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Numerical Solution and Convergence Speed of
Variational Formulation for Linear Schrodinger

Equation

Murat Subasi, Binyamin Yildiz

Abstract

This paper presents a numerical solution of an optimal control problem for linear
parabolic equations. The estimates for the error of the difference scheme and the
speed of convergence have been established. Numerical results are reported on test

problems.
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1. Introduction and Statement of the Problem

Many theoretical phenomena which are governed by linear and nonlinear parabolic
equations have been investigated in the field of optimal control. Many problems in the-
oretical physics, for example [1], [2], [3], [4], can be expanded to these types of problems.
Also, determining the quantum-mechanical potential is one of the basic problems of the
quantum mechanics. Given simplifying assumptions, this potential is determined on the
basis of intuitive concepts [1]. Problems of determining interaction potentials have stim-
ulated the development of scattering theory [1]. Different approaches for solving optimal

control problems of parabolic systems and inverse problems were proposed in [8], [10],
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[11], [12] and numerical solutions of Schrédinger equations were investigated in [9], [16].
In many applications as in the quantum-mechanical, heat equation and hydrology there
is a need to recover control coefficient v from boundary measurements of solutions of a
parabolic equations. The inverse problem of determining the quantum-mechanical po-
tential is not well-posed, and this also holds in the variational formulation, so it is quite
difficult to obtain numerical solution. In the variational formulation, an optimal control
of the coefficient, that is, of the potential in the Schrodinger equation, is produced [13].

The paper is organized as follows. First, differences scheme and its error are evaluated
in Section 2. Second, convergence speed of the difference approximations is examined
and some estimates are obtained. Finally, in Section 4, a minimization algorithm is given
for the optimal control problem and this algorithm is tested in two quantum mechanical
problems.

Let Q region be Q = (0,1) x (0,7), T > 0 a specified number, 0 < ¢t < T. Let the

spaces Wf (0,1) and Wf’m(ﬂ), p>1, k,m >0 be defined as in [5], and symbol V signify
that the given property applied for almost all values of variable quantity.

We consider a quantum-mechanical system whose state described by the Schrodinger

equation

0 02

ia—f+aoa—;§—v(x)w=f(x,t), (x,t) € Q, (1)
where ¢ = ¢(z,t) is a wave function, i = /—1, a is a specified positive number,

f e W (Q). Let the following initial and boundary conditions be specified for (1):

¢($»0)=¢($)a .Z'E(O,l) (2)

09(0,t) _ oy(lt) _
o= o =0 te(0.T), (3)

where p(x) is a given function from W3(0,1) and ¢ and f satisfy the conditions,
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of (0,t) —af(lt)  of 1,0
or ~ or Vg €W (@ 5)

respectively. Our aim is to determine the potential v(xz) on the basis of additional
information ¢(x,T) = y(z) concerning the solution of (1) under conditions (2)-(3). We

will look for the function v(z) in the set

V={U:Uzv(x),UELQ(O,l),bQSU(x)Sbl,,éxE(O,l)},

(whereby > 0 and b; > 0 are given number), called the class of admissible potentials.

Suppose that Jyp(v) is defined as

!
Jo(w) = / (e, T;0) — ().

Therefore, the variational formulation of this problem requires in minimizing the

functional

Ja(v) = Jo(v) + allv = wl[Z, . (6)

in the set V, where a > 0 is a given number, y € W3(0,1), w € Ly (0,1) are given
functions. The second term in the right hand side of (6) is introduced with aim of a
further possible regularization of the initial problem [7].

By a solution of problem (1)-(2) with a given v € V (this problem is a boundary value
problem for (1), we call it as the reduced problem), we will understand a function (x,t)

belongs to the space W2 () and satisfies

[ inect aunes — vty vdvit = [ oo, dod
Q Q
l T T
; ,0)p(x) d L) (L,t) dt — 0,)1(0, £) dt
+i [ 0@ e+ [ oo na= [ o0.0m.0.0
for any 1 = n(z,t) € W3 () and any t € [0, T].
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We note that the reduced problem has been investigated in [5], [6] and elsewhere.
The results obtained there are, however of little use for our purposes, since in them the
potentials are assumed to be sufficiently smooth even for non smooth solutions of the
Schrodinger equation. As the solution of the reduced problem (1)-(3) explicitly depends
on the control v, we shall therefore also use the notation 1 = ¥(x,t;v).

Existence and uniqueness of the solution (1)-(3), (6) have been investigated in [15]In
this study we especially show how a finite difference scheme can be used to solve this
problem, and give estimates on the rate of convergence. We prove that the minimum of
the (discrete) cost functional for an approximate optimal control problem converges to
the minimum of the cost functional of the original problem as the grid spacing tends to

Zero.

2. Differences Scheme and Its Error

In this section, we shall use finite-difference method for the solution of the problem
(1)-(3), (6). For the various partial derivatives of the function ¢(x,t) let us write the

difference quotients and discretization scheme:

{(zj,tp)n},n=1,2,..., j=0,M,, k=0,N,

xj = jh g, tr, =k7, h=h, (Mnl—l)’T T"_Nln'
M =M, N=N,, 6; 1= (D5k —T¢jk—1)
5oy = (@541 kh_ Pjk) | Gy = (6P ; 5djk)

For arbitrary natural number m > 1, let us consider the minimizing problem of the

functional

M—-1
Inn([v]m) = h Z pin — ;| (7)
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in the set Vi, = {[v]m : [V]m = (v1, va, ..., vnm—1), |vj| < bo, j = 1, M — 1} under the
conditions

8561 + a00sz ik — Vibik = fiky j=LM—1, k=1, N, 8)

$jo=wj, J=0,M, (9)

by, = 06y =0, k=T, (10)

where y;, ¢;, fjr scheme functions are determined by

1 (L‘j-‘rh/Q
[
h xj—h/2

1 zj+h/2
@jzﬁ/ plx)de, j=1, 1L, M—1, oo=01, Om=QOr-1
zj—h/2
zj+h/2
fjk—_ / flz,t)dxdt, j=1,M-1, k=1,N
tg—1 Jx;—h/2
respectively. Using additive identities and the method of a priori estimates, we write the
estimate
M-1 N M-1
hZ|¢Jn| < cs hZ|<pJ|2+ThZ Ifinl? |, ¥ne{1,2,3,...,N} (11)
j=1 k=1 j=1

for the solution of differences scheme (8)-(10), where ¢5 > 0 is a constant that does not
depend on 7 and h. Now, we will evaluate the error of the differences scheme (8)-(10).

For this purpose let us consider the following system:

10725k + 000232k — V% = Fik, =1, M -1, k=1, N, (12)
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ZjO = 0; j = 0) M; 5TZIk‘ = 5TZM;C = 0) k = 1) Na (13)

where zjk = @ik —Vjk, {¢Pjk} is the solution of the system (8)-(10), {¢;x} is determined
by

1 (L‘j-‘rh/Q

%‘k=—/ Y(x,tr)de, j=1,M -1, k=1,N,
h (L‘j—h/Q

ijZQOja j:05M7 ka‘:wlk‘a ka:wM—lk‘; kzlaNa

and the scheme functions Fjj is defined by

“111

xji+h/2 Qw

/ (z— +ao5— —v(z )w> dx dt — 05 — (14)
te—1 Jaj—h/2 dx?

—GO(Swajk‘i‘ijjka jzlaM_la kzla N.

Let us define the operator @Q,, b

1,2 M—1 j_ 1 wath/2 L
Qm(v):(v,v,...,v ), v == v(x)dx, j=1,M-1 (15)
xj—h/2

in the set V. Therefore we can write the following theorem.

Theorem 1 Suppose that the steps T > 0 and h > 0 satisfy the compatibility condition

2
ce < 7z < c7, where c, c7 > 0 are constants independent from T and h. Therefore, the

estimate

M-1
h Z |zjn|® < es (T2 + 1% +[|Qm(v) — [V]m]]?),  Vne{l,2,...,N}, (16)
j=1

is valid, where cg > 0 is a constant that does not depend on 7 and h.
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Proof. We obtain the estimate

M-1

M—1 N
hz |zin|? < co Thz |F5kl® ], VYne{l,2,...N}, (17)
j=1

k=1 j=1

as similar way for the estimate (11), by using additive identities for the solution of system
(12)-(13), where ¢g > 0 is a constant that does not depend on 7 and h.
Now, let us evaluate the right hand side of the estimate (17). According to (14), we

obtain
Fijn=F+F+Fy j=M-1k=1N, (18)
where
tr xj+h/2
_]k‘ - Th / / _h/2 z—dxdt Z(Sf’lbjk7 (19)
1,+h/2
FJ / d$dt a05l-§’lbjk7 (20)
tr—1 (L]—h/Q
tr xj+h/2
k =i —/ / v dzdt. (21)
i—h/2

From (19) and definition of the scheme functions 1;;, we obtain

Fly=0, j=T,M—1, k=TN. (22)
From (20) and the formula for ;i, we obtain
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tr l]+h/2 82w x t) 1tk (L]+1+h/2
% = _0
k= / / g “onz dz dt { / / Y(x,t)dxdt

h/2
Tj41—
2 lj+h/2

1,+h/2
P(x,t) dxdt—l— — / P(x,t) dxdt}
te—1 (L]—h/Q trk—1 Y

i—h/2
1 k la+1+h/2
{ A / Y(x, ti) — P(x,t))dadt
p
th—1

zjp1—h/2
2

/t
1,+h/2
/ Y(x, ti) —P(x,t))dadt
1,—h/2
T 1+h/2

Y(x, ty) — w(x,t))dxdt}
th—1 Jxj_1— h/2

Fk+Fj2k25 ]

)
where

(23)

F2l = %0 /tlC /l'j"‘h/Q w dx dt — { /t’C /11+1+h/2
7" Th tp—1 Jx;—h/2 Ox?

Y(x,t)dxdt

zjp1—h/2
9 tr zj+h/2 1,+h/2
—/ / P(x,t) dxdt—i— — / ¥(x,t) dxdt}
Th tg—1 Jx;—h/2 tg—1 Jx;—h/2

and

’s t, 1,+1+h/2
ij___{rh/ / Y(w, ty) — P(

zjp1—h/2

x,t))dzdt

1,+h/2
/ Y(x, ti) — P(x,t))dadt
tr—1 l]—h/Q

T 1+h/2
/ P(x,ty) —w(x,t))dxdt}.
th—1 Jxj_1— h/2

By using formula of F732 in (23), we write
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1tk (L"-‘rh/Q tr xT 2 2
22__& ’ 0 ¢(§+ha9) _ 0 ¢(§a9)
PR == /tk /mj_m /t /x_h ( Sc00 Seqy ) dedbdudt, (24)

where j=2,M —2, k=1, N . Hence we obtain
aoTi th x;4+h/2
< 3/2
h tr—1 (L‘j—h/Q
+ / T (e 4 hot)  0P(a,t)
Qijfl—h/Q

OxOt Ox0t
By using the formula of F j2k1 in (23), we write

2

32¢($ + ha t) _ 82¢($aﬁ) dr (25)

0xOot 0xOot

22
Fiy

2 1/2
dx}dt) L j=2M—2,k=1,N

e (1 (0w(x; +h/2,t)  OY(x; —h/2,1)
F,21 = @ — J ! — J ! 26
kT tey LD Or Or (26)
1 Tjp1+h/2 xj+h/2
- — (/ Y(z, t)de — 2/ P(x,t) dz
h xjr1—h/2 xj—h/2
3;]'71+h/2
—|—/ w(x,t)dx>}dt
Qijfl—h/Q
for j=2,M -2, k=1,N . Suppose that
1 (i‘)’lﬂ(.ﬁj +h/2,t) (i‘)’lﬂ(.ﬁj —h/2,t)
P = — — 2
1 Tjr1+h/2 xj+h/2 xj—1+h/2
- — (/ P(z, t)dx — 2/ Y(x,t)dz —l—/ w(x,t)dx>
h zjr1—h/2 xz;—h/2 zj—1—h/2

Now, let us replace the variable x; with z and the variable x with § and take

& = =+ sh. Therefore P;(v)) is written as

~ ~

) = i{ (81#(2:55,0 B é)w(—ats).s,t)>
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1.5 ., 0.5 .,

0.5 .,
- P(s,t)ds + 2 P(s,t)ds — / P(s,t)ds }, (28)

0.5 —-0.5 —-1.5

~

where 1(s,t) = ¢(x + sh,t). It is obvious that the functional P;(¢) is linear according

to 1 . Moreover, the functional is bounded in the space W3(—0.5, 0.5). Therefore, we

write

|Pe()] < Cth_2||¢||W§(—o.5,o.5)a Vte(0,T) (29)

by using (28), where c1o9 > 0 is a constant that does not depend on 7 and h. It can be

easily shown that the functional P;(1)) is zero at 1) = as® + bs + ¢, that is

Pt(1Np) = Pi(as* + bs+¢) = 0.

Hence, the conditions of the Bramble-Hilbert Lemma hold [10]. Therefore, we obtain

‘Pt(:ﬂ)‘ <cih”

€(0,7T) (30)

H853‘L2( ~0.5,0.5)

from hypothesis of this Lemma and estimate (29). Now, by reversing variables and using

(26), (27), (30) and first assignments, we write

te  pxjbh/2
‘FJ‘QICI‘ < ey h'/2rt / /
i—h/2

If we use the formulas of ka, F J%4_1 ; and the conditions

/
dxdt) L j=2M—2k=1,N. (31)

8303

dr ox - 9 ox

then we prove the inequalities

1/2 th z1+h/2
‘ka‘ < —GOQ/Q / {/
h tr—1 z1—h/2

406
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1/2
tr 11+h/2 83 t
+ergaoh'/?r! / / gﬁ i dedt | (32)
z1—h/2 €
) a0T1/2 tr v —2+h/2 82w($,ﬁ) 2
[P < S T
h th—1 xpr—2—h/2 x0t
2
Tm—1+h/2 | 52 ¢ 1/2
+/ o*y(z,1) dx}dt) + c1zah /27712
l‘Mfl—h/Q 8$8t
, 1/2
th Ty —1+h/2 93 t
/ / i, ) Ii dudt (33)
rr—1—h/2 Ox

according to the Bramble-Hilbert lemma, where ci2,c13 > 0 are constants independent
from 7 and h. Hence, from inequalities (27), (33), formula (25) and compatible condition,

we obtain

2
Lo () + ng;pt

—~

Oy 2 ‘ 34)

2
2 2
‘ij‘ < cuh <H8x3

2
LQ(Q)> ’

where c14 > 0 is a constant independent from h and 7. In the statement of

1,+h/2
Fy / ) (55 — (. £)) ddt, (35)
trk—1 Y

j—h/2
using by formula of 1)1, we can also write equality
L [T 0y(E, 6) ¢ O(n, 1)
wvwn =g [ [ [ Balae o

Then we obtain the inequality
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M—-1

N 2
S e (2]

k=1 j=1

o) O

where ¢15 > 0 is a constant independent from h and 7. Hence, we write

La(Q) H é)x‘

) zj+h/2 1J+h/2
@kzﬁfli (v — (Ddx+——t L[ 2) (g — U, 1)) dadt  (38)

i —h/2 ;—h/2

for j=1,M — 1, k=1, N. By using formula of ;) and the estimate (8), we prove the

estimate

‘wjk“gclﬁa jzlaM_la kzlaNa (39)

where c15 > 0 is constant independent from h and 7. Therefore, if we consider equality

(36) and inequality (37), then we obtain O

S

-1

N
Thz

k=1 j

)+ l@ne) - 611

(40)

A (] ([ e (R
1‘ ik 615{(T + Ot 1Ly () oz 1Ly ()

from (38). Hence, by using inequality (34) and equalities (38) and (22), We show that
the hypothesis of the theorem is true. The proof is completed.

3. Convergence of the Difference Approximations
Now, let us evaluate the difference between original functional and discrete functional.

Theorem 2 Suppose that the conditions of Theorem 1 hold. Then the estimate

[ J(0) = I ([v]m)] < e18(T + D+ [|@m(v) = [v]m]]) (41)
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is walid for Yv € Vand V[v]y, € Vi,, where c15 > 0 is a constant independent from

hand 7.

Proof. By using the formulas of functional, we write the difference between them as

M-1

zj+h/2
I@) = Inllod) = 3 [ {0t 1)~ yla) ~ o — i

j=1 Jxj—h/2

If we apply Cauchy-Bunyakowski inequality and use (7) , then we write

I0) = (o) < e (Mz / 2 ey - ¢jN|2dx>”2 N

j=1 Jxj—h/2

M=1 .z 4h/2 1/2
+ ( Z / |y — yj|2dx> } = 619{J1 + JQ}
x

j=1 Jxj—h/2

from (42), where

M—1 ,z,1h/2 1/2
Ji = ( > / [(x,T) - ¢jN|2d$>

j=1 Jxj—h/2

and

M=1 ,z,1h/2 , 1/2
J2=< / ly — v dx) .
Z (L‘j—h/Q !

=1

Since y € W3 (0,1), we can write

dy
< <
< hHax

LQ(OJ).

By using the formula of J;, we obtain

(42)

(43)

(44)
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j=1 J@i—=h/2
M—1 1/2
+h§:WW—¢m|} ENCTS SN (45)
=1

where n = N. From the estimate (17), we write

T2 < eao(r? 4+ h2 4 ||Qu(v) — [U]mll)- (46)

Using formula of the %;;, we have

xj+h/2
Ji < /
xj—h/2

=1

2
dx.

xj+h/2 € aw(n;T)
8 77
zj—h/2 Jx n

Therefore, from the inequality

Wwf) ( &y
<o (|55l +
ox L2(0,1) Oz 1Ly () 0x0t1Ly(Q)
and estimate (8), we obtain
Ji < eaoh. (47)
Hence, according to inequalities (46), (47) , we obtain
Ji < ca3(T+ b+ ||Qun(v) — [v]m]])- (48)

Consequently, in view of (44) and (48) the hypothesis of the Theorem 2 holds.
Now, let us obtain an estimate for convergence speed of difference approximations

according to functional. For this purpose, we write the following lemmas. O
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Lemma 1 Suppose that the conditions of Theorem 2 hold, and the operator Q. is defined
by (15). Then Qu(v) €V, and the following the estimate

|[J(v) = I (@ (v)] < c2a(T + h). (49)

is valid, where coq > 0 is a constant that does not depend on h and T.

Proof. Suppose that v € V is an arbitrary function. Therefore, we can write
that Q., : V — V,, from definition of the sets V,, and @Q,,. Consequently, if we take
Qm(v)instead of discrete function V,, in Theorem 2 then we obtain the estimate (49).

Hence, this Lemma is proved. ]

Lemma 2 Suppose that conditions of Theorem 2 hold and the operator Py, is defined by

Po([v)m) = (), v(z)=v;, x;—h/2<z<z;j+h/2, j=1,M— L

Therefore P ([v]m) €V and

| J(Pr([v]m)) — Im([v]m)| < c25(T + h), (50)

where co5 > 0 is a constant that does not depend on h and T.

Proof.  Suppose that [v,,] € V,,, is a arbitrary discrete function. From definition of
the set V' and the operator P, ([v]m) we write P, : V;,, — V. Therefore, if we take
P, ([um]) instead of v in Theorem 2 then we obtain the estimate (50) considering (43).

Hence, this Lemma is proved. o

Theorem 3 Suppose that the conditions of Lemma 1 and Lemma 2 hold and let v* €
V, [v]s, € VX be are solutions of the problems (1)-(3) and (7)-(10) respectively, that

18,
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. = inf = J(*), Ln. = inf Iy ([0]m) = Ln([0]%).
J. = inf J(v) = (") it Tn((t]n) = L)

Therefore the solutions of the problem (7)-(10) are approzimate to solution of the
problem (1)-(3). That is

lim I, = J,
m— 00
and the estimate
|Im* - J*l < CQG(T +h) (51)

is true for the convergence speed of the difference approximations, where cag > 0 is a
constant that does not depend on h and 7.

Proof. Let us consider (49) again. It can be easily seen that 7 and h are sufficiently

small for increasing m. We have J(v) = I, ([v]m), for m — oco. Also, in the cases

Jo =infyey J(v) and Iy« = inf, ev,, Im([v]m), the statement
lim I, = Js
m—00
holds and when we consider the infimum status of (50), the estimate (51) holds. O

4. Numerical Solution of the Optimal Control Problem

In this section we will give an algorthim for the solution of the problem (1)-(3), (6).
This problem is an invers problem and it is ill-posed. In Theorem 1, we showed that
this problem has at least one solution. Since the problem (1)-(3), (6) is ill-posed we use
Tikhonov method [7] for the solution of the problem. We need a stabilizator function

while using this method. Suppose that the stabilizator function is defined as

T [l
S(v) = ||lv — w||? = v(z,t) — w(z, t)|dedt
L2(Q2) o Jo
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in the set V, where w(x,t) € La(Q) is a given function. It can be shown that S(v)
is a stabilazator [14]. Let us take a sequence {a™} having property that {a™} — 0at

m — 00. Also, let us define the functional

In(v) = Jo(v) +a™SW), veV (52)

in the set V for the each m =1,2,...,. Now, we will investigate the minimizing problem
for the functional J,,, (v) under the conditions (1)-(3). Firstly, we will write discretization
of this problem. Let us consider a grid in the plane xzt. We divide [0,]] into M and
[0,T] into N equal subintervals with the constant steps h and 7 respectively. Where
h=1/Mand 7 =T/N. Therefore the mesh points in the x axis are

[xo,xl], cee [$0+(M—1)h, $Q+Mh],$j=$0+jh,j=0,M

and mesh points in the ¢ axis are

[to, t1], -, [to + (N = )7, to + N7], ty =to + kr, k=1, N

Let us choose the set V), as discretization of the admisible controls set V. We can write

the Vs as follows

VM :{[U]a [U] :Ujaj:05M7 0 <b0 SUj Sbl}

Hence discretization of the problem

Jm(v) — min

can be written as

I, (v) — min (53)

in the set Vs under the conditions

0t Pk — a00zz ik — Vi = fik, j=1, M -1, k=1, N (54)
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pjo=wj,J=0,M (55)
h . —
daor = % (for — 1050 — vodor), k=1,N (56)
h . —
duOrik = a (fvr — 05dnk — vmdmn) , k=1, N, (57)
where

M—1

Ln(v) =h > |on =yl + (58)
j=1

N [M-1 )
m L 12 - _ 2 _ 2
«a T,;l ;h)] w| +2|U0 wol® + vy — wns ,

fiw = f(@j, r), win = wlx;, ty), ¢; = p(x;), j=0,M k=1,N.
We will use projection of the gradient method for the solution of the problem (53)-(57),

for this purpose we can write the gradient of the discrete function as

(I, ([0)) 1k = —Re(pjaTljp) +2a™ (v; —wj), j =0,M =1, k=1,N

where 7 is the solution of the problem

640k — a0l0z2Mjk — VN = fik, =1, M -1, k=1, N (59)
h . —
daMok = Zar (forx — i0znor — vomor) , k=1,N (61)
0
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h .
SuliMk = g (fark — i0Fnnk — k), k=1, N. (62)

Using (59)-(62) we write iterations [v],, for the discrete problem (53)-(57) as follows:

[Wlm = Pu, {[v]m — B, ([v]m) }, (63)

where Py, is projection of the an element in the set V. Considering definition of the V'

we write projections as follows:

(V))m + Bn (L, ([0)m))j,  bo < (v5)m = B (L, ([v)m); < b
(Vj)m = bo, (V) m = B (L3, ([v]m); < bo
b, (j)m = B (15, ([v]m); > b1

for j = 0,M, m = 0,1,2,.... Now let us choose (3, and ™. For the first step let
bem =1, a' = o, such that « > 1 is a constant. Firstly, let us take 8, = 3, 8 > 0 and

check the condition

L ([v]mt1) < I ([v]m). (64)

If the contiditon (64) doesn’t satisfy then we divide the number 3, until (64) holds. In

this case, if the condition

2 2

h + (65)

T3

24 1/2
o

satisfies then we can stop the iteration process, where € > 0 is a given number. Now, let

(Vi) m+1 — (Vj)m (V0)m — (V0)m

h

5 (V) m41 — (VM) m

us check the conditons
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M-1 2

h
[ ([v]m+1) — Oém{h > @) mer = (v)m| + 5| (W0)m = (v0)m| + (66)
h=1
24 1/2
5| W) m1 = (Var)m } <el
for the a™ = «, where €; > 0 is a given number.
If contidition (66) doesn’t satisy then we check condition (65) for a™ = ad ™

again, where § > 1 is a constant. When the condition (66) holds, we stop iterations.

5. Applications to Test Problem

Now, in a quantum-mechanical problem, we will test this minimization algorithm. We
will consider the state of a hormonic osilator with potential v. This harmonic osilator is
in a field of force f. We examine the best appropiate potential v for which osilator has
the maximum probability to be at given position y.

In the following examples, [ and T are bondaries of the field. y () is a given position
and f (z,t) is a field of force. Fortran-90 programs were written for these examples. The
results of the programs are given in tables and graphs. The boundary conditions (3) were

written as

il —

N
i — t —
gO( )a 07 | o

0r lz=0

for the approximate solution of the problem (1)-(4)

Example 1 Let us assume asl =1, T =1, a9 = 1, f(z,t) = —ix(z + t), p(z) = ix
go(t) =0, g1(t) =0, y(x) =i(x+ 1), « =0.09 and N = 20 for the numerical solution of
the problem (1)-(3), (6). In this case exact solution of the problem is v*(x) = x. The

exact solution and approrimate solution are given in Table 1 and Figure 1.

416



Table 1. v*(z;) exact solution; v(z) approximate solution.
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z; v* (2i) v(z;) [v* () — v* (@)
.050 .0500000000 -.0307098000 .0807098000
.100  .1000000000 .0210873400 .0789126600
.150  .1500000000 .0728603500 .0771396500
.200  .2000000000 .1246068000 .0753932400
.250  .2500000000 .1763250000 .0736750200
.300  .3000000000 .2280143000 .0719857100
.350  .3500000000 .2796749000 .0703250500
.400  .4000000000 .3313079000 .0686920600
.450  .4500000000 .3829152000 .0670847900
.500  .5000000000 14344996000 .0655004100
.550  .5500000000 .4860646000 .0639354000
.600  .6000000000 .5376147000 .0623853200
.650  .6500000000 .5891553000 .0608447800
.700  .7000000000 .6406924000 .0593076300
.750  .7500000000 .6922330000 .0577670300
.800  .8000000000 .7437849000 .0562151100
.850  .8500000000 .7953570000 .0546430300
.900  .9000000000 .8469588000 .0530412200
.950  .9500000000 .8986009000 .0513991100

0000000000000 000000000000
0000 ORRNNWWARUIUIUID O~~ 0000 W©OW©

—e— exact solution

—A— approximate solution

O ©CUIOUTOROWNNOFRUIOROWNNNRFOOOIO

o

Figure 1. Graph of the v*(z) = z and approximate solution.

0.1

02 03 04 05 06 07 08 09

417



SUBASI, YILDIZ

Example 2 Let us assume as | = 1, T = 1, a0 = 1, f(z,t) = 2i —i(z? + t)sinx —
1, o(x) =iz, y(z) = i(z? + 1), a« = 0.09 and N = 20 for the numerical solution of the
problem (1)-(8), (6). In this case exact solution of the problem is v*(x) = sinz. The exact

solution and approximate solution are given in Figure 2.

Table 2. v*(z;) exact solution; wv(x) approximate solution.

T V" (4) v(z;) [v" (2i) — v" (z:)]
.050 .0499791700 .1223487000 .0723695500
100 0998334200  .1607708000 .0609373400
.150  .1494381000  .1990807000 .0496425500
200 .1986693000  .2371852000 .0385159000
250  .2474040000  .2749923000 .0275882900
300 .2955202000  .3124059000 .0168856400
350  .3428978000  .3493373000 .0064395070
400 .3894183000  .3856939000 .0037244260
450 .4349656000  .4213871000 .0135784700
500 .4794255000  .4563275000 .0230980800
550  .5226873000  .4904303000 .0322569600
600 .5646425000 .5236107000 .0410317800
.650 .6051864000 .5557873000 .0493991400
700  .6442177000 .5868798000 .0573378200
750  .6816388000 .6168110000 .0648277400
800 .7173561000 .6455055000 .0718505400
850 .7512804000 .6728895000 .0783909000
900 .7833269000 .6988956000 .0844312900
.950 .8134155000 .7234555000 .0899599800

418



(1]

2l
3]

(4]

SUBASI, YILDIZ

0.9001
0.855—
0.810(— _ A approximate solution
0.765
0.720
0.675
0.630
0.585
0.540
0.495
0.450
0.405
0.360
0.315+-
0.270+—
0.225+
0.180+
0.135+
0.090+
0.045
0.000 | | | | | | | | | J

00 01 02 03 04 05 06 07 08 09 1.0

—e— exact solution

Figure 2. Graph of the v*(z) = sinz and approximate solution.
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