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Materials

Abstract

Purpose: Aluminium alloys have been indispensable for the progress of many technologies during the last 
decades. In particular, most stiffeners in aerospace structures are composed of aluminium panels often solicited 
with elastic and plastic bucking under particular boundary and loading conditions. The purpose of this paper is 
to enhance the difficulties encountered to predict the incipient elastic-plastic buckling for thin aluminium plates 
under combined compressive loads.
Design/methodology/approach: The used methodology was an analytic non linear approach, validated further 
with an experimental investigation. In fact, the instability of thin elastic-plastic rectangular panels made of 2024 
T45 alloys is analyzed. General concept of the Von Kaman’s equation with a set of trigonometric and harmonic 
functions was used in the analytic model. The computation of buckling loads concerns both elastic and plastic 
instability solutions. Developments in the plastic range were concerned with the (j2d) deformation and the (J2f) 
flow constitutive laws.
Findings: A methodology to develop this kind of analytic resolution is pointed out and has been illustrated for 
a set of variables. Several 2d and 3d plots, which can be used to predict incipient buckling strengths for plates 
with flat initial configurations, have been presented for the various load conditions.
Research limitations/implications: In the future it will be possible to apply the investigated analytic procedure 
to other particular cases.
Practical implications: Plots obtained with analytic solution can be used to predict incipient buckling strengths 
for plates with flat initial configurations are presented for the various tests. The interest of three dimensional 
representations is to indicate when plastic buckling occurs for a square plate under biaxial loading.
Originality/value: This paper presents a stable and low cost analytic solution to deal with instability 
phenomenon in elastic and plastic range for the design of light alloy aluminium plates. This approach is applied 
to assess the conditions for which plastic buckling can happen when particularly thin aluminium panels are used. 
This latter, can be implemented in finite element standard codes.
Keywords: Metallic alloys; Analytic solution; Aluminium alloys; Plasticity; Instability; Buckling
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1. Introduction 
 
In the literature a large number of studies have been 

undertaken on the unstable behaviour of rectangular plates, 
subject to elastic or plastic buckling [1-8]. In fact, both analytical 
and experimental studies dealing with 2024 T45 and 7075 T65 
aluminium alloy plates problem are unusual. In this survey the 
analysis is focused on the elastic plastic buckling response of 
Kirchhoff rectangular plates made with 2024 T45 aluminium 
alloy. Important analytical investigations have been carried out 
for instability and buckling problems of thin panels. The difficulty 
in determining critical loads in plasticity is due to the interaction 
between the non linearity either in the geometry or in the material 
behaviour. In fact, a limited number of specific numerical 
standard codes based on Finite Elements techniques or Finite 
difference techniques are dealing with this problem.  

The plastic buckling problem was examined earlier by 
Shanley and Hill [5], for solids structures compressed until the 
plastic range; which generally buckle under increasing loads 
(satisfying plastic loading condition). The quasi-static post 
buckling behaviour of continues elastic-plastic structures, was 
generally involved. The analytical work of Shanley [5] has 
employed the perturbation method to determine the post buckling 
behaviour and imperfection sensitivity of elastic plastic structures. 

Till now, the assessment of the plastic buckling behaviour for 
elastic-plastic structures has been addressed both analytically and 
numerically. Although providing a valuable insight to the plastic 
buckling phenomenon, most contributions did not lead to an 
accurate evaluation of the critical load at a finite deflection, even 
for simple problems. In what follow, we will present here a new 
approach with an analytic solution for the elastic plastic instability 
problem of rectangular plates under compression conditions. An 
experimental methodology is also adopted and various 
applications are carried out with aluminium plates solicited 
statically under compressive buckling load. Aspect ratio, 
boundary conditions, material properties and constitutive laws in 
plastic buckling are main parameters for this analysis.  

 
Nomenclature  

 
a: Plate length, (mm) 
b: Plate width, (mm) 
h:  Plate thickness, (mm) 

1122
f

1212
f

2222
ff D̂ ,D̂ ,D̂ ,D̂1111 : Plate bending stiffness  

E1, E2:  Modulus of elasticity, (MPa) 
G12 Shear modulus 

12 Poisson’s ratio 
m Number of buckle half wave in the x  direction.  
n Number of buckle half wave in the y  direction. 
Nx, Ny, Nxy Membrane pre-buckling stresses resultants, (N/mm) 

cr
xN : Value of the membrane stress resultants at buckling. 

Kcr : Non dimensional loading parameter and corresponding value 
at buckling.  

 : Proportional load factor. 
w : Transversal displacement of the membrane plate . 
C1, C2, C3 : Non dimensionnel coefficients of rigidity. 
Es Sequent modules. 
Et  : Tangent modulus. 
ssss: Simply supported four edges.  
sscc: Simply supported two loaded edges and clumped unloaded 
edges. 

2.  Formulation of the analytic method 
 

To start with, we first outline the basic equations for boundary 
conditions describing the buckling of rectangular plates in the 
elastic and plastic range, Fig.1. 

 

 
 

Fig. 1. Geometry of the plate 
 

The formulation of the elementary theory of plates, uses the 
assumption that the normal stresses 33  are negligible in the 

volume of the plate compared to the other components 33 = 0. The 
plate’s theory considers for a displacement field of a point M with 
co-ordinates (x1, x2, x3) polynomial functions limited to 3 degrees. 

It is noticed that with a 1st order model, the plane 
deformations vary linearly across the thickness of the plate. By 
neglecting the transverse shearing strains, we obtain two 
additional relations.   
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Thus, the formulation for thin plate sections doesn’t use more 

than three independent variables u, v and w.  
 
2.1 Instability equation. 

 
Under axial compressive loads, the plate remains flat and the 

response curve is unique up to the critical load or the bifurcation 
buckling load. Beyond the buckling load, there are at least two 
possible response curves. One of these curves is the continuation 
of the pre-buckling curve, first part of the equilibrium path and 
called fundamental path, the other is called bifurcated path. 

The equilibrium equation allows determining the initial 
configuration of the plate when it buckles. For symmetrical 
loading, this relation is: 
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In this formulation, the constitutive law is written by equation 
(3), we consider a plane stress state and we neglect the influence 
of transverse shearing. 
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Generalized forces and moments are given by: 
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The critical buckling load can be determined as the minimum 
load verifying the differential equation (2). A solution w (x1, x2)
that verify the equation (2) must take into account the boundary 
conditions of the considered plate. The parameters D̂ ijkl   are the 
elastic plastic modules. 

2.2 Constitutive laws 

The rate form of the constitutive law is given by: 
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With ijklD̂ is the stiffness tensor and 
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The plane stress modulus are deduced from the three 
dimensional modulus ijklD̂  for the general incremental constitutive 
law by;  
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when we consider the two phenomenological constitutive laws 
(J2F and J2D) ijklD  can be written as: 
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where e
ijklD  is the elastic stiffness tensor, which can be written as; 
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where  = 0 in elastic loading and 1 in plastic loading,  

GJ = 
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In J2F case J = , EJ = E 

In J2D case J  = S, EJ = ES, with )(
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The modulus E, Et, Es and the Poisson’s ratio  can be 
determined from a simple tension test. Moreover, it is worth 
noting that experimental tension curve adopted in this work can 
be simulated using a conventional power law in the form: 
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The relation (3) can be rewritten as follows.  
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where E1 = Et, the matrix can be therefore described by the three 

non-dimensional parameters
1
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GandE
E, . Explicit form of 

the different ratios is given in Table.1 [8].  

Table 1.  
Explicit form of the stiffness elements ijklD̂
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Table 2.  
Mechanical properties of the aluminium alloys 2024T45and  

Material E11 Mpa E22 Mpa G12   Mpa G12   Mpa y Mpa

2024T45 72500 72500 27600 27600 275 

2.3 Analysis of boundary conditions. 

The explicit form of the critical loads can be expressed as 
follows. Let us consider the solution in the case of a simply 
supported edges labeled (ssss). The out of plane displacement w 
must satisfy the boundary conditions and w (x1, x2) takes the 
form:
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As it was discussed previously, the equation (15) allows us to 
deal with plastic solutions, while a convenient writing is possible, 
equation (16). The critical load corresponds to the minimum of 
the load verifying the equation below. 
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Fig. 2. Variation of the critical load versus the aspect ratio a/b for 
the 2024 alloy - J2F / J2D (  =0.27) 

 
In this last equation (15), all the coefficients are time 

independent, and may be assumed as constants. For a given 
proportional load factor  and for a given aspect ratio r, an 
algorithm of calculation was used for this analytic resolution 
approach.  

Beyond the last study, we can underline the influence of the 
proportional load factor  In fact, for particular values of the 
aspect ratio, the critical load can be in the plastic range.  
 
 

3. Conclusions 
 

This study has shown that with J2f law, critical loads are 
almost higher then those determined with J2d law, for aluminium 
2024 T45. These results confirm also that the flow model, yields 
inconsistent predictions, completely disagree with other theories, 
and also with experimental results. The deformation theory gives 

always better results and there is a good qualitative agreement 
between J2d and the experimental results. A noticeable evolution 
was shown experimental critical loads depending on and  and b 
for 2024.  The interest of this 3D representation is to indicate the 
utmost plastic buckling, for a square plate under biaxial loading. 

 

 
 

Fig. 3. Critical loads versus  and b for 2024 aluminum 
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