 1

—€

Inserting (3.43) in (3.42) we have
/ 1 7/4
||(p6(t)u||L8/7(R2) SCEE — 0 as eLO
and (3.39) follows. O

Lemma 3.5. Let u € C* (R x [0, 1]) and n € R. Suppose that

> 100u(z, )] < Cge Pl e o, 1], VB >0, (3.44)
J=<2

and
u(z, 0) =u(r,1)=0, VzeR

Then

12 ullLs@xio )y < colleX {8 + 10} ul|Lssrrxpo, 1)) (3.45)

for all A € R, with ¢y independent of A.

Proof. Let ¢ € C§°(R) be an even, non increasing function for z > 0 with
p(x) =1, |z| <1,
supp ¢ C [-2, 2].

For each M we consider the sequence {¢y} in C§°(R) defined by ¢ (x) = ¢(55), then
¢n =1 in a neighborhood of 0 and supp ¢ C [—M, M]. Let up(x, t) = dar(x) u(z, ),
then supp upr C [—M, M] x [0, 1]. Hence,

{0+ 00" un (@, ) = {0 +n0"}Hou(w) u(z, 1)]
= ¢M{8t+7783}u(x, t)+36¢M62U+362¢M6U+63¢MU
= o {0+ 00 u(z, t)+ By + Fo + Es, (3.46)
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and using Lemma 3.4 to ups(zx, t) we get

[1eX ™ wnr]| Lo, 1))
< clled {0 + 10 Yunmll s mxo, 1))
3
< clle on{0 + 1 0% Yullpsimmxpo, 1)) + CZ 1} Bl s/7 (o, 1)), (3.47)
J=1

We show that the terms involving the L8/ "-norm of the error Eq, E5 and E5 in (3.47)
tend to zero as M — oo.
We consider the case x > 0 and A > 0. From (3.44) with 8 > X it follows that

1 p2M
z 8/7 z
1 By = 37 [ [ 1 00n0tl e
1 r2M | A 8/7
< c/ / — d%u dx dt
o Ju | M
1 p2M
S C/ / eS)\I/’?e—SBLE/'?dxdt
0o Jum
1M
= c/ / e BN dpdt -0 as M —oco. (3.48)
o Jum
Thus taking the limits as M — oo in (3.46) and using (3.48) we obtain (3.45). O

Lemma 3.6. Suppose that
uwe C([o, 1]; HY(®) N CH([0, 1]; H'(R))
satisfies (1.1)—(1.2), rewriting the equation,

du+ndu—iad®u—iluPu+ddu=0, =z tcR (3.49)
u(z, 0) = uo(x) (3.50)

with

supp u(zx, 0) C (—oo, b].
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Then, for any B > 0,

Z | u(z, t)) < cpe P, for x>0, telo,1].
J<2

Proof. From Lemma 3.2. O

Theorem 3.7. Let |a] < 3n. Suppose that u(z, t) is a sufficiently smooth solution of the
(3.49)—(3.50). If

supp u( ., t;) C (—o0, b), j=12.
or

supp u( ., t;) C (a, 00), ji=1,2.
then

u(z, t) = 0.

Proof. Without loss of generality we assume that ¢; =0 and t5 = 1. Thus,
supp u(., 0) € (—o0, b) and suppu(., 1) C (—o0, b).

We will show that there exists a large number R > 0 such that
supp u(., t) C (—o0, 2R], Vte [0, 1].

Then the result will follow from Theorem 2.3.

Let p € C§°(R) be a nondecreasing function such that
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Let up(x,t) = pr(z)u(x,t), then ugr(z,t) € CP(R), since (prpu) € C®(R), and

moreover

supp ug = supp (uru) C supp pig Nsupp u C supp pg.

From the above inequality we have that supp ugp C (—oo, 2 R]. Using that u is a

sufficiently smooth function (see [6]) and Lemma 3.6, we can apply Lemma 3.5 to ur(z, t)

for R sufficiently large. Thus

{0: + 09 }pr - u]

pr {0 +n03u} + 30ug - 0%u+30%up - Ou+ Pur -u
priiad®u+ilul*u—80u} +30ur - 0%u-+30%ug - Ou+ ug - u
pr-Vi+30ug-0*u+30%ugr-Ou+ ug-u

pwr-Vi+F +F +F3

ur - Vi + PR, (3.51)

where Vi(z, t) = i« 0?u + i |u|? u — 6 Ou. Then, by using Lemma 3.5 and (3.51)
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We estimate the ||e*® up - VillLs/7(mx 0, 17) term.

||€/\m KR - V1||L8/7(Rx[o, 1])

1
(/ /|e’\qu-Vl|8/7dxdt>
0o Jr

8/7

8/7
- ( ”MR-V1|8/7d:cdt>
1 1/7 6/7 7/8
([ ][ e
0 >R >R
1y 1/7 6/7 7/8
— // |“MR|8dx] [/ |V1|4/3d:c] dt
0 >R >R
1 1/7 6/7 /8
= / / |e>‘muR|8dx] [/ [V |43 dw] dt
0 >R
1/8 1 3/4
< ( /|e”MR|8dxdt> (// |V1|4/3d:cdt>
0 >R

MR||L8(RX 0,1]) ||‘/1||L4/3({;E>R}><[O 1])
then
co ||e* pr - Villpsm o, 1)) < colle® urllzs@xpo, 1) 1VillLas(usryxjo, 1) (3-53)

We define Vi(z, t) = iad?u+i|u|*>u—3§0u € LI(R x [0, 1]) with ¢ € [0, 00). Now, we
fix R so large such that

N~

clVillpars(qazRyx o, 1) <
then
C||€ KR - V1||L8/7(]R><[O =3 ||€ “prllLs@xo, 1));
this way

T 1 T T
||e? MRHLS(RX[O,I])SgHG)\ 1rl|Ls@®xo, 1) + clle*® Frlls/r@xo,1)),

297



BISOGNIN, VILLAGRAN

1 T T
§||€A prlls@xo, 1) < clle*” Frllpsm@xp, 1))

thus
|12 gl Ls@xio, 1)) < 2¢l[e” Frllpsm@xo, 1))- (3.54)

To estimate the Fg term it suffices to consider one of the terms in Fg, say Fb, since the

proofs for Fy, and F3, are similar. We have that

Frp = Fi+F+Fs
= 30ur-0°u+30%ur-0u+ ur-u

and supp F;, C [R, 2R], i =1, 2, 3. We estimate Fj :

1 7/8
2C||6)\IF2||L8/7(]R><[0,1]) = 2c¢ (/ /|e)‘wF2|8/7dxdt>
0o Jr

1 2R /8
= 2¢ // 13 9% g - Ou|® T da dt
0o JR
c 1 2R /8
£z
= 2@(// e7 |62u-8u|8/7dxdt>
0o JR
c 1 2R /8
£z
2ﬁ</O/R e7? |6u(x,t)|8/7dxdt> .

IN

Then

7/8
Az C 2AR b 8/7
2C||€ F2||L8/7(]R><[0,1]) S 2 ﬁ (& |6U(.’I], t)l dx dt . (355)
0 JR

On the other hand,

1/8

1
w2 ([ [ Nl opara)
0 T>2R
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then

1 1/8
(/ / eSAT |u(z, t)|8 dxz dt> < ||e)‘IuR ~ul| s rx[0, 1))
0 Jz>2R

2C||€/\m FR||L8/7(Rx[0,1])

c 1 2R /8
2—262’\R / / |Ou(x, t)|*7 da dt ,
R 0o JR

IN

IN

hence,

1 1/8 1 2R /8
(/ / 2 |u(x, t)|8 dx dt> < ¢ / / |u(x, t)|*/7 da dt .
0 Ja>2R 0o JR

This way we have using (3.54) and (3.55)

1 1/8
(/ / BSAT |u(z, t)|8dx dt> < ||e”uR ~ul| s ®x[0, 1))
0 Jz>2R

2C||€/\m F2||L8/7(]R><[0,1])

c 1 (2R /8
2—262’\R / / |Ou(x, t)|*/7 da dt ;
R 0o JR

IN

IN

then

1/8

1
(/ / eBA@=2R) |y (g, t)|8dxdt>
0 Jaz>2R

and letting A — oo it follows that

c 1 2R e /8
§2ﬁ /0 /R |Ou(z, t)|% " dx dt ;

u(z, t) =0 for x> 2R, t €10, 1]
which yields the proof. O
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