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Abstract
Purpose: Solidification of pure metal can be modelled by a two-phase Stefan problem, in which the distribution 
of temperature in solid and liquid phases is described by a heat conduction equation with initial and boundary 
conditions. The inverse Stefan problem can be applied to solve design problems in continuous casting process.
Design/methodology/approach: In numerical calculations the alternating phase truncation method, the 
Tikhonov regularization and the genetic algorithm were used. The featured examples of calculations show a very 
good approximation of the exact solution and the stability of the procedure.
Findings: The paper presents the determination method of cooling conditions in two-dimensional solidification 
of pure metals. The solution of the problem consisted of selecting a heat transfer coefficient on boundary, so that 
the temperature in selected points of the boundary of the domain would assumed the given values.
Research limitations/implications: The method requires that it must be possible to describe the sought 
boundary condition by means of a finite number of parameters. It is not necessary, however, that the sought 
boundary condition should be linearly dependent on those parameters.
Practical implications: The presented method can be applied without any problem to solve design problems 
of different types, e.g. for the design of continuous casting installations (incl. the selection of the length of 
secondary cooling zones, the number of jets installed in individual zones, etc.).
Originality/value: The paper presents the new method of selection of the heat transfer coefficient in two-
dimensional inverse Stefan problem, so that the temperature in selected points of the boundary of the domain 
would assumed the given values.
Keywords: Artificial Intelligence methods; Solidification; Inverse Stefan problems

1. Introduction 
Solidification of pure metal can be modelled by a two-phase 

Stefan problem, in which the distribution of temperature in solid and 
liquid phases is described by a heat conduction equation with initial 
and boundary conditions. The position of the freezing front is 
described by Stefan condition and the condition of temperature 
continuity. The Stefan problem consists in the determination of 
temperature distribution within a domain and the position of the 

freezing front. The inverse Stefan problem consists in the 
determination of the initial condition, boundary conditions or 
thermophysical properties of a body. Lack of a portion of input 
information is compensated for with additional information about the 
effects of the initial conditions operation. In the inverse Stefan 
problem, it is most often assumed that the additional information is 
partial knowledge of the freezing front position, its velocity in 
a normal direction or temperature in selected points of a domain. A 
majority of available papers refer to the one-dimensional inverse 
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Stefan problem (see [1-3] and references therein), whereas studies 
regarding the two-dimensional inverse Stefan problem are rare [4-9]. 

In this paper, an algorithm will be presented that enables 
solving the two-dimensional inverse Stefan problem, where the 
additional information consists of temperature measurements in 
selected points of the boundary of the domain. The problem consists 
in the reconstruction of the function describing the heat transfer 
coefficient, so that the temperature in the given points of the 
boundary of the domain would differ as little as possible from the 
predefined values. Based on the given information about 
temperature measurement, a functional was built defining the error 
of an approximate solution. To find the functional's minimum, a 
genetic algorithm was used [10,11]. Genetic algorithms, based on 
mechanisms which rule the living creatures' evolution, are a very 
useful tool for solving the global optimization problems, including 
ones with a large number of variable decisions. The application of a 
genetic algorithm for the inverse design Stefan problem is 
considered in papers [12,13]. To solve a direct Stefan problem, the 
alternating phase truncation method was applied [14].  

The inverse Stefan problem belongs to ill-posed problems, i.e. 
its solution is unstable due to errors of input data. This means that 
small errors at the beginning may cause large errors at the end. In 
order to avoid such behaviour, appropriate stabilizing procedures 
are applied. The most frequent ones are: the function specification 
method and the Tikhonov regularization method. In this paper, the 
Tikhonov regularization method has been used due to the accuracy 
and stability of the results obtained. To determine the regularization 
parameter, the discrepancy principle, proposed by Morozov, has 
been used [15]. 

2. Problem formulation 
We will consider a two-dimensional problem, where 

additional information will be the measurements of temperature in 
selected points of the boundary of the domain. Let the boundary 

of domain *,0 tD , where db ,0,0 , be 
divided into five parts for which an initial condition and boundary 
conditions are given: 

,],0[,,0,0,,0 dybxyx
,],0[,,0,,,0 *

1 ttdyty
,],0[,,0,,0, *
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,],0[,,0,,, *
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4 ttbxtdx

Let 1D  denotes the subset of domain D , which is occupied 

by a liquid phase, and let 2D  denotes the domain occupied by 
a solid phase. The liquid and solid phases are separated by the 
freezing front g .

With the known values of temperatures in selected points of 
the domain 2D  ( 2,, Dtyx jii ):

ijjii UtyxT ,,2  (1) 

1,,1 Ni , 2,,1 Nj , where 1N  is the number of 

sensors and 2N  is the number of measurements from each 

sensor, we must determined function tyx ,,  defined on 

boundaries 3  and 4 , the position of the freezing front g  and 

the distribution of temperatures kT  in domains kD  ( 2,1k ),

which inside domains kD  ( 2,1k ) fulfil the heat conduction 
equation:
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whereas on the freezing front g , they fulfil the temperature 

continuity condition and the Stefan condition: 
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where kc , k  and k  are the specific heat, the mass density 
and the thermal conductivity in the liquid phase ( 1k ) and solid 
phase ( 2k ), respectively,  is the heat transfer coefficient, 

0T  is the initial temperature, T  is the ambient temperature, *T
is the temperature of solidification, L  is the latent heat of fusion, 

nv  is the freezing front velocity vector in a normal direction, and 
t , x  and y  refer to time and spatial locations, respectively. 

Function tyx ,, , describing the heat transfer coefficient, 
will be sought in the form of a function dependent (in a linear or 
non-linear way) on n  parameters: 

.,,,;,,,, 21 ntyxtyx (8)

Let V  denotes a set of all functions in the form of (8), where 
u
i

l
ii ,  for ni ,,2,1 .

For the determined function Vtyx ,, , the problem 
(2)-(7) becomes a direct Stefan problem, the solution of which 
allows to find the courses of temperatures jiiij tyxTT ,,2

corresponding to function tyx ,, . By taking advantage of the 

calculated temperatures ijT  and the given temperatures ijU , we 

can build a functional which will determine the error of the 
approximate solution: 
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where  is the regularization parameter, r   is a weight 

function, 43S , and r  ia a point of surface S .
To determine the regularization parameter, the discrepancy 
principle proposed by Morozov was used [12,15], according  
to which the regularization parameter is determined from  
the equality: 
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where  is error estimation of the input data. In practice, for 
a selected set of values  j , nj ,,1 , of the regularization 

parameter, there is element minimizing the Tikhonov 
functional (9). Next, such value is selected as the sought 
regularization parameter, for which equation (10) is satisfied with 
the required accuracy. 

3.  Algorithm and calculations 

To minimize the Tikhonov functional (9), genetic algorithms 
were applied [10,11]. In the used algorithm, the vector of decision 
variables was encoded in the form of a chromosome being a vector 
of real numbers (real number representation). In the algorithm 
a tournament selection was applied. The selection is carried out so 
that two chromosomes are drawn and the one with better fitness, 
goes to a new generation. There are as many draws as individuals 
that the new generation is supposed to include. As the crossover 
operator, arithmetical crossover was applied, where as a result of 
crossing of two chromosomes, their linear combinations are 
obtained. In the calculations, a nonuniform mutation operator was 
used as well. An elitist model was also applied in the algorithm, 
where the best individual of the previous population is saved and, if 
all individuals in the current population are worse, the worst of 
them is replaced with the saved best individual from the previous 
population. The following genetic algorithm parameters were used 
for the calculations: population size is equal to 70, number of 
generations is equal to 1000, crossover probability is equal to 0.7, 
mutation probability is equal to 0.1.  

In the alternating phase truncation method [14] the finite 
differences method was used. The calculations having been made 
on a grid of discretization intervals equal 1.0t  and 

500/bx ( 1.0b [m]). A (reasonable) change of the grid 
density did not significantly affect the results obtained.  

Function  describing the heat transfer coefficient was 
sought in the form: 
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where 381t [s], 932t [s], 600*t [s]. The exact values 

of the coefficients i  are: 

.250,500,800

,250,800,1200

642

531

It was assumed that the temperature measurements were made on 
the domain boundary (e.g. using a thermovision camera, 11N ).
The reading of the temperature was conducted every 1 [s] or 2 [s]. 
This corresponded to a situation where the measured temperature 
values were 500 or 250, respectively. Calculations were carried out 
for exact values of the input data and for values disturbed with a 
random error of normal distribution and magnitude of 1% and 2%. In 
each case, calculations were carried out for five different initial 
settings of a pseudorandom numbers generator. 

The results of the reconstruction of the heat transfer coefficient 
at various zones for a different number of control points and 
different perturbation are compiled in Tables 1 and 2. The tables 
also show the mean values (for five runs of the genetic algorithm) 
of the reconstructed parameters, the relative percentage error, with 
which those values were reconstructed, the standard deviation value 
and the standard deviation in the percentage of mean value. As can 
be seen from the results presented,  in the case of accurate input 
data, the parameters sought are reconstructed with minimum errors 
(not exceeding 0.028%), resulting from the adopted criterion of the 
optimization procedure completion (maximum number of 
generations). In the case of the input data given with perturbation, 
the parameters sought are reconstructed with errors much smaller 
that the error value at input. In case of perturbation equal to 1% 
maximal relative percentage error not exceeding 0.39%, and in case 
of perturbation equal to 2% not exceeding 0.55%. Also the scatter 
of the obtained values (determined by standard deviation) is 
insignificant (not higher than 0.08%). The errors of the temperature 
distributions which were reconstructed are significantly lower than 
the input data error. In all calculations the location of the freezing 
front was reconstructed with very good exactness. 

4. Conclusions 
An algorithm that enables solving the three-phase inverse 

Stefan problem is presented. The problem consists in the 
reconstruction of the function describing the heat transfer 
coefficient on the boundary, so that the temperature in the given 
points of the domain would differ as little as possible from the 
predefined values. In calculations the generalized alternating 
phase truncation method, the genetic algorithm and  the Tikhonov 
regularization were used. 

2.	�Problem formulation
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Table 1. 
Calculation results for temperature control conducted every 
second (  - reconstructed parameters of function describing  
the heat transfer coefficient, e  - relative percentage error,  

 - standard deviation, p  - standard deviation in the 
percentage of mean value) 

e [%] p [%] 
0%

1199.97 0.0025 0.2614 0.0218
799.82 0.0223 0.4397 0.0550
250.00 0.0007 0.1962 0.0785
800.02 0.0020 0.1531 0.0191
500.14 0.0278 0.3507 0.0701
249.99 0.0038 0.1814 0.0726

1%
1200.13 0.0112 0.1348 0.0112
800.49 0.0607 0.3263 0.0408
250.02 0.0073 0.1781 0.0712
801.44 0.1796 0.0878 0.0110
499.96 0.0084 0.2169 0.0434
249.85 0.0616 0.1771 0.0709

2%
1197.74 0.1885 0.1100 0.0092
801.73 0.2166 0.2618 0.0327
250.22 0.0867 0.0735 0.0294
802.80 0.3505 0.1045 0.0130
498.90 0.2190 0.2413 0.0484
249.94 0.0255 0.0715 0.0286

Table 2. 
Calculation results for temperature control every two seconds 
(notations the same as in Table 1) 

e [%] p [%] 
0%

1200.02 0.0019 0.2273 0.0189
799.87 0.0157 0.3288 0.0411
249.96 0.0157 0.1604 0.0642
799.99 0.0015 0.2062 0.0258
500.08 0.0159 0.2863 0.0573
250.06 0.0228 0.1761 0.0704

1%
1201.79 0.1492 0.1019 0.0085
802.10 0.2623 0.3095 0.0386
249.66 0.1350 0.1196 0.0479
799.83 0.0210 0.0848 0.0106
498.09 0.3828 0.2321 0.0466
250.41 0.1620 0.1263 0.0504

2%
1197.87 0.1774 0.1401 0.0117
803.11 0.3882 0.0663 0.0083
249.79 0.0845 0.1665 0.0666
801.03 0.1288 0.0928 0.0116
497.28 0.5443 0.1152 0.0232
250.40 0.1606 0.1548 0.0618

The featured examples of calculations show a very good 
approximation of the exact solution and stability of the algorithm in 
terms of the number of control points and the input data errors. 
Another important thing is a small scatter of the results obtained 
during calculations for different initial settings of the pseudorandom 
numbers' generator.  
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