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Some Curvature Tensors on a Trans-Sasakian
Manifold
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Abstract

The object of the present paper is to study the geometry of trans-Sasakian mani-
fold when it is projectively semi-symmetric, Weyl semi-symmetric and concircularly

semi-symmetric.
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1. Introduction

In 1985, J.A. Oubina [9] introduced a new class of almost contact manifold namely
trans-Sasakian manifold. Many geometers like [1, 2, 6], [5], [9], have studied this manifold
and obtained many interesting results. The notion of semi-symmetric manifold is defined
by R(X,Y)-R = 0 and studied by many authors [10, 11, 12]. The conditions R(X,Y)-P=0,
R(X,Y)-C=0 and R(X,Y)-C = 0 are called projectively semi-symmetric, Weyl semi-
symmetric and concircularly semi-symmetric respectively, where R(X,Y) is considered
as derivation of tensor algebra at each point of the manifold. In this paper we consider
the trans-Sasakian manifold under the condition ¢ (grad ) = (2m-1) grad g satisfying

the properties R(X,Y)-P = 0, R(X,Y)-C = 0 and R(X,Y)-C = 0 and show that such a

manifold is either Einstein or n-Einstein.
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2. Preliminaries

Let M be a (2m + 1) dimensional almost contact metric manifold with an almost
contact metric structure (¢, &, 7, g), where ¢ is a (1,1) tensor field, £ is a vector field, 7 is

a 1-form and g is the associated Riemannian metric such that [3],

P*=-I+n®E nE) = 1, ¢¢=0, nop =0,
g(¢X,9Y) = g(X,Y)—n(X)nY), (2.1)
9(X, $Y) = —g(6X,Y) and g(X,€) = n(X)VX,Y € TM. (2.2)

An almost Contact metric structure (¢, &, 7, g) on M is called a trans-Sasakian struc-
ture [9],if (M x R, J,G) belongs to the class Wy [7], where J is the almost complex
structure on M xR defined by J(X, f %) = (¢X — f¢€, n(X)%) for all vector fields X on
M and smooth functions f on M x R. This may be expressed by the condition [4],

(Vx9)Y = a(g(X,Y)§ —n(Y)X) + B(g(¢X,Y)§ = n(Y)pX), (2.3)
for some smooth functions o and 8 on M, and we say that the trans-Sasakian structure

is of type (a, B3).
From (1.3) it follows that

Vx€=—apX + B(X —n(X)E), (Vxn)Y = —ag(¢X,Y)+Bg(6X,¢Y). (2.4)

Trans-Sasakian manifolds have been studied by authors [5] and they obtained the

following results:

R(X,Y)¢ = (o = ) (n(Y)X = n(X)Y) + 20B(n(Y)d(X) = n(X)(Y))
+HYa)pX — (Xa)gY + (Y B)* X — (XB)¢°Y, (2.5)

R(&, X)¢ = (o® — B = B (n(X)¢ — X), (2.6)
203+ Ea =0, (2.7)
S(X,€) = (2m(a® — %) = €Bn(X) — 2m — )X — (¢X)a, (2.8)
Q¢ = (2m(a® — §%) = £B)E — (2m — 1)gradf + ¢(grada). (2.9)

When ¢(grade) = (2m — 1)gradB, (1.8) and (1.9) reduce to
S(X,€) = 2m(a® — F*)n(X), (2.10)
Q¢ =2m(a® — P, (2.11)
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3. Projectively flat Trans-Sasakian manifold

The Weyl-projective curvature tensor P is defined as
1
P(X,Y)ZzR(X,Y)Z—%[S(Y,Z)X—S(X,Z)Y], (3.1)

where R is the curvature tensor and S is the Ricci tensor.
Suppose that P = 0. Then from (3.1), we have

R(X,Y)Z = ﬁ [S(Y, 2)X — S(X, Z)Y]. (3.2)
From (3.2), we have

R(XY, 2,W) = 5 [S(Y, 2)g(X, W) ~ S(X, Z)g(¥, W), (3.3)
where 'R(X,Y,Z,W) = g(R(X,Y,Z),W).

Putting W = ¢ in (3.3), we get

NR(X,Y)Z) = 5 [S(Y, Z)n(X) — S(X, Z)(Y)]. (34)

Again taking X = £ in (3.4), and using (2.1),(2.5) and (2.10), we get
S(Y, Z) = 2m(a® - §°)g(Y, 2). (3.5)
Therefore, the manifold is Einstein. Hence we can state the following theorem

Theorem 3.1 A Weyl projectively flat trans-Sasakian manifold is an Finstein manifold.

4. Trans-Sasakian manifold satisfying R(X,Y)- P =0
Using (2.2), (2.5) in (3.1), we get
N(P(X,Y)Z) = (o® = 82) [9(Y. Z)n(X) — g(X, Z)n(Y)]
1

—5, -5, Z)n(X) = S(X, Z)n(Y)]. (4.1)

Putting Z = £ in (4.1), we get

n(P(X,Y)¢) =0. (4.2)
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Again taking X = ¢ in (4.1), we have
WPEY)Z) = (02— P)gY. Z) — 5-S(Y. 2), (13)
where (2.1) and (2.10) are used.
Now,
(R(X,Y)P)(U,V)Z = R(X,Y) - P(U,V)Z — P(R(X,Y)U,V)Z — P(U,R(X,Y)V)Z
—P(U,V)R(X,Y)Z.
As it has been considered R(X,Y)-P = 0,s0 we have
R(X,Y)-P(U,V)Z — P(R(X,Y)U,V)Z — P(U,R(X,Y)V)Z
—P(U,V)R(X,Y)Z = 0. (4.4)
Therefore,
—g[P(U, R(§7 Y)V)Za 5] - g[P(U’ V)R(f, Y)Za 6] =0.
From this, it follows that,
= PUV.Z.Y) + 0¥ )n(P(U,V)Z) = n(U)n(P(Y,V)Z) + g(Y,U)n(P(£,V)Z)
—n(V)n(P(U,Y)Z) + g(Y,V)n(W(U,§)Z) = n(Z)n(W (U, V)Y) = 0,(4.5)
where 'P(U,V,Z,Y)=g(P(U,V)Z,Y).
Putting Y=U in (4.5), we get
= P(U,V,2,Y) + g(U, U)n(P(&,V)Z) = n(V)n(P(U, U) 2)
+9(U, VIn(P(U,§)Z) = n(Z)n(P(U, V)U) = 0. (4.6)

Let {e;},i=1,2,. .. ,(2m+1) be an orthonormal basis of the tangent space at any
point. Then the sum for 1<i <2m+1 of the relation (4.6) for U = e; yields

WPEVIZ)= 5 |

= 5= |5 — @m+ D@ = 83| n(V)n(2). (4.7)

2m
From (4.3) and (4.7), we have

S(V.2) = [2m(a? = 8%)] g(V, 2) = [ — (Zm +1)(a? = )| n(V)n(2).  (48)
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Taking Z = £ in (4.8) and using (2.10) we obtain
r=2m(2m + 1)(a? — ). (4.9)
Now using (4.1),(4.2),(4.8) and (4.9) in (4.5) we get
~'P(U,V,Z,Y) =0 (4.10)
From (4.10) it follows that
P(U,V)Z = 0. (4.11)

Therefore, the trans-Sasakian manifold under consideration is Weyl projectively flat.

Hence we can state the next theorem

Theorem 4.1 Ifin a trans-Sasakian manifold M of dimension 2m+1, m >0, the relation
R(X,Y)-P holds, then the manifold is Weyl-projectively flat.

But from theorem 3.1, a Weyl-projectively flat trans-Sasakian manifold is an Einstein

manifold. Hence we can state the following theorem.

Theorem 4.2 A trans-Sasakian manifold M of dimension 2m+1, m>0, satisfying

R(X,Y)-P=0 is an FEinstein manifold and also it is a manifold of constant curvature
2m(2m+1)(a* — 3%).

5. Conformally flat Trans-Sasakian manifold

The Weyl-conformal curvature tensor C' is defined by

C(X,Y)Z = R(X,Y)Z-

——[9(Y, 2)QX ~ g(X, 2)QY + S(Y. 2)X - S(X, Z)Y]

r

+m (Y, 2)X —g(X, Z)Y]. (5.1)

Suppose that C=0. Then form (5.1), we get

R(X,Y)Z = 5——=9(y, 2)QX = g(X, 2)QY + S(Y, 2)X = S(X, Z)Y]
Py Y DX (X 2] (52)
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From (5.2) we get

RX,Y, 2, W) = 5719V, 2)9(QX, W) — g(X, Z)g(QY, W)
+S(Y, 2)g(X, W) — S(X, Z)g(Y, W)]
+m [9(Y, 2)9(X, W) — g(X, Z)g(Y, W)]. (5.3)

where 'R(X,Y,Z,W)= g(R(X,Y,Z),W).
Putting W=¢ in (5.3), we get

1
2m —1

n(R(X,Y)Z) = [9(Y, 2)9(QX,§) — 9(X, Z)g(QY, &) + S(Y, Z)n(X)

r

—SX 2+ s

[9(Y, Z)n(X) = g(X, Z)n(Y))]. (54)
Again taking X = £ in (5.4), and using (2.1),(2.2),(2.5) and (2.10) we get

S(V,2) = =[5+ (a® = )] 9(¥, 2)

r

+ [50 + @m+ 10 = )| n(V)n(2). (5.5)

2m

Therefore the manifold is 7-Einstein. Hence we can state this theorem:

Theorem 5.1 A conformally flat trans-Sasakian manifold is n — Einstein.

6. Trans-Sasakian manifold satisfying R(X,Y)-C=0
From (5.1), (2.2) and (2.5) we have

n(C(X,Y)Z) = (a® = %) [g(Y, Z)n(X) — g(X, Z)n(Y)]
—7(27,11_ 1y o 23n(QX) = g(X, 2)n(QY) + S, Z)n(X) = S(X, Z)n(Y)]

*mzm = 1) 9 2mEX) = g(X, Z)n(V))]. (6.1)

Putting X = ¢ in (6.1) we get

n(C(X,Y)¢) = 0. (6.2)
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Again taking X=¢ in (6.1), we have

WOWEV)Z) = s [ = (0* = )] 0(V.2) = (Y )0(2)]
_2m1_ - [S(V.2) = 2m(a® = B (Y )n(2)] , (6.3)

where (2.1),(2.2) and (2.10) are used.
Now,
(R(X,Y)C)(U,V)Z = R(X,Y)-C(U,V)Z - C(R(X,Y)U,V)Z - C(U,R(X,Y)V)Z
-C(U,V)R(X,Y)Z.
Let R(X,Y)-C = 0, then we have
R(X,Y) C(U,V)Z — C(R(X,Y)U,V)Z — C(U,R(X,Y)V)Z
—C(U,V)R(X,Y)Z = 0. (6.4)

Therefore,

From this it follows that
= C(UV, 2,Y) + (Y )n(C(U, V) Z) = n(0)n(C(Y.
+9(Y,U)n(C(&, V) Z) = n(V)n(C(U,

where 'C(U,V,Z,Y) = g(C(U,V)Z,Y).
Putting Y = U in (6.5), we get

~'CUV,2,Y) + g(U,U)n(C(E,V)Z) —n(V)n(C(U,U)Z)
+9(U, V)n(C(U,&)Z) —n(Z)n(C(U,V)U) = 0. (6.6)

Let {e;}, i=1,2,...,(2m+1) be an orthonormal basis of the tangent space at any point.
Then the sum for 1 <14 < 2m + 1 of the relation (6.6) for U = ¢;, yields

WOWEVZ) = g (02 = %) = 5] VI 2), (67)
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From (6.3) and (6.7) we have
S(V.2) = |5~ (o® = 3] (V. 2)
#[(men- ) @ -+ (- 1) | v (68)
Taking Z = £ in (6.8) and using (2.10) we obtain
r = 2m(a® — %) (6.9)
Now using (6.1),(6.2),(6.8) and (6.9) in (6.5), we get
~'cWU,v,2,Y)=0. (6.10)
From (6.10) it follows that
C(U,V)Z =0. (6.11)

Therefore the trans-Sasakian manifold is conformally flat. Hence, we can state the

following theorem

Theorem 6.1 If in a trans-Sasakian manifold M of dimension 2m+1, m > 0, the
relation R(X,Y) - C = 0 holds, then the manifold is conformally flat.

Theorem 5.1 says that a conformally flat trans-Sasakian manifold is an 7-Einstein

manifold. Therefore, we can state this theorem:

Theorem 6.2 A trans-Sasakian manifold M of dimension 2m+1, m > 0, satisfying
R(X,Y)-C = 0 is an n-Einstein manifold and also a manifold of constant curvature
2m(a? — 3?).

7. Trans-Sasakian manifold satisfying R(X,Y)-C=0

The concircular curvature tensor C' is defined as

— r

C(X,Y)Z =R(X,Y)Z — T 9(Y, 2)X — g(X, 2)Y], (7.1)
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where R is the curvature tensor and r is the scalar curvature.

Hence, in view of (2.2) and (2.5), we get

r

= a2 a2
1(CX.Y)Z) = |(e” = ) - Im@m 1)
Putting Z =¢ in (7.2) we get

n(C(X,Y)¢) = 0.

Again taking X = ¢ in (7.2), we have

r

n(CEY)Z) = |(a® = %) — ImEm 1)

[9(Y, Z) —n(Y)n(Z2)],

where (2.2) and (2.10) are used.
Now,
(R(X,Y)C)(U,V)Z = R(X,Y)C(U,V)Z -C(R(X,Y)U,V)Z
-C(UR(X,Y)V)Z -C(U,V)R(X,Y)Z.
As it has been considered R(X,Y) - C=0, we have
R(X,Y)-C(U,V)Z - C(R(X,Y)U,V)Z - C(U,R(X,Y)V)Z
~-C(U,V)R(X,Y)Z =
Therefore,
g[R(&,Y) - CUV)Z,E] —g[C(REY)UV)Z,E]
_g[ (UvR(&Y) )ng] _g[ ( ’ ) (vK)ng] =0.
From this it follows that
= CU.V.2,Y) +n(Y)n(C(U,V)Z) = n(U)n
+g(Y, U)n(C(§,V)Z) = n(V)n
+g(Y,V)n(C(U,€)Z) —n(Z)n(C(U,V)Y) = 0,

(C
where 'C(U,V,Z,Y)=g(C(U,V)Z,Y).
Putting Y = U in (7.6), we get
~"CU,V,2,Y) + g(U, U)n(
+9(U. V)n(C(U,€)Z ) (Z)n(ﬁ(U» V)U) = 0.

g
J‘f}
S
=
S
=
Q
I
S
\N/

[9(Y, Z)n(X) — g(X, Z)n(Y)].
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Let {e;},i=1,2,...,2m+ 1 be an orthonormal basis of the tangent space at any point of
the manifold. Then the sum for 1 <i < 2m + 1 of the relation (7.7) for U = ¢;, yields

WOEV)Z) = 5=S(V.2) = gotmsa(V. 2)
b5 [ — Gm+ (@2 = )] n(V () (73)
From(7.4) and (7.8), we have
S(V,Z) =2m(a® — §°)g(V, Z) — [m —(a® = B*)| n(V)n(2). (7.9)

Taking Z = ¢ in (7.9) and using (2.10), we have
r=2m(2m + 1)(a® — ?). (7.10)
Now using (7.2),(7.4),(7.9) and (7.10) in (7.6), we get
~CW.v,2,Y) = 0. (7.11)

From (7.11) it follows that

C(U,V)Z =0. (7.12)

Therefore, the trans-Sasakian manifold is concircularly flat. Hence we can state the next

theorem.

Theorem 7.1 If in a trans-Sasakian manifold M of dimension 2m+1, m > 0, the

relation R(X,Y) - C = 0 holds then the manifold is concircularly flat.

As we know, in general, a concircularly flat Riemannian manifold is Einstein and so,

in particular, a concircularly flat trans-Sasakian manifold is Einstein. Hence we can state

Theorem 7.2 A trans-Sasakian manifold M of dimension 2m+1, m > 0, satisfying
R(X,Y)-C=0is an Einstein manifold and a manifold of constant curvature 2m (2m+1)(a®—

52).
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