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Abstract

We endow any locallym-convex H∗-algebra (E, τ) with a locally pre-C∗-topology

weaker than τ . Examples and applications are provided.
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Introduction

A natural extension of the classical H∗-algebras of W. Ambrose ([1]) was considered in

the general contex of locally convex algebras ([4]). In this case, algebras are not necessarily

endowed with an algebra involution. Here we consider H∗-algebras in the spirit of F. F.

Bonsall and J. Duncan (cf. [2], Definition 6., p. 182). We show that every locally

multiplicatively convex H∗-algebra (l.m.c. H∗-algebra)
(
E, (|.|λ)λ∈Λ

)
can be endowed

with a weaker locally convex topology given by a family (‖.‖λ)λ∈Λ of C∗-seminorms such

that |xy|λ ≤ ‖x‖λ |y|λ , for every x, y ∈ E and λ ∈ Λ. If moreover
(
E, (|.|λ)λ∈Λ

)
is a Q-

algebra, then
(
E, (‖.‖λ)λ∈Λ

)
is (modulo a topological algebra isomorphism) topologically

and algebraically isomorphic to a pre-C∗-algebra. This last algebra becomes (modulo a

topological algebra isomorphism) a C∗-algebra if and only if
(
E, (‖.‖λ)λ∈Λ

)
is pseudo-

complete (i.e., if every bounded and closed idempotent disk is Banach). We also obtain
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that any unital l.m.c. H∗-algebra which is a Q-algebra is actually isomorphic to the

complex field C provided that |e|λ = 1, for every λ ∈ Λ, where e is the unit of E. This

result remains valid in ”Hilbertizable” l.m.c. algebras (l.m.c. H-algebras). Finally, we

introduce and study a class of l.m.c. H-algebras which contains, in particular, a concrete

example used in the theory of Sobolev spaces.

1. Preliminaries

A locally m-convex algebra (l.m.c.a. in short) is a topological algebra (E, τ ) whose

topology τ is defined by a directed family (|.|λ)λ∈Λ
of submultiplicative seminorms. Such

an algebra will usually be denoted by
(
E, (|.|λ)λ∈Λ

)
. If, in addition, E is endowed

with an involution x 7−→ x∗ such that |x|λ = |x∗|λ, for any x ∈ E, λ ∈ Λ, then(
E, (|.|λ)λ∈Λ

)
is called an l.m.c.∗-algebra. A locally m-convex C∗-algebra (l.m.c. C∗-

algebra in short) is an l.m.c.∗-algebra
(
E, (|.|λ)λ∈Λ

)
such that |x∗x|λ = |x|2λ, for any

x ∈ E and λ ∈ Λ. Let
(
E, (|.|λ)λ∈Λ

)
be a complex unitary and complete l.m.c.a. It is

known that
(
E, (|.|λ)λ∈Λ

)
is the projective limit of the normed algebras

(
Eλ, |.|′λ

)
, where

Eλ = E/Nλ with Nλ = {x ∈ E : |x|λ = 0}; and |x|′λ = |x|λ. An element x of E is written

x = (xλ)λ = (πλ(x))λ , where πλ : E −→ Eλ is the canonical surjection. The algebra(
E, (|.|λ)λ∈Λ

)
is also the projective limit of the Banach algebras Êλ, the completions of

Eλ’s. The norm in Êλ will also be denoted by |.|′λ ([6, p. 88, Theorem 3.1] and/or [7, p.

20, Theorem 5.1]). In the case
(
E, (|.|λ)λ∈Λ

)
is a l.m.c.∗-algebra, each Êλ, λ ∈ Λ, becomes

an involutive Banach algebra. Concerning involutive l.m.c.a.’s, the reader is refereed to

[3]. In the sequel, all algebras are complex. The spectral radius will be denoted by ρ that

is ρ(x) = sup {|z| : z ∈ Spx} .

2. Pre-C∗-algebra structures in l.m.c. H∗-algebras

The notion of locally convex H∗-algebras was introduced in [4] as a natural extension

of the classical H∗-algebras of W. Ambrose ([1]). Here, we consider the case where the

algebra is complete and it is endowed with a continuous involution.
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Definition 2.1 A locally m-convex H∗-algebra (l.m.c. H∗-algebra in short) is a complete

l.m.c.∗-algebra
(
E, (|.|λ)λ∈Λ

)
on which is defined a family (〈., .〉λ)λ∈Λ of positive semi-

definite pseudo-inner products such that the following properties hold for all x, y, z ∈ E
and λ ∈ Λ:

(i) |x|2λ = 〈x, x〉λ ,
(ii) 〈xy, z〉λ = 〈y, x∗z〉λ ,
(iii) 〈yx, z〉λ = 〈y, zx∗〉λ .

Remark 2.2 For every λ ∈ Λ, the quotient space Eλ = E/Nλ is an inner product

space under 〈xλ, yλ〉λ = 〈x, y〉λ. The underlying Banach-space Êλ is a Hilbert space.

Moreover, the involutive Banach algebra
(
Êλ, ‖.‖λ

)
is an H∗-algebra ([2], Definition 6,

p. 182). Thus the algebra
(
E, (|.|λ)λ∈Λ

)
is the projective limit of the Banach H∗-algebras(

Êλ, ‖.‖λ
)

([4, p. 455, Theorem 2.3]).

Consider an l.m.c. H∗-algebra E. Since ∗ is an involution (Definition 2.1), E is proper,

namely lan (E) = {0}, where lan (E) = {x ∈ E : xE = {0}} is the left annihilator of E,

(see [4: p. 452, Theorems 1.2 and 1.3; see also the comments before Theorem 1.2]). Hence

[ibid, p. 455, Theorem 2.3] each Êλ, λ ∈ Λ, is proper, namely, lan
(
Êλ

)
= {0} , for every

λ ∈ Λ. In this case,

RadÊλ =
{
x ∈ Êλ : x∗x = 0

}
= {0}

by [2, lemma 9. p. 183]. Thus

Rad E =
⋂
λ

π−1
λ

(
Rad Êλ

)
= {0}

(see [7, p. 29, Proposition 7.3]).

Proposition 2.3 Let
(
E, (|.|λ)λ∈Λ

)
be an l.m.c. H∗-algebra. Then E can be endowed

with an l.m.c. C∗-topology defined by a family of seminorms (‖.‖λ)λ∈Λ
such that

(1) ‖x‖λ ≤ |x|λ; x ∈ E, λ ∈ Λ,

(2) |xy|λ ≤ ‖x‖λ |y|λ; x, y ∈ E, λ ∈ Λ.
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Proof. Let B(E) be the involutive algebra of all bounded linear operators on E. For

a ∈ E, we define the mapping La : E −→ E by La(b) = ab, for all b ∈ E. For every λ ∈ Λ,

we have |La(b)|λ = |ab|λ ≤ |a|λ |b|λ and therefore

|La|λ = sup {|ab|λ : |b|λ ≤ 1} ≤ |a|λ .

Hence

|La|λ ≤ |a|λ , a ∈ E, λ ∈ Λ.

Thus La is bounded. Now consider the mapping L : E −→ B(E) defined by L(a) = La.

It is easy to verify that L is a faithful ∗-representation.

(1) We introduce a family (‖.‖λ)λ∈Λ
of seminorms in E defined by ‖a‖λ = |La|λ . The

algebra
(
E, (‖.‖λ)λ∈Λ

)
is locally m-convex. Since B(E) is an l.m.c. C∗-algebra, we have

obviously ‖x‖λ = ‖x∗‖λ and ‖x∗x‖λ = ‖x‖2λ . Moreover, ‖x‖λ ≤ |x|λ; for all x ∈ E and

λ ∈ Λ.

(2) For every x, y ∈ E and λ ∈ Λ, we have

|xy|λ = |Lx(y)|λ ≤ |Lx|λ |y|λ = ‖x‖λ |y|λ .

This completes the proof. 2

Proposition 2.4 Let
(
E, (|.|λ)λ∈Λ

)
be an l.m.c. H∗-algebra which is a Q-algebra. Then(

E, (‖.‖λ)λ∈Λ

)
is topologically and algebraically isomorphic to a pre-C∗-algebra.

Proof. Since
(
E, (|.|λ)λ∈Λ

)
is a Q-algebra, there is λ0 ∈ Λ such that ρ(x) ≤ |x|λ0

for

every x ∈ E ([8, p. 551, Corollary 4.1]). Using (2) of Proposition 2.3, we obtain

ρ(xy) ≤ ‖y‖λ0
|x|λ0

; x, y ∈ E

([6, p.100, Corollary 6.1]). Writing this for y = xk, with k = 1, 2,..., and using submulti-

plicativity of ‖.‖λ0
, it follows that ρ(x) ≤ ‖x‖λ0

for every x ∈ E. Now, for every x ∈ E,
we get

‖x‖2λ0
≤ sup

λ∈Λ
‖x‖2λ = sup

λ∈Λ
‖x∗x‖λ = ρ(x∗x) ≤ ‖x‖2λ0

.
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Thus the topology of
(
E, (‖.‖λ)λ∈Λ

)
is equivalent to that introduced by the pre-C∗-norm

‖x‖λ0
= sup
λ∈Λ
‖x‖λ ; x ∈ E.

This completes the proof. 2

Remark 2.5 In the previous proposition, the algebra
(
E, (‖.‖λ)λ∈Λ

)
is topologically

and algebraically isomorphic to a C∗-algebra under the weakest completion notion. More

precisely, one has that
(
E, (‖.‖λ)λ∈Λ

)
is a pseudo-complete algebra if and only if

(
E, ‖.‖λ0

)
is a C∗-algebra.

Proposition 2.6 Let
(
E, (|.|λ)λ∈Λ

)
be an l.m.c. H∗-algebra. If E has a unit element e

such that |e|λ = 1, for every λ ∈ Λ, then E is the diagonal of a product whose factors are

all isomorphic to C. If moreover
(
E, (|.|λ)λ∈Λ

)
is a Q-algebra, then it is isomorphic to C.

Proof. The algebra
(
E, (|.|λ)λ∈Λ

)
is a projective limit of the H∗-algebras

∧
Eλ . Since

E is unital,
∧
Eλ is so ([6, p. 91, Theorem 4.1]). Hence, by a result of Hirschfeld ([5]), the

algebra
∧
Eλ is isomorphic to C, for every λ ∈ Λ. But, a projective limit whose factors are

equal and the relative morphisms all reduce to the identity map is exactly the diagonal

of the product of its factors. Now, if moreover
(
E, (|.|λ)λ∈Λ

)
is a Q-algebra, then

‖x‖ = sup {|xy|λ : |y|λ ≤ 1}

is a Banach algebra norm such that

‖x‖ ≤ ‖x‖λ ; x ∈ E, λ ∈ Λ

by (2) of Proposition 2.3. It follows from proposition 2.4 that ‖.‖ ≤ ‖.‖λ0
= sup

λ∈Λ
‖.‖λ .

But |.|λ ≤ ‖.‖ since E is unital, hence ‖.‖ = ‖.‖λ0
= |.|λ , for every λ ∈ Λ. Thus E is

a unital Banach H∗-algebra and so it is isomorphic to C, by a result of Hirschfeld ([5]).

This completes the proof. 2
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Remark 2.7 The result of Proposition 2.6 remains true in l.m.c. H-algebras
(
E, (|.|λ)λ∈Λ

)
in the sense that

(
E, (|.|λ)λ∈Λ

)
is a complete l.m.c.a. with the property that (|.|λ)λ∈Λ

arises from a family (〈., .〉λ)λ∈Λ of positive semi-definite pseudo-inner products such that

|x|2λ = 〈x, x〉λ , for all x ∈ E and λ ∈ Λ.

Scholium 2.8 Notice that the algebras (l.m.c. H-algebras) considered in Remark 2.7

have also been considered in [4, p. 456, Definition 3.1], even without completeness and

“m”, called therein “pseudo-H-algebras”.

3. The structure of the l.m.c. H-algebra L2
Ω(R)

In the sequel, Ω will denote a family of measurable non negative and locally integrable

functions ω in R, such that

ω−1 ∗ ω−1 ≤ ω−1, (1)

we will consider the space L2
ω (R) of all equivalence classes (under equality almost evrey-

where) f such that |f |2 ω is a Lebesgue integrable function on R, where the same symbol

f is used to denote both a function and its equivalente class. L2
ω (R) endowed with the

norm

|f |ω =
(∫

R

|f(t)|2 ω(t)dt
) 1

2

,

becomes a Banach space. If f and g are complex functions in R, their convolution f ∗ g
is defined by

(f ∗ g) (x) =
∫
R

f(x − y)g(y)dy,

provided that the integral exists for all (or at least for almost all) x ∈ R. We will also

consider the space

L2
Ω (R) =

{
f : R −→ C : |f |2 ω ∈ L1 (R) , for every ω ∈ Ω

}
endowed with the topology τ defined by the norms (|.|ω)ω∈Ω . Then we have the following

proposition.
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Proposition 3.1 The space
(
L2

Ω (R) , (|.|ω)
ω∈Ω

)
endowed with convolution as the product

is an l.m.c. H-algebra.

Proof. We first prove that
(
L2

Ω (R) , (|.|ω)ω∈Ω

)
is an l.m.c. algebra. Since the al-

gebra K(R) of continuous complex-valued functions with compact support is dense in(
L2

Ω (R) , (|.|ω)
ω∈Ω

)
, it suffices to show that

|f ∗ g|ω ≤ |f |ω |g|ω ; f, g ∈ K(R).

If f, g ∈ K(R) and h ≡ f ∗ g, then writing

|h(x)| =
∣∣∣∣∣
∫
R

f(x − y)g(y)
∣∣∣∣ω(x − y)ω(y)
ω(x − y)ω(y)

∣∣∣∣ 1
2

dy

∣∣∣∣∣
and using Cauchy-Schwarz inequality, we obtain

|h(x)| ≤
(∫

R

|f(x − y)|2 ω(x− y) |g(y)|2 ω(y)dy
) 1

2

W
1
2 (x),

where W = ω−1 ∗ ω−1. It follows that∣∣∣∫R |h(x)|2W−1(x)dx
∣∣∣ ≤ ∫R |f(x − y)|2 ω(x − y)dx

∫
R
|g(y)|2 ω(y)dy

≤ |f |2ω |g|
2
ω .

But ω ≤W−1 by (1). Hence

|f ∗ g|ω =
∣∣∣∣(∫R |h(x)|2 ω(x)dx

) 1
2

∣∣∣∣
≤ |f |ω |g|ω .

It remains to show that
(
L2
ω (R) , |.|ω

)
is a Hilbertizable Banach algebra, for every ω ∈ Ω.

If f, g ∈ L2
ω (R) , then f

√
ω, g
√
ω ∈ L2 (R) and the inner product is defined by

〈f, g〉ω =
∫
R

f(t)g(t)ω(t)dt.

It follows that the underlying Banach space of
(
L2
ω (R) , |.|ω

)
is a Hilbert space such that

|f |2ω = 〈f, f〉ω, for every f ∈ L2
ω (R). This completes the proof. 2
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Remark 3.2 Associate to each f ∈ L2
Ω (R) a function f] ∈ L2

Ω (R) defined by f](x) =

f(−x), for every x ∈ R. Then f 7−→ f] is an algebra involution on L2
Ω (R) . The l.m.c.

H-algebra L2
Ω (R) endowed with the involution f 7−→ f] is not an l.m.c. H∗-algebra,

otherwise, we will have, by ii) of Definition 2.1, that ω is a constant almost everywhere,

for every ω ∈ Ω, a contradiction.

Remark 3.3 If ω1, ω2 ∈ Ω with ω1 ≤ ω2, then L2
ω2

(R) ⊂ L2
ω1

(R). This implies that

lim
ω←−

L2
ω (R) =

⋂
ω∈Ω

L2
ω (R) = L2

Ω (R) .

Concerning the global spectrum, we have

M
(
L2

Ω (R)
)

= lim
−→ω
M
(
L2
ω (R)

)
by [6, p. 172, Lemma 6.3], where M

(
L2

Ω (R)
)

(resp. M
(
L2
ω (R)

)
) denote the set of all

non zero continuous characters of L2
Ω (R) (resp. L2

ω (R)). It follows that

M
(
L2

Ω (R)
)

=
⋃
ω∈Ω

M
(
L2
ω (R)

)
.

([6, p. 156, Lemma 5.1 and p. 172, Lemma 6.3]).

In the rest of this section, we consider a concrete example used in the theory of Sobolev

spaces. For s > 1
2 , put

ωs(x) =
(
1 + |x|2

)s
and Ω =

{
ωs : s >

1
2

}
.

By a simple calculation, the reader can prove that

ω−1
s ∗ ω−1

s ≤ cs ω−1
s , for every s >

1
2
, (1)

where cs is a positive constant depending only on s. As in Proposition 3.1, we obtain

|f ∗ g|ωs ≤ cs |f |ωs |g|ωs ; f, g ∈ L2
Ω (R) .

Therefore, without loss of generality, we may suppose that
(
L2

Ω (R) ,
(
|.|ωs

)
s>1

2

)
is an

l.m.c. H-algebra but not an l.m.c. H∗-algebra.
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Remark 3.4 Since K(R) is dense in L1 (R) and K(R) ⊂ L2
Ω (R) ⊂ L1 (R) for s > 1

2 , the

global spectrum M
(
L2

Ω (R)
)
, of L2

Ω (R) , is homeomorphic to R. Moreover, as in L1 (R) ,

for every non zero continuous character χ of L2
Ω (R) , there exists a unique t ∈ R such

that χ(f) = f̂(t), where f̂ is the Fourier transform of f.

Acknowledgement

The author thanks the referee for his remarks and valuable suggestions.

References

[1] Ambrose, W.: Structure theorems for a class of Banach algebras, Trans. Amer. Math. Soc.

57, 364-386, (1945).

[2] Bonsall, F. F. and Duncan, J.: Complete normed algebras, Ergebrise der Mathematik Band

80, Springer Verlag (1973).

[3] Fragoulopoulou, M.: Symmetric Topological ∗-Algebras. Applications, Schriftenreihe des

Mathematischen Instituts und des Graduiertenkollegs der Universität Münster, 3 serie,

Heft 9 (1993).

[4] Haralampidou, M.: On locally convex H∗-algebras, Math. Japonica 38, 451-460, (1993).

[5] Hirschfeld, R. A.: On Hilbertizable Banach algebras. Bull. Soc. Math. Belg. 25, 331-333,

(1973).

[6] Mallios, A.: Topological Algebras. Selected Topics, North -Holland, Amsterdam, 1986.

[7] Michael, E. A.: Locally multiplicatively-convex topological algebras, Mem. Amer. Math.

Soc. 11(1952). (Reprinted 1968).

[8] Tsertos, Y.: Representations and extensions of positive functionals on ∗ -algebras; Boll.

UMI 7, 541-555, (1994).

A. EL KINANI

Ecole Normale Supérieure,

B.P.5118-Takaddoum,

10105 Rabat-MAROC

Received 13.08.2001

271


