Vol.9, No.2 Apr., 1993

ELECTRONIC STRUCTURES AND CONDUCTIVITIES OF HALOGEN-CONTAINING CARBON-SIXTY C₆₀X

Lu Chongxiana*

Kong Jing^b

Yan Jimin^b

(* Beijing Institute of Chemical Technology, Beijing 100029, China, bInstitute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China)

Keywords: Carbon-sixty, Fullerene, Buckminsterfullerene, C,,X

Recently it has been reported that solids K_xC_{60} and Rb_xC_{60} (x=1-5) can be transformed to conductors $^{[1,2]}$. If x=0 and 6, they are insulators and if x=3, they have the largest conductivities. When the temperature goes down to 18K for solid K_xC_{60} and to 28K for solid Rb_xC_{60} , they are transformed to superconductors. These results are very interesting to scientists. Solids K_xC_{60} and Rb_xC_{60} are very unstable in air, so that for practical purposes it is better to synthesize the atom-containing carbon-sixty MC_{60} or $C_{60}X$, in which the metal atom M or non-metal atom X is at the center of C_{60} cage. It has been known experimentally for some years that the atoms other than carbon atom C can enter into C_{60} cage to form atom-containing MC_{60} or $C_{60}X^{[3,4]}$.

The electronic structure of carbon-sixty C_{60} has been calculated by some quantum-chemical methods in recent years [5-11], but up to now, the electronic structures for the atom-containing carbon-sixty MC_{60} or $C_{60}X$ have not been calculated. In our another paper [12], C_{60} and MC_{60} (Li, Na, K, Rb, Cs) are computed with EHMO method, and the conductivities of the solid carbon-sixty C_{60} and the solid metal-containing carbon-sixty MC_{60} are discussed. Furthermore, the halogen-containing carbon-sixty $C_{60}X$ (F, Cl, Br, I) are calculated by EHMO method in this paper, then the conductivities of them and $C_{60}X_y$ (y=0—10) are discussed in terms of the electronic structures.

1 COMPUTATIONAL METHOD AND MODEL

The EHMO method is used in computation. The orbital exponents g's and the

Received 1992-12-15, revised 1992-12-30. Project is supported by the National Natural Science Foundation of China

valence state ionization potentials $H_{i\,i}$'s used are as shown in Table 1.

	C	F	Cl	Br	I	
\$	1.6250	2.6000	2.0330	2.3000	1,9750	
$H_{ii}(s)$	-21.4000	-40.1000	-25.3000	-24.5000	-20.7600	
(p)	-11.4000	-18.6000	-13.7000	-12.6000	-11,1500	

Table 1 The orbital exponents and the valence state ionization potentials (eV)

The computational model for $C_{60}X$ is that the long C-C bond length in 12 regular pentagons is 1.465 Å and the short C-C bond length in 20 hexagons is 1.376 Å ^[5] and the halogen atoms X (F, Cl, Br, I) are put at the center of the carbon-sixty C_{60} . The distances between X and each C are 3.551 Å. The coordinates of X and each carbon atoms are fixed according to the bond lengths mentioned above and the symmetry of $C_{60}X$.

Using EHMO method to calculate the electronic energy and ASED method to calculate repulsion energy of atom-pairs, the obtained geometrical parameters of the carbon-sixty C_{30} is in agreement with the experimental values [13]. That is to say that the EHMO method is basically feasible for C_{60} systems.

2 RESULTS OF CALCULATION AND DISCUSSION

In Table 2, it is interesting to see that the halogen-containing carbon-sixty $C_{60}X$ (F, Cl, Br, I), in which the halogen atoms X's are put at the center of carbon-sixty C_{60} , are more stable than C_{60} for $C_{60}F$, slightly stable than C_{60} for $C_{60}Cl$ and $C_{60}Br$, and less stable than C_{60} for $C_{60}I$.

	E _{C60} X	Ex	$\Delta E_{C_{60}} x^*$
. C.	- 4206.98		
$\mathbf{C}_{\bullet \bullet}\mathbf{F}$	- 4387.24	-173.20	-7.06
C, Cl	-4327.58	-119.10	-1.50
$C_{\mathfrak{so}}Br$	-4319.08	-112.00	-0.10
Cool	-4297.06	- 97.27	7.19

Table 2 Energies and stabilities of Coo and MCoo (eV)

Some important energy levels of C_{60} are shown in Table 3. It has been shown that all the energy levels of C_{60} are of 3-degeneracy, 4-degeneracy and 5-degeneracy except four energy levels having non-degeneracy, in which three of them, HO-31,

^{*} $\Delta E_{C_{60}X} = E_{C_{60}X} - (E_X + E_{C_{60}})$

Table 3 Distribution and degeneracy of the energy levels of $C_{e\,o}$ MO (eV)

	HO-31	HO-30	HO-23	HO-17	HO-16	HO-15	HO-14	НО-3	HO-2	HO-1	номо
L D	-31.82 1(a _g)	• •	-20.56 3(t _u)	-15.63 1(a _u)	$1(a_g)$	$3(t_{\mathfrak{u}})$	$3(t_u)$	•	• • •	•	
-	LUMO	LU+1	LU+2	LU+3		LU+9			LU + 29		LU + 31
L D	-9.78 3(t _u)	-9.00 3(l _g)	-7.84 $5(h_g)$	-7.72 3(t _u)		- • • •	15.88 1(a _u)	38.27 3(t _u)	61.10 4(g _g)	70.47 4(g _u)	71.57 3(t _g)

* L-Level, D-Degeneracy, HO-31-Begining level, LU+31-Ending level

C ₆₀	$C_{e_0}F$	F	C ₆₀ CI	CI	$C_{60}Br$	Br	CeoI	I
38.271 u	38.271 _u		$38.27t_{\rm u}$		38.27t u	1	38.27tu	
2.08tu	2.08t u		2.08tu		2.08tu		2.12tu	
-9.78lu*	-9.78tu*		$-9.78t_{u}$ *		-9.78tn4	17-	-9.78tu*	
$-11.49h_{u}**$	-11.49hu**	- 75	-11.49hu**		-11.49hu**		$\sim 10.17 t_u^{**}$	
								- 11.15t _u
					$-12.45t_{\rm u}$ -12	. 60 l u		
			- 13.541 _u -	$13.70t_{\mathrm{u}}$		_	-13.88ag	
- 14.61tu	$-14.62t_{u}$		- 14.62tu		$-14.62t_{\rm u}$	_	-14.62tu	
- 15.03t _u	$-15.02t_{u}$		-15.11t _u		- 15.07ag			
-15.24ag	$-15.24a_{\rm g}$		- 15.12ag		$-15.08t_{\rm u}$		-15.15tu	
$-15.63a_{\rm g}$	- 15.63ag		$-15.63a_{\rm g}$		$-15.63a_{\rm g}$		$-15.63a_g$	
	- 18,60t _u	- 18.60 <i>t</i> u						
							~ 20.51a _g	
$-20.56t_{\mathrm{u}}$	- 20.56t,		$-20.56t_{\rm u}$		$-20.56t_{\rm u}$	-	-20.56tu	
						-	******	- 20.76ag
					$-24.44a_{\rm g}-24$.50ag		-
			$-25.25a_{\rm g}$	-25.30a				
$-31.25t_{\rm u}$	-31.25tu		-31.25tu	-	$-31.25t_{\rm u}$		- 31.26 <i>t</i> u	
$-31.82a_g$	$-31.81a_{\rm g}$		$-31.84a_{\rm g}$		$-31.84a_{\rm g}$		$\sim 31.89a_g$	
	$-40.10a_{\rm g}$	-40.10ag						

Fig.1 The situation of linear combination about the abomic orbitals s and p of X with the a_g and t_u molecular orbitals of C_{s0}

Since the orbitals s and p of X (F, Cl, Br, I) are of symmetry $a_{\bf g}$ and $t_{\bf u}$ respectively, according to the principle of symmetry match, the orbitals s and p of X are only linearly combined with 3 non-degenerate $(a_{\bf g})$ and 7 3-degenerate $(t_{\bf u})$ molecular orbitals of the carbon-sixty C_{60} respectively, leaving the other molecular orbitals of C_{60} unchanged. The situation of linear combination is shown in Fig.1. From Fig.1 it can be seen that the energy levels of C_{60} X (F, Cl, Br) are simply the addition of those of C_{60} and X, i.e. the energy levels of C_{60} are mixed only slightly

with those of X, but the energy levels of C_{60} are mixed with those of I some more, where the HOMO of $C_{60}I$ is a little different from that of C_{60} , i.e. the former (-10.17 eV) is higher that the latter (-11.49eV). That is to say that putting iodine into the center of C_{60} can increase the HOMO energy from C_{60} to $C_{60}I$ by 1.32eV. The data of electronic structures given above would be very useful for the discussions of their physical and chemical properties. We would like to discuss the conductivities of the solids C_{60} , $C_{60}X$ and $C_{60}X_{7}$ in the next paragraph using these data.

For molecular crystal, there is a rule about band-position and band-width [14,15]. The solids C_{60} , $C_{60}X$ and $C_{60}X$, are molecular crystals, in which at the lattice point is molecule. The distances between the atoms in different molecules are longer than chemical bond, so that the band-positions are around the corresponding energy levels of molecules C_{60} , $C_{60}X$ and $C_{60}X$, respectively and the band-widths are much narrow. According to the results and the principle mentioned above, the conductivities of the C_{60} , $C_{60}X$ and $C_{60}X$, (y=0-10) can be discussed as follows.

The energy gap, i.e. the difference between LUMO and HOMO, of C_{60} is 1.71 eV, which is too large to be conquered by thermal motion, and then the energy band corresponding to LUMO and HOMO are empty and full respectively, so C_{60} is an insulator. This is in agreement with the experimental results.

To put halogen atoms X(F,Cl,Br,I) into the carbon-sixty C_{60} cage only weakly affects its components and the distributions of the energy levels, so only weakly affects the energy-band structure of the solid C_{60} . Therefore, the entering of X (F,Cl, Br, I) into carbon-sixty C_{60} only offers carriers as an electron acceptor. At this situation, the energy-bands corresponding to the HOMO of molecules $C_{60}X$ are unoccupied ones with hole carrier, so that the solid halogen-containing carbon-sixty $C_{60}X$ (F, Cl, Br, I) are good conductors.

For the solids $C_{60}X_{\bullet}$ (y=0-10), although X(F, Cl, Br, I) are not at the center but are located in the gaps between molecules C_{60} , because of longer distance between C and X than a C-X chemical bond, the energy-band distribution of C_{60} will be slightly affected similar to the situation of the solid halogen-containing carbon-sixty $C_{60}X$. Since the HOMO of C_{60} is of 5-degeneracy, so that for the solids $C_{60}X_{\bullet}$ (y=0-10), if not considering the constraint of the gap space in solid, the concentration of carriers in the energy-bands gradually increase when y=0-1-2-3-4-5 and so do conductivities of them; furthermore, the concentration of carriers in the energy-bands gradually decreases when y=6-7-8-9-10 and so do the conductivities of them. The HOMO becomes empty when y=10 and then the solids $C_{60}X_{\bullet}$ are transformed to insulator.

REFERENCES

- 1 Benning P J, Martins J L, Weaver J H, et al. Science, 1991, 252:1417
- 2 Hebard A F, Rosseinsky M J, Haddon R C, et al. Nature, 1991, 350:600
- 3 Heath J R, O'Brien S C, Zhang O, et al. J. Am. Chem. Soc., 1985, 107:7779
- 4 Cox D M, Reichman K C, Kaldor A. J. Chem. Phys., 1988, 88:1588
- 5 Disch R L, Schulman J M. Chem. Phys. Lett., 1986, 125:465
- 6 Fowler P W, Woolrich J. Chem. Phys. Lett., 1986, 127:78
- 7 Stone A J, Wales D J. Chem. Phys. Lett., 1986, 128:501
- 8 Luthi H P, Almlöf J. Chem. Phys. Lett., 1987, 135:357
- 9 Krätschmer W, Fostiropoulos K, Hufman D R. Chem. Phys. Lett., 1990, 170:167
- 10 Scuseria G E. Chem. Phys. Lett., 1991, 180:451
- 11 Manolopoulos D E, May J C, Down S E. Chem. Phys. Lett., 1991, 181:105
- 12 Yan J M, Kong J. Chinese Science Bulletin, 1992, 37[20]:1859
- 13 Zhang D R, Wu J A, Yan J M. Jour. Molec. Struc. (THECCHEM), To be Published.
- 14 Yan J M, Zhang Q Y. Acta Chimica Sinica, 1882, 45:774
- 15 Yan J M, Zhang Q Y. Kexue Tongbuo (Chinese Science Bulletin), 1984, 29:475

含卤原子碳六十 C60X 的电子结构及导电性

鲁崇贤** 孔 静b 严继民b

(*北京化工学院,北京 100029; b中国科学院化学研究所,北京 100080)

关键词:碳六十 福勒烯 伯克明斯脱福勒烯 C₆₀X

摘要 用量子化学 EHMO 方法对碳六十 C_{60} 及含卤原子碳六十 C_{60} X (F, Cl, Br, I) 的电子结构进行了计算。据此,对 C_{60} X 及 C_{60} X 及 C_{60} X C_{60} X C_{60} X 及 C_{60} X C_{60