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Abstract

We classify P -Sasakian manifolds, which satisfy the conditions Z(ξ,X) · Z = 0,

Z(ξ,X) · R = 0, R(ξ, X) · Z = 0, Z(ξ,X) · S = 0 and Z(ξ,X) · C = 0.
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1. Introduction

A Riemannian manifold M is locally symmetric if its curvature tensor R satisfies
∇R = 0, where ∇ is Levi-Civita connection of the Riemannianmetric. As a generalization
of locally symmetric spaces, many geometers have considered semi-symmetric spaces and
in turn their generalizations. A Riemannian manifold M is said to be semi-symmetric if
its curvature tensor R satisfies

R(X, Y ) · R = 0, X, Y ∈ TM,

where R(X, Y ) acts on R as a derivation.

Locally symmetric and semisymmetric P -Sasakian manifolds are studied in [2] and [5].
After the curvature tensor, the Weyl conformal curvature tensor C and the concircular
curvature tensor Z are the next most important tensors. In this paper, we study several
derivation conditions on P -Sasakian manifolds. The paper is organized as follows. In
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section 2, we give a brief account of P -Sasakian manifolds, the Weyl conformal curvature
tensor and the concircular curvature tensor. In section 3, we find necessary and sufficient
conditions for P -Sasakian manifolds satisfying the conditions likeZ(ξ, X)·Z = 0, Z(ξ, X)·
R = 0, R(ξ, X) · Z = 0, Z(ξ, X) · S = 0 and Z(ξ, X) · C = 0. In Section 4, we prove
that for an n-dimensional P -Sasakian manifold M the following three statements are
equivalent: (a) M is locally symmetric, (b) M is concircularly symmetric and (c) M is
locally isometric to the Hyperbolic space Hn(−1).

2. P -Sasakian Manifolds

An n-dimensional differentiable manifold M is called an almost paracontact manifold
if it admits an almost paracontact structure (ϕ, ξ, η) consisting of a (1, 1) tensor field ϕ,
a vector field ξ, and a 1-form η satisfying

ϕ2 = Id − η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0. (2.1)

The first and one of the remaining three relations in (2.1) imply the other two relations
in (2.1). Let g be a compatible Riemannian metric with (ϕ, ξ, η), that is,

g(X, Y ) = g(ϕX, ϕY ) + η(X)η(Y ) (2.2)

or equivalently,

g(X, ϕY ) = g(ϕX, Y ) and g(X, ξ) = η(X) (2.3)

for all X, Y ∈ TM . Then, M becomes an almost paracontact Riemannian manifold
equipped with an almost paracontact Riemannian structure (ϕ, ξ, η, g).

An almost paracontact Riemannian manifold is called a P -Sasakian manifold if it
satisfies

(∇Xϕ)Y = −g(X, Y )ξ − η(Y )X + 2η(X)η(Y )ξ, X, Y ∈ TM, (2.4)

where ∇ is Levi-Civita connection of the Riemannian metric. From the above equation
it follows that

∇ξ = ϕ, (2.5)

(∇Xη) Y = g(X, ϕY ) = (∇Y η)X, X ∈ TM. (2.6)
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In an n-dimensional P -Sasakian manifold M , the curvature tensor R, the Ricci tensor
S, and the Ricci operator Q satisfy

R(X, Y )ξ = η(X)Y − η(Y )X, (2.7)

R(ξ, X)Y = η(Y )X − g(X, Y )ξ, (2.8)

R(ξ, X)ξ = X − η(X)ξ, (2.9)

S(X, ξ) = − (n − 1)η(X), (2.10)

Qξ = − (n − 1) ξ, (2.11)

η(R(X, Y )U) = g(X, U)η(Y ) − g(Y, U)η(X), (2.12)

η(R(X, Y )ξ) = 0, (2.13)

η(R(ξ, X)Y ) = η(X)η(Y )− g(X, Y ). (2.14)

An almost paracontact Riemannian manifoldM is said to be η-Einstein [2] if the Ricci
operator Q satisfies

Q = a Id + b η ⊗ ξ, (2.15)

where a and b are smooth functions on the manifold. In particular, if b = 0, then M is
an Einstein manifold. For more details about almost paracontact Riemannian manifolds
we refer to [2], [6] and [7].

Let (M, g) be an n-dimensional Riemannian manifold. Then the concircular curvature
tensor Z and the Weyl conformal curvature tensor C are defined by [9]

Z (X, Y )U = R (X, Y )U − r

n(n − 1)
(g(Y, U)X − g(X, U)Y ) , (2.16)

C(X, Y )U = R(X, Y )U − 1
n − 2

{S(Y, U)X − S(X, U)Y

+ g(Y, U)QX − g(X, U)QY }

+
r

(n − 1)(n − 2)
{g(Y, U)X − g(X, U)Y } (2.17)

for all X, Y, U ∈ TM , respectively, where r is the scalar curvature of M .
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3. Main Results

In this section, we obtain necessary and sufficient conditions for P -Sasakian manifolds
satisfying the derivation conditions Z(ξ, X) · Z = 0, Z(ξ, X) · R = 0, R(ξ, X) · Z = 0,
Z(ξ, X) · S = 0 and Z(ξ, X) ·C = 0.

Theorem 3.1 An n-dimensional P -Sasakian manifold M satisfies

Z(ξ, X) · Z = 0

if and only if either the scalar curvature r of M is r = n(1−n) or M is locally isometric
to the Hyperbolic space Hn(−1).
Proof. In a P -Sasakian manifold M , we have

Z(X, Y )ξ =
(
1− r

n(n − 1)

)
(η(Y )X − η(X)Y ) , (3.18)

Z(ξ, X)Y =
(
1− r

n(n − 1)

)
(g(X, Y )ξ − η(Y )X) . (3.19)

The condition Z(ξ, U) · Z = 0 implies that

0 = [Z(ξ, U), Z(X, Y )] ξ − Z(Z(ξ, U)X, Y )ξ − Z(X, Z(ξ, U)Y )ξ,

which in view of (3.19) gives

0 =
(
1 +

r

n(n − 1)

)
{−g(U, Z(X, Y )ξ)ξ + g(U, X)Z(ξ, Y )ξ

−η(X)Z(U, Y )ξ + g(U, Y )Z(X, ξ)ξ

− η(Y )Z(X, U)ξ + η(U)Z(X, Y )ξ − Z(X, Y )U} .

Equation (3.18) then gives

(
1 +

r

n(n − 1)

)(
Z(X, Y )U −

(
1 +

r

n(n − 1)

)
(g(Y, U)X − g(X, U)Y )

)
= 0.

Therefore either the scalar curvature r = n(1− n) or

Z(X, Y )U −
(
1− r

n(n − 1)

)
(g(Y, U)X − g(X, U)Y ) = 0
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which in view of (2.16) gives

R (X, Y )U = g(U, X)Y − g(U, Y )X.

The above equation implies that M is of constant curvature −1 and consequently it is
locally isometric to the Hyperbolic space Hn(−1).

Conversely, if M has scalar curvature r = n(1 − n) then from (3.19) it follows that
Z(ξ, X) = 0. Similarly, in the second case, since M is of constant curvature r = n (1− n),
therefore we again get Z(ξ, X) = 0. ✷

Using the fact that Z(ξ, X) · R denotes Z(ξ, X) acting on R as a derivation, we have
the following Theorem as a corollary of Theorem 3.1.

Theorem 3.2 An n-dimensional P -Sasakian manifold M satisfies

Z(ξ, X) · R = 0

if and only if either M is locally isometric to the Hyperbolic space Hn(−1) or M has
constant scalar curvature r = n(1− n).

Proposition 3.3 Let (M, g) be an n-dimensional Riemannian manifold. Then R · Z =
R ·R.
Proof. Let X, Y, U, V, W ∈ TM . Then

(R(X, Y ) · Z)(U, V, W ) = R(X, Y )Z(U, V )W − Z(R(X, Y )U, V )W

−Z(U, R(X, Y )V )W − Z(U, V )R(X, Y )W.

So from (2.16) and the symmetry properties of the curvature tensor R we have

(R(X, Y ) · Z)(U, V, W ) = R(X, Y )R(U, V )W − R(R(X, Y )U, V )W

−R(U, R(X, Y )V )W − R(U, V )R(X, Y )W

= (R(X, Y ) · R)(U, V, W ),

which proves the proposition. ✷

Now, in view of Theorem 2.1 of [2] and Proposition 3.3 we have the following theorem:
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Theorem 3.4 An n-dimensional P -Sasakian manifold M satisfies

R(ξ, X) · Z = 0

if and only if M is locally isometric to the Hyperbolic space Hn(−1).

Next, we prove the following

Theorem 3.5 An n-dimensional P -Sasakian manifold M satisfies

Z(ξ, X) · S = 0

if and only if either M has scalar curvature r = n(1− n) or M is an Einstein manifold
with the scalar curvature r = n(1− n).

Proof. The condition Z (ξ, X) · S = 0 implies that

S(Z(ξ, X)Y, ξ) + S(Y, Z(ξ, X)ξ) = 0,

which in view of (3.19) gives

0 =
(
1 +

r

n(n − 1)

)
(−g(X, Y )S(ξ, ξ) + η(Y )S(X, ξ) − η(X)S(Y, ξ) + S(X, Y )) .

So by the use of (2.10) we have

(
1 +

r

n (n − 1)

)
(S − (1− n)g) = 0.

Therefore either the scalar curvature r of M is r = n(1 − n) which is of constant or
S = (1 − n)g which implies that M is an Einstein manifold with the scalar curvature
r = n(1− n). The converse statement is trivial. ✷

Theorem 3.6 An n-dimensional P -Sasakian manifold M satisfies

Z(ξ, X) · C = 0

if and only if either M has scalar curvature r = n(1 − n) or M is conformally flat, in
which case M is a SP -Sasakian manifold.
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Proof. Z (ξ, U) · C = 0 implies that

0 = [Z (ξ, U) , C (X, Y )]W − C (Z (ξ, U)X, Y )W − C (X, Z (ξ, U)Y )W,

which in view of (3.19) we have

0 = (1 +
r

n(n − 1)
)[η(C(X, Y )W )U − C(X, Y, W, U)ξ − η(X)C(U, Y )W

+ g(U, X)C(ξ, Y )W − η(Y )C(X, U)W + g(U, Y )C(X, ξ)W

− η(W )C(X, Y )U + g(U, W )C(X, Y )ξ].

So either the scalar curvature of M is r = n(1− n) or the equation

0 = η(C(X, Y )W )U − C(X, Y, W, U)ξ − η(X)C(U, Y )W

+ g(U, X)C(ξ, Y )W − η(Y )C(X, U)W + g(U, Y )C(X, ξ)W

− η(W )C(X, Y )U + g(U, W )C(X, Y )ξ

holds on M . Taking the inner product of the last equation with ξ we get

0 = η(C(X, Y )W )η(U) − C(X, Y, W, U) (3.20)

−η(X)η(C(U, Y )W ) + g(U, X)η(C(ξ, Y )W ) − η(Y )η(C(X, U)W )

+g(U, Y )η(C(X, ξ)W ) − η(W )η(C(X, Y )U).

Hence using (2.10), (2.12) and (2.17) the equation (3.20) turns the form

0 = g(U, Y )g(X, W )− g(U, X)g(Y, W )

+
1 − n

n − 2
{−g(Y, W )g(X, U) + g(X, W )g(U, Y ) (3.21)

+g(X, U)η(Y )η(W ) − g(U, Y )η(X)η(W )}

+
1

n − 2
{S(Y, U)η(X)η(W ) − S(X, U)η(Y )η(W )

+g(Y, W )S(X, U) − g(X, W )S(Y, U)} − R(X, Y, W, U).

Hence by a suitable contraction of (3.21) we have

S(Y, W ) = (1 +
r

n − 1
)g(Y, W ) + (−n +

r

1− n
)η(Y )η(W ), (3.22)
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which implies that M is an η-Einstein manifold. So using (3.22) in (3.20) we obtain C = 0
on M . Thus using the fact from [1] that a conformally flat P -Sasakian manifold is an
SP -Sasakian, M becomes an SP -Sasakian manifold. The converse statement is trivial.

✷

4. An application

A Riemannian manifold is said to be concircularly symmetric if the concircular cur-
vature tensor Z is parallel, that is, ∇Z = 0. Now, we prove the following theorem.

Theorem 4.1 In a P -Sasakian manifold M the following conditions are equivalent:

(a) M is locally symmetric,

(b) M is concircularly symmetric,

(c) M is locally isometric to the Hyperbolic space Hn(−1).
Proof. It is obvious that the condition ∇T = 0, T ∈ {R, Z}, implies the condition
R · T = 0. From Theorem 2.1 of [2] and Theorem 3.4, it follows that M satisfies the con-
dition R(ξ, X) · T = 0, T ∈ {R, Z} if and only if M is locally isometric to the Hyperbolic
space Hn(−1). ✷
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