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Murat Subaşı, Bünyamin Yıldız

Abstract

This paper presents a numerical solution of an optimal control problem for linear

parabolic equations. The estimates for the error of the difference scheme and the

speed of convergence have been established. Numerical results are reported on test

problems.
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1. Introduction and Statement of the Problem

Many theoretical phenomena which are governed by linear and nonlinear parabolic

equations have been investigated in the field of optimal control. Many problems in the-

oretical physics, for example [1], [2], [3], [4], can be expanded to these types of problems.

Also, determining the quantum-mechanical potential is one of the basic problems of the

quantum mechanics. Given simplifying assumptions, this potential is determined on the

basis of intuitive concepts [1]. Problems of determining interaction potentials have stim-

ulated the development of scattering theory [1]. Different approaches for solving optimal

control problems of parabolic systems and inverse problems were proposed in [8], [10],
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[11], [12] and numerical solutions of Schrödinger equations were investigated in [9], [16].

In many applications as in the quantum-mechanical, heat equation and hydrology there

is a need to recover control coefficient v from boundary measurements of solutions of a

parabolic equations. The inverse problem of determining the quantum-mechanical po-

tential is not well-posed, and this also holds in the variational formulation, so it is quite

difficult to obtain numerical solution. In the variational formulation, an optimal control

of the coefficient, that is, of the potential in the Schrodinger equation, is produced [13].

The paper is organized as follows. First, differences scheme and its error are evaluated

in Section 2. Second, convergence speed of the difference approximations is examined

and some estimates are obtained. Finally, in Section 4, a minimization algorithm is given

for the optimal control problem and this algorithm is tested in two quantum mechanical

problems.

Let Ω region be Ω = (0, l) × (0, T ), T > 0 a specified number, 0 ≤ t ≤ T . Let the

spaces W k
p (0, l) and W k,m

p (Ω), p ≥ 1, k, m ≥ 0 be defined as in [5], and symbol
◦
∀ signify

that the given property applied for almost all values of variable quantity.

We consider a quantum-mechanical system whose state described by the Schrödinger

equation

i
∂ψ

∂t
+ a0

∂2ψ

∂x2
− v (x)ψ = f (x, t) , (x, t) ∈ Ω, (1)

where ψ = ψ(x, t) is a wave function, i =
√
−1, a is a specified positive number,

f ∈W 2,0
2 (Ω). Let the following initial and boundary conditions be specified for (1):

ψ (x, 0) = φ (x) , x ∈ (0, l) (2)

∂ψ(0, t)
∂x

=
∂ψ(l, t)

∂x
= 0, t ∈ (0, T ) , (3)

whereϕ(x) is a given function from W 3
2 (0, l) and ϕ and f satisfy the conditions,

dϕ(0)
dx

=
dϕ(l)
dx

= 0, (4)
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∂f (0, t)
∂x

=
∂f (l, t)

∂x
= 0,

∂f

∂t
∈W 1,0

2 (Ω) (5)

respectively. Our aim is to determine the potential v(x) on the basis of additional

information ψ(x, T ) = y(x) concerning the solution of (1) under conditions (2)-(3). We

will look for the function v(x) in the set

V =
{

v : v = v (x) , v ∈ L2 (0, l) , b0 ≤ v (x) ≤ b1, ,
◦
∀ x ∈ (0, l)

}
,

(where b0 ≥ 0 and b1 ≥ 0 are given number), called the class of admissible potentials.

Suppose that J0(v) is defined as

J0(v) =
∫ l

0

|ψ(x, T ; v)− y(x)|2.

Therefore, the variational formulation of this problem requires in minimizing the

functional

Jα(v) = J0(v) + α||v− w||2L2(0,l) (6)

in the set V , where α > 0 is a given number, y ∈ W 1
2 (0, l), w ∈ L2 (0, l) are given

functions. The second term in the right hand side of (6) is introduced with aim of a

further possible regularization of the initial problem [7].

By a solution of problem (1)-(2) with a given v ∈ V (this problem is a boundary value

problem for (1), we call it as the reduced problem), we will understand a function ψ(x, t)

belongs to the space W 2,1
2 (Ω) and satisfies

∫
Ω

(−iηt + a0ηxx − v(x)η) ψ dx dt =
∫

Ω

f(x, t)η(x, t) dxdt

+ i

∫ l

0

η(x, 0)ϕ(x) dx +
∫ T

0

ψ(l, t)ηx(l, t) dt−
∫ T

0

ψ(0, t)ηx(0, t) dt

for any η = η(x, t) ∈W 2,1
2 (Ω) and any t ∈ [0, T ].
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We note that the reduced problem has been investigated in [5], [6] and elsewhere.

The results obtained there are, however of little use for our purposes, since in them the

potentials are assumed to be sufficiently smooth even for non smooth solutions of the

Schrödinger equation. As the solution of the reduced problem (1)-(3) explicitly depends

on the control v, we shall therefore also use the notation ψ = ψ(x, t; v).

Existence and uniqueness of the solution (1)-(3), (6) have been investigated in [15]In

this study we especially show how a finite difference scheme can be used to solve this

problem, and give estimates on the rate of convergence. We prove that the minimum of

the (discrete) cost functional for an approximate optimal control problem converges to

the minimum of the cost functional of the original problem as the grid spacing tends to

zero.

2. Differences Scheme and Its Error

In this section, we shall use finite-difference method for the solution of the problem

(1)-(3), (6). For the various partial derivatives of the function φ(x, t) let us write the

difference quotients and discretization scheme:

{(xj, tk)n}, n = 1, 2, . . . , j = 0, Mn, k = 0, Nn

xj = jh − h

2
, tk = kτ, h = hn =

l

(Mn − 1)
, τ = τn =

T

Nn
.

M = Mn, N = Nn, δtφj k =
(φjk − φjk−1)

τ

δxφjk =
(φj+1 k − φjk)

h
, δxxφjk =

(δxφjk − δxφjk)
h

.

For arbitrary natural number m ≥ 1, let us consider the minimizing problem of the

functional

Im([v]m) = h

M−1∑
j=1

|φjN − yj |2 (7)
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in the set Vm = {[v]m : [v]m = (v1, v2, . . . , vM−1), |vj| ≤ b0, j = 1, M − 1 } under the

conditions

iδtφjk + a0δxxφjk − vjφjk = fjk, j = 1, M − 1, k = 1, N, (8)

φj0 = ϕj, j = 0, M, (9)

δxφ1k = δxφMk = 0, k = 1, N , (10)

where yj , ϕj , fjk scheme functions are determined by

yj =
1
h

∫ xj+h/2

xj−h/2
y(x) dx

ϕj =
1
h

∫ xj+h/2

xj−h/2
ϕ(x) dx, j = 1, M − 1, ϕ0 = ϕ1, ϕM = ϕM−1

fjk =
1
τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2
f(x, t) dxdt, j = 1, M − 1, k = 1, N

respectively. Using additive identities and the method of a priori estimates, we write the

estimate

h

M−1∑
j=1

|φjn|2 ≤ c5

h

M−1∑
j=1

|ϕj|2 + τh

N∑
k=1

M−1∑
j=1

|fjk|2
 , ∀n ∈ {1, 2, 3, . . . , N} (11)

for the solution of differences scheme (8)-(10), where c5 > 0 is a constant that does not

depend on τ and h. Now, we will evaluate the error of the differences scheme (8)-(10).

For this purpose let us consider the following system:

iδtzjk + a0δxxzjk − vjzjk = Fjk, j = 1, M − 1, k = 1, N , (12)

401
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zj0 = 0, j = 0, M, δxz1k = δxzMk
= 0, k = 1, N , (13)

where zjk = φjk−ψjk, {φjk} is the solution of the system (8)-(10), {ψjk} is determined

by

ψjk =
1
h

∫ xj+h/2

xj−h/2
ψ(x, tk)dx, j = 1, M − 1, k = 1, N,

ψj0 = ϕj, j = 0, M, ψ0k = ψ1k, ψMk = ψM−1 k, k = 1, N ,

and the scheme functions Fjk is defined by

Fjk =
1
τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2

(
i
∂ψ

∂t
+ a0

∂2ψ

∂x2
− v(x)ψ

)
dx dt− iδ

t
ψjk −

− a0δxxψjk + vjψjk, j = 1, M − 1, k = 1, N.

(14)

Let us define the operator Qm by

Qm(v) =
(
v1 , v2, . . . , vM−1

)
, vj =

1
h

∫ xj+h/2

xj−h/2
v(x)dx, j = 1, M − 1 (15)

in the set V. Therefore we can write the following theorem.

Theorem 1 Suppose that the steps τ > 0 and h > 0 satisfy the compatibility condition

c6 ≤ τ2

h2 ≤ c7, where c6, c7 > 0 are constants independent from τ and h. Therefore, the

estimate

h
M−1∑
j=1

|zjn|2 ≤ c8

(
τ2 + h2 + ||Qm(v) − [v]m||2

)
, ∀n ∈ {1, 2, . . . , N}, (16)

is valid, where c8 > 0 is a constant that does not depend on τ and h.
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Proof. We obtain the estimate

h

M−1∑
j=1

|zjn|2 ≤ c9

τh

N∑
k=1

M−1∑
j=1

|Fjk|2
 , ∀n ∈ {1, 2, . . .N} , (17)

as similar way for the estimate (11), by using additive identities for the solution of system

(12)-(13), where c9 > 0 is a constant that does not depend on τ and h.

Now, let us evaluate the right hand side of the estimate (17). According to (14), we

obtain

Fjk = F 1
jk + F 2

jk + F 3
jk, j = M − 1, k = 1, N , (18)

where

F 1
jk =

1
τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2
i
∂ψ

∂t
dxdt− iδtψjk, (19)

F 2
jk =

1
τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2
a0

∂2ψ

∂x2
dxdt− a0δxxψjk, (20)

F 3
jk = vjψjk −

∫ tk

tk−1

∫ xj+h/2

xj−h/2
vψ dxdt. (21)

From (19) and definition of the scheme functions ψjk, we obtain

F 1
jk = 0, j = 1, M − 1, k = 1, N. (22)

From (20) and the formula for ψjk, we obtain
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F 2
jk =

a0

τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2

∂2ψ(x, t)
∂x2

dx dt− a0

h2

{
1
τh

∫ tk

tk−1

∫ xj+1+h/2

xj+1−h/2
ψ(x, t)dxdt

− 2
τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2
ψ(x, t) dxdt +

1
τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2
ψ(x, t) dxdt

}

− a0

h2

{
1
τh

∫ tk

tk−1

∫ xj+1+h/2

xj+1−h/2
(ψ(x, tk) − ψ(x, t))dxdt

− 2
τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2
(ψ(x, tk) − ψ(x, t))dxdt

+
1
τh

∫ tk

tk−1

∫ xj−1+h/2

xj−1−h/2
(ψ(x, tk)− ψ(x, t))dxdt

}

= F 21
jk + F 22

jk , j = 2, M − 2, k = 1, N . (23)

where

F 21
jk =

a0

τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2

∂2ψ(x, t)
∂x2

dx dt− a0

h2

{
1
τh

∫ tk

tk−1

∫ xj+1+h/2

xj+1−h/2
ψ(x, t)dxdt

− 2
τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2
ψ(x, t) dxdt +

1
τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2
ψ(x, t) dxdt

}
and

F 22
jk = −a0

h2

{
1
τh

∫ tk

tk−1

∫ xj+1+h/2

xj+1−h/2
(ψ(x, tk) − ψ(x, t))dxdt

− 2
τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2
(ψ(x, tk)− ψ(x, t))dxdt

+
1
τh

∫ tk

tk−1

∫ xj−1+h/2

xj−1−h/2
(ψ(x, tk)− ψ(x, t))dxdt

}
.

By using formula of F 22
jk in (23), we write
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F 22
jk = − a0

τh3

∫ tk

tk−1

∫ xj+h/2

xj−h/2

∫ tk

t

∫ x

x−h

(
∂2ψ(ξ + h, θ)

∂ξ∂θ
− ∂2ψ(ξ, θ)

∂ξ∂θ

)
dξdθdxdt, (24)

where j = 2, M − 2, k = 1, N . Hence we obtain

∣∣∣∣F 22
jk

∣∣∣∣ ≤ a0τ
1
2

h3/2

(∫ tk

tk−1

{∫ xj+h/2

xj−h/2

∣∣∣∣∣∂2ψ(x + h, t)
∂x∂t

− ∂2ψ(x, t)
∂x∂t

∣∣∣∣∣
2

dx

+
∫ xj−1+h/2

xj−1−h/2

∣∣∣∣∣∂2ψ(x + h, t)
∂x∂t

− ∂2ψ(x, t)
∂x∂t

∣∣∣∣∣
2

dx

}
dt

)1/2

, j = 2, M − 2, k = 1, N

(25)

By using the formula of F 21
jk in (23), we write

F 21
jk =

a0

τ

∫ tk

tk−1

{
1
h

(
∂ψ(xj + h/2, t)

∂x
− ∂ψ(xj − h/2, t)

∂x

)

− 1
h3

(∫ xj+1+h/2

xj+1−h/2
ψ(x, t)dx− 2

∫ xj+h/2

xj−h/2
ψ(x, t) dx

+
∫ xj−1+h/2

xj−1−h/2
ψ(x, t)dx

)}
dt

(26)

for j = 2, M − 2, k = 1, N . Suppose that

Pt(ψ) =
1
h

(
∂ψ(xj + h/2, t)

∂x
− ∂ψ(xj − h/2, t)

∂x

)

− 1
h3

(∫ xj+1+h/2

xj+1−h/2
ψ(x, t)dx− 2

∫ xj+h/2

xj−h/2
ψ(x, t) dx +

∫ xj−1+h/2

xj−1−h/2
ψ(x, t)dx

)
(27)

Now, let us replace the variable xj with x and the variable x with ξ and take

ξ = x + sh. Therefore Pt(ψ) is written as

Pt(
∼
ψ) =

1
h2

{(
∂
∼
ψ(0.5, t)

∂s
− ∂

∼
ψ(−0.5, t)

∂s

)
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−
∫ 1.5

0.5

∼
ψ(s, t)ds + 2

∫ 0.5

−0.5

∼
ψ(s, t) ds−

∫ −0.5

−1.5

∼
ψ(s, t)ds

}
, (28)

where
∼
ψ(s, t) = ψ(x + sh, t). It is obvious that the functional Pt(

∼
ψ) is linear according

to
∼
ψ . Moreover, the functional is bounded in the space W 3

2 (−0.5, 0.5). Therefore, we

write

|Pt(
∼
ψ)| ≤ c10h

−2||
∼
ψ||W3

2 (−0.5,0.5),
◦
∀ t ∈ (0, T ) (29)

by using (28), where c10 > 0 is a constant that does not depend on τ and h. It can be

easily shown that the functional Pt(
∼
ψ) is zero at

∼
ψ = as2 + bs + c, that is

Pt(
∼
ψ) = Pt(as2 + bs + c) = 0.

Hence, the conditions of the Bramble-Hilbert Lemma hold [10]. Therefore, we obtain

∣∣∣Pt(∼ψ)
∣∣∣ ≤ c11h

−2
∣∣∣∣∣∣∂3

∼
ψ

∂s3

∣∣∣∣∣∣
L2(−0.5,0.5)

,
◦
∀ t ∈ (0, T ) (30)

from hypothesis of this Lemma and estimate (29). Now, by reversing variables and using

(26), (27), (30) and first assignments, we write

∣∣∣F 21
jk

∣∣∣ ≤ c11h
1/2τ−1/2

(∫ tk

tk−1

∫ xj+h/2

xj−h/2

∣∣∣∣∂3ψ

∂x3

∣∣∣∣2dxdt

)1/2

, j = 2, M − 2, k = 1, N . (31)

If we use the formulas of F 2
1k, F 2

M−1 k and the conditions

∂ψ(0, t)
∂x

=
∂ψ(x1 − h/2, t)

∂x
=

∂ψ(l, t)
∂x

=
∂ψ(xM−1 + h/2, t)

∂x
= 0,

then we prove the inequalities

∣∣∣F 2
1k

∣∣∣ ≤ a0τ
1/2

h3/2

(∫ tk

tk−1

{∫ x1+h/2

x1−h/2

∣∣∣∣∣∂2ψ(x, t)
∂x∂t

∣∣∣∣∣
2

dx +
∫ x2+h/2

x2−h/2

∣∣∣∣∣∂2ψ(x, t)
∂x∂t

∣∣∣∣∣
2

dx

}
dt

)1/2

+
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+c12a0h
1/2τ−1/2

∫ tk

tk−1

∫ x1+h/2

x1−h/2

∣∣∣∣∣∂3ψ(x, t)
∂x3

∣∣∣∣∣
2

dxdt

1/2

, (32)

∣∣∣F 2
M−1k

∣∣∣ ≤ a0τ
1/2

h3/2

(∫ tk

tk−1

{∫ xM−2+h/2

xM−2−h/2

∣∣∣∣∣∂2ψ(x, t)
∂x∂t

∣∣∣∣∣
2

dx+

+
∫ xM−1+h/2

xM−1−h/2

∣∣∣∣∣∂2ψ(x, t)
∂x∂t

∣∣∣∣∣
2

dx

}
dt

)1/2

+ c13a0h
1/2τ−1/2×

×

∫ tk

tk−1

∫ xM−1+h/2

xM−1−h/2

∣∣∣∣∣∂3ψ(x, t)
∂x3

∣∣∣∣∣
2

dxdt

1/2

(33)

according to the Bramble-Hilbert lemma, where c12, c13 > 0 are constants independent

from τ and h. Hence, from inequalities (27), (33), formula (25) and compatible condition,

we obtain

τh

N∑
k=1

M−1∑
j=1

∣∣∣F 2
jk

∣∣∣2 ≤ c14h
2

(∣∣∣∣∣∣∂3ψ

∂x3

∣∣∣∣∣∣2
L2(Ω)

+
∣∣∣∣∣∣ ∂2ψ

∂x∂t

∣∣∣∣∣∣2
L2(Ω)

)
, (34)

where c14 > 0 is a constant independent from h and τ . In the statement of

Fjk =
1
τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2
v(x) (ψjk − ψ(x, t)) dxdt, (35)

using by formula of ψjk, we can also write equality

ψjk − ψ(x, t) =
1
h

∫ xj+h/2

xj−h/2

{∫ tk

t

∂ψ(ξ, θ)
∂θ

dθ +
∫ ξ

x

∂ψ(η, t)
∂η

dη

}
dξ. (36)

Then we obtain the inequality
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τh
N∑
k=1

M−1∑
j=1

∣∣∣Fjk∣∣∣2 ≤ c15(τ2 + h2)
(∣∣∣∣∣∣∂ψ

∂t

∣∣∣∣∣∣2
L2(Ω)

+
∣∣∣∣∣∣∂ψ

∂x

∣∣∣∣∣∣2
L2(Ω)

)
, (37)

where c15 > 0 is a constant independent from h and τ . Hence, we write

F 3
jk =

ψjk
h

∫ xj+h/2

xj−h/2

(
vj − v(x)

)
dx +

1
τh

∫ tk

tk−1

∫ xj+h/2

xj−h/2
v(x) (ψjk − ψ(x, t)) dxdt (38)

for j = 1, M − 1, k = 1, N . By using formula of ψjk and the estimate (8), we prove the

estimate

∣∣∣ψjk∣∣∣ ≤ c16, j = 1, M − 1, k = 1, N, (39)

where c16 > 0 is constant independent from h and τ . Therefore, if we consider equality

(36) and inequality (37), then we obtain 2

τh

N∑
k=1

M−1∑
j=1

∣∣∣F 3
jk

∣∣∣2 ≤ c15

{
(τ2 + h2)

(∣∣∣∣∣∣∂ψ

∂t

∣∣∣∣∣∣2
L2(Ω)

+
∣∣∣∣∣∣∂ψ

∂x

∣∣∣∣∣∣2
L2(Ω)

)
+ ||Qm(v) − [v]m||2

}
(40)

from (38). Hence, by using inequality (34) and equalities (38) and (22), We show that

the hypothesis of the theorem is true. The proof is completed.

3. Convergence of the Difference Approximations

Now, let us evaluate the difference between original functional and discrete functional.

Theorem 2 Suppose that the conditions of Theorem 1 hold. Then the estimate

|J(v) − Im([v]m)| ≤ c18(τ + h + ||Qm(v) − [v]m||) (41)
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is valid for ∀v ∈ V and ∀[v]m ∈ Vm, where c18 > 0 is a constant independent from

h and τ .

Proof. By using the formulas of functional, we write the difference between them as

J(v) − Im([v]m) =
M−1∑
j=1

∫ xj+h/2

xj−h/2

{
|ψ(x, T )− y(x)|2 − |φjN − yj |2

}
dx. (42)

If we apply Cauchy-Bunyakowski inequality and use (7) , then we write

∣∣∣J(v) − Im([v]m)
∣∣∣ ≤ c19

{(M−1∑
j=1

∫ xj+h/2

xj−h/2
|ψ(x, T )− φjN |2dx

)1/2

+

+
(M−1∑

j=1

∫ xj+h/2

xj−h/2
|y − yj |2dx

)1/2}
= c19{J1 + J2} (43)

from (42), where

J1 =
(M−1∑

j=1

∫ xj+h/2

xj−h/2
|ψ(x, T )− φjN |2dx

)1/2

and

J2 =
(M−1∑

j=1

∫ xj+h/2

xj−h/2
|y − yj |2dx

)1/2

.

Since y ∈W 1
2 (0, l), we can write

J2 ≤ h

∣∣∣∣∣∣∣∣∂y

∂x

∣∣∣∣∣∣∣∣
L2(0,l)

. (44)

By using the formula of J1, we obtain
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J1 ≤
√

2
{M−1∑

j=1

∫ xj+h/2

xj−h/2
|ψ(x, T )− ψjN |2dx+

+h

M−1∑
j=1

|ψjN − φjN |2
}1/2

=
√

2{J1
1 + J2

1}1/2, (45)

where n = N . From the estimate (17), we write

J2
1 ≤ c20(τ2 + h2 + ||Qm(v) − [v]m||

2
). (46)

Using formula of the ψjk, we have

J1
1 ≤

M−1∑
j=1

∫ xj+h/2

xj−h/2

∣∣∣∣ ∫ xj+h/2

xj−h/2

∫ ξ

x

∂ψ(η, T )
∂η

dηdξ

∣∣∣∣2dx.

Therefore, from the inequality

∣∣∣∣∣∣∣∣∂ψ(., T )
∂x

∣∣∣∣∣∣∣∣
L2(0,l)

≤ c21

(∣∣∣∣∣∣∂ψ

∂x

∣∣∣∣∣∣
L2(Ω)

+
∣∣∣∣∣∣ ∂2ψ

∂x∂t

∣∣∣∣∣∣
L2(Ω)

)
and estimate (8), we obtain

J1
1 ≤ c22h. (47)

Hence, according to inequalities (46), (47) , we obtain

J1 ≤ c23(τ + h + ||Qm(v) − [v]m||). (48)

Consequently, in view of (44) and (48) the hypothesis of the Theorem 2 holds.

Now, let us obtain an estimate for convergence speed of difference approximations

according to functional. For this purpose, we write the following lemmas. 2
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SUBAŞI, YILDIZ

Lemma 1 Suppose that the conditions of Theorem 2 hold, and the operator Qm is defined

by (15). Then Qm(v) ∈ V , and the following the estimate

|J(v) − Im(Qm(v)| ≤ c24(τ + h). (49)

is valid, where c24 > 0 is a constant that does not depend on h and τ .

Proof. Suppose that v ∈ V is an arbitrary function. Therefore, we can write

that Qm : V → Vm from definition of the sets Vm and Qm. Consequently, if we take

Qm(v) instead of discrete function Vm in Theorem 2 then we obtain the estimate (49).

Hence, this Lemma is proved. 2

Lemma 2 Suppose that conditions of Theorem 2 hold and the operator Pm is defined by

Pm([v]m) =
∼
v(x),

∼
v(x) = vj , xj − h/2 ≤ x ≤ xj + h/2, j = 1, M − 1.

Therefore Pm([v]m) ∈ V and

|J(Pm([v]m)) − Im([v]m)| ≤ c25(τ + h), (50)

where c25 > 0 is a constant that does not depend on h and τ .

Proof. Suppose that [vm] ∈ Vm is a arbitrary discrete function. From definition of

the set V and the operator Pm([v]m) we write Pm : Vm → V . Therefore, if we take

Pm([vm]) instead of v in Theorem 2 then we obtain the estimate (50) considering (43).

Hence, this Lemma is proved. 2

Theorem 3 Suppose that the conditions of Lemma 1 and Lemma 2 hold and let v∗ ∈
V, [v]∗m ∈ V ∗m be are solutions of the problems (1)-(3) and (7)-(10) respectively, that

is,
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J∗ = inf
v∈V

J(v) = J(v∗), Im∗ = inf
[v]m∈Vm

Im([v]m) = Im([v]∗m).

Therefore the solutions of the problem (7)-(10) are approximate to solution of the

problem (1)-(3). That is

lim
m→∞

Im∗ = J∗

and the estimate

|Im∗ − J∗| ≤ c26(τ + h) (51)

is true for the convergence speed of the difference approximations, where c26 > 0 is a

constant that does not depend on h and τ .

Proof. Let us consider (49) again. It can be easily seen that τ and h are sufficiently

small for increasing m. We have J(v) = Im([v]m) , for m → ∞. Also, in the cases

J∗ = infv∈V J(v) and Im∗ = inf[v]m∈Vm Im([v]m), the statement

lim
m→∞

Im∗ = J∗

holds and when we consider the infimum status of (50), the estimate (51) holds. 2

4. Numerical Solution of the Optimal Control Problem

In this section we will give an algorthim for the solution of the problem (1)-(3), (6).

This problem is an invers problem and it is ill-posed. In Theorem 1, we showed that

this problem has at least one solution. Since the problem (1)-(3), (6) is ill-posed we use

Tikhonov method [7] for the solution of the problem. We need a stabilizator function

while using this method. Suppose that the stabilizator function is defined as

S(v) = ||v − w||2L2(Ω) =
∫ T

0

∫ l

0

|v(x, t)− w(x, t)| dx dt
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in the set V , where w(x, t) ∈ L2(Ω) is a given function. It can be shown that S(v)

is a stabilazator [14]. Let us take a sequence {αm} having property that {αm} → 0 at

m→ ∞. Also, let us define the functional

Jm(v) = Jα(v) + αmS(v), v ∈ V (52)

in the set V for the each m = 1, 2, . . . ,. Now, we will investigate the minimizing problem

for the functional Jm(v) under the conditions (1)-(3). Firstly, we will write discretization

of this problem. Let us consider a grid in the plane xt. We divide [0,l] into M and

[0, T ] into N equal subintervals with the constant steps h and τ respectively. Where

h = l/M and τ = T/N . Therefore the mesh points in the x axis are

[x0, x1], . . . , [x0 + (M − 1)h, x0 + Mh], xj = x0 + jh, j = 0, M

and mesh points in the t axis are

[t0, t1], . . . , [t0 + (N − 1)τ, t0 + Nτ ], tk = t0 + kτ, k = 1, N

Let us choose the set VM as discretization of the admisible controls set V . We can write

the VM as follows

VM = {[v], [v] = vj, j = 0, M, 0 < b0 ≤ vj ≤ b1}.

Hence discretization of the problem

Jm(v) → min

can be written as

Im(v) → min (53)

in the set VM under the conditions

iδtφjk − a0δxxφjk − vjφjk = fjk, j = 1, M − 1, k = 1, N (54)
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φj0 = ϕj , j = 0, M (55)

δxφ0k =
h

2a0
(f0k − iδtφ0k − v0φ0k) , k = 1, N (56)

δxφMk =
h

2a0
(fMk − iδtφMk − vMφMk) , k = 1, N, (57)

where

Im(v) = h

M−1∑
j=1

|φjN − yj |2 +

αmτ

N∑
k=1

M−1∑
j=1

|vj −wj|2 +
1
2
|v0 −w0|2 + |vM − wM |2

 ,

(58)

fjk = f(xj , xk), wjk = w(xj, tk), ϕj = ϕ(xj), j = 0, M , k = 1, N .

We will use projection of the gradient method for the solution of the problem (53)-(57),

for this purpose we can write the gradient of the discrete function as

(I′m([v]))jk = −Re(φjkηjk) + 2αm(vj − wj), j = 0, M − 1, k = 1, N

where η is the solution of the problem

iδtηjk − a0δxxηjk − vjηjk = fjk, j = 1, M − 1, k = 1, N (59)

ηjN = ϕj, j = 0, M (60)

δxη0k =
h

2a0
(f0k − iδtη0k − v0η0k) , k = 1, N (61)
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δxηMk =
h

2a0
(fMk − iδtηMk − vMφMk) , k = 1, N. (62)

Using (59)-(62) we write iterations [v]m for the discrete problem (53)-(57) as follows:

[v]m = PVm{[v]m − βI′m([v]m)}, (63)

where PV m is projection of the an element in the set V. Considering definition of the V

we write projections as follows:

(vj)m =


(vj)m + βn(I′m([v]m))j , b0 ≤ (vj)m− βm(I′m([v]m)j ≤ b1

b0, (vj)m − βm(I′m([v]m)j < b0

b1, (vj)m− βm(I′m([v]m)j > b1

for j = 0, M, m = 0, 1, 2, . . . . Now let us choose βn and αm. For the first step let

bem = 1, α1 = α, such that α > 1 is a constant. Firstly, let us take βn = β, β > 0 and

check the condition

Im([v]m+1) ≤ Im([v]m). (64)

If the contiditon (64) doesn’t satisfy then we divide the number β, until (64) holds. In

this case, if the condition

{
h

M−1∑
h=1

∣∣∣∣(vj)m+1 − (vj)m

∣∣∣∣2 +
h

2

∣∣∣∣(v0)m − (v0)m

∣∣∣∣2 +

h

2

∣∣∣∣(vM )m+1 − (vM )m

∣∣∣∣2}1/2

≤ ε

(65)

satisfies then we can stop the iteration process, where ε > 0 is a given number. Now, let

us check the conditons
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|Im([v]m+1)− αm
{

h

M−1∑
h=1

∣∣∣∣(vj)m+1 − (vj)m

∣∣∣∣2 +
h

2

∣∣∣∣(v0)m − (v0)m

∣∣∣∣2 +

h

2

∣∣∣∣(vM )m+1 − (vM )m

∣∣∣∣2}1/2

≤ ε1

(66)

for the αm = α, where ε1 > 0 is a given number.

If contidition (66) doesn’t satisy then we check condition (65) for αm = αδ−m

again, where δ > 1 is a constant. When the condition (66) holds, we stop iterations.

5. Applications to Test Problem

Now, in a quantum-mechanical problem, we will test this minimization algorithm. We

will consider the state of a hormonic osilator with potential v. This harmonic osilator is

in a field of force f . We examine the best appropiate potential v for which osilator has

the maximum probability to be at given position y.

In the following examples, l and T are bondaries of the field. y (x) is a given position

and f (x, t) is a field of force. Fortran-90 programs were written for these examples. The

results of the programs are given in tables and graphs. The boundary conditions (3) were

written as

∂ψ

∂x

∣∣∣
x=0

= g0(t),
∂ψ

∂x

∣∣∣
x=l

= g1(t)

for the approximate solution of the problem (1)-(4)

Example 1 Let us assume as l = 1, T = 1, a0 = 1, f(x, t) = −ix(x + t), ϕ(x) = ix

g0(t) = 0, g1(t) = 0, y(x) = i(x + 1), α = 0.09 and N = 20 for the numerical solution of

the problem (1)-(3), (6). In this case exact solution of the problem is v∗(x) = x. The

exact solution and approximate solution are given in Table 1 and Figure 1.
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Table 1. v∗(xi) exact solution; v(x) approximate solution.

xi v∗(xi) v(xi) |v∗(xi)− v∗(xi)|
.050 .0500000000 -.0307098000 .0807098000

.100 .1000000000 .0210873400 .0789126600

.150 .1500000000 .0728603500 .0771396500

.200 .2000000000 .1246068000 .0753932400

.250 .2500000000 .1763250000 .0736750200

.300 .3000000000 .2280143000 .0719857100

.350 .3500000000 .2796749000 .0703250500

.400 .4000000000 .3313079000 .0686920600

.450 .4500000000 .3829152000 .0670847900

.500 .5000000000 .4344996000 .0655004100

.550 .5500000000 .4860646000 .0639354000

.600 .6000000000 .5376147000 .0623853200

.650 .6500000000 .5891553000 .0608447800

.700 .7000000000 .6406924000 .0593076300

.750 .7500000000 .6922330000 .0577670300

.800 .8000000000 .7437849000 .0562151100

.850 .8500000000 .7953570000 .0546430300

.900 .9000000000 .8469588000 .0530412200

.950 .9500000000 .8986009000 .0513991100

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

— — — — — — — — — —

0.99
0.95
0.90
0.86
0.81
0.77
0.72
0.67
0.63
0.59
0.54
0.50
0.45
0.41
0.36
0.32
0.27
0.23
0.18
0.14
0.09
0.05
0.00

-0.05
-0.09

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

exact solution

approximate solution

Figure 1. Graph of the v∗(x) = x and approximate solution.
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Example 2 Let us assume as l = 1, T = 1, a0 = 1, f(x, t) = 2i − i(x2 + t) sin x −
1, ϕ(x) = ix, y(x) = i(x2 + 1), α = 0.09 and N = 20 for the numerical solution of the

problem (1)-(3), (6). In this case exact solution of the problem is v∗(x) = sin x. The exact

solution and approximate solution are given in Figure 2.

Table 2. v∗(xi) exact solution; v(x) approximate solution.

xi v∗(xi) v(xi) |v∗(xi)− v∗(xi)|
.050 .0499791700 .1223487000 .0723695500

.100 .0998334200 .1607708000 .0609373400

.150 .1494381000 .1990807000 .0496425500

.200 .1986693000 .2371852000 .0385159000

.250 .2474040000 .2749923000 .0275882900

.300 .2955202000 .3124059000 .0168856400

.350 .3428978000 .3493373000 .0064395070

.400 .3894183000 .3856939000 .0037244260

.450 .4349656000 .4213871000 .0135784700

.500 .4794255000 .4563275000 .0230980800

.550 .5226873000 .4904303000 .0322569600

.600 .5646425000 .5236107000 .0410317800

.650 .6051864000 .5557873000 .0493991400

.700 .6442177000 .5868798000 .0573378200

.750 .6816388000 .6168110000 .0648277400

.800 .7173561000 .6455055000 .0718505400

.850 .7512804000 .6728895000 .0783909000

.900 .7833269000 .6988956000 .0844312900

.950 .8134155000 .7234555000 .0899599800
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—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

— — — — — — — — — —

0.900
0.855
0.810
0.765
0.720
0.675
0.630
0.585
0.540
0.495
0.450
0.405
0.360
0.315
0.270
0.225
0.180
0.135
0.090
0.045
0.000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

exact solution

approximate solution

Figure 2. Graph of the v∗(x) = sinx and approximate solution.
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