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n–Commutator Groups

A. A. Mehrvarz and K. Azizi

Abstract

A sufficient condition such that any element of G′ (the commutator subgroup of

G) can be represented as a product of n commutators, was studied in [1]. In this

article we study a necessary and sufficient condition such that any element of G′

can be represented as a product of n commutators, Let n be the smallest nature
number such that any element of finite group G can be represented as a product
of n commutators. A group G with this property will be called an n-commutator

group, and n will be denoted by c(G). Then ln(|G′|)
ln(|G:Z(G)|) ≤ 2c(G). In particular, if

the all elements of G′ can be represented as a commutator, then |G′| ≤ |G : Z(G)|2.
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1. Introduction

Let G be a finite group and G′ be the commutator subgroup of G. Also, let Irr(G) be
the set of all complex irreducible characters of G and Lin(G) = {χ ∈ Irr(G)|χ(1) = 1},
Irr1(G) = Irr(G)−Lin(G). We suppose that if χ ∈ Irr(G), then T (χ) = {g ∈ G|χ(g) =
0}.

Definition 1. Let n be a natural number. Then a finite group G is called an n-
commutator group if any element of G′ can be represented as a product of n commutators,
and no natural number fewer than n have this property. We then denote n by c(G). 3

1Correspondence should be addressed to mehrvarz@tabrizu.ac.ir.
2This research is supported by the Research Institute for Fundamental Sciences, Tabriz, Iran.
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2. Generalities

Lemma 1. Let χ be an irreducible character of G. Then, for any g and x in G,∑
t∈G

χ(g[t, x]) =
|G|
χ(1)

χ(gx)χ(x). (1)

Proof. Let ks be the class sum for an element s ∈ G. Then

ks =
|G : CG(s)|
|G|

∑
t∈G

st.

We extend the character χ by linearity to C′ G and define a function

ωχ : Z(C′ G) −→ C′

by

ωχ(z) =
χ(z)
χ(1)

for any z ∈ Z(C′ G). Then it is clear that ωχ is a homomorphism of Z(C′ G). Since

ωχ(ks) =
|G : CG(s)|

χ(1)
χ(s),

it follows that for any u, x ∈ G,

ωχ(kukx) = ωχ(ku)ωχ(kx) =
|G : CG(u)||G : CG(x)|

χ(1)2
χ(u)χ(x). (2)

Setting t2t−1
1 = t, we get

ωχ(kukx) = χ(kukx)
χ(1)

= |G:CG(u)||G:CG(x)|
χ(1)|G|2

∑
t1,t2∈G χ(uxt2t

−1
1 )

= |G:CG(u)||G:CG(x)|
χ(1)|G|

∑
t∈G χ(uxt),

(3)

which, together with (2), yields

∑
t∈G

χ(uxt) =
|G|
χ(1)

χ(u)χ(x). (4)
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Replacing x by x−1 in (4) and observing that

χ(u(x−1)t) = χ(u[t, x]x−1) = χ(x−1u[t, x]),

we have ∑
t∈G

χ(x−1u[t, x]) =
|G|
χ(1)

χ(u)χ(x).

Taking into account that χ(xg) = χ(gx) and replacing x−1u by g in the last equality, we
get the required relation. 2

Lemma 2. Let χ be an irreducible character of G. Then any element g ∈ G and
x1, x2, · · · , xn ∈ G, ∑

t1,t2,··· ,tn∈G χ(g[t1, x1][t2, x2] · · · [tn, xn])

= ( |G|χ(1) )
nχ(gx1x2 · · ·xn)χ(x1)χ(x2) · · ·χ(xn).

(5)

Proof. For n = 1, the result is true by Lemma 1. Suppose that the lemma is valid for
any k < n. Then for any g, x1, x2, · · · , xn−1 ∈ G we have∑

t1,t2,··· ,tn−1∈G χ(g[t1, x1][t2, x2] · · · [tn−1, xn−1])

= ( |G|χ(1))
n−1χ(gx1x2 · · ·xn−1)χ(x1)χ(x2) · · ·χ(xn−1).

By Lemma 1, ∑
t1,t2,··· ,tn∈G χ(g[t1, x1][t2, x2] · · · [tn, xn])

=
∑

t1,t2,··· ,tn−1∈G
∑

tn
χ(g[t1, x1][t2, x2] · · · [tn−1, xn−1][tn, xn])

=
∑

t1,t2,··· ,tn−1∈G
|G|
χ(1)

χ(g[t1, x1][t2, x2] · · · [tn−1, xn−1]xn)χ(xn)

= |G|
χ(1)

∑
t1,t2,··· ,tn−1∈G χ(xng[t1, x1][t2, x2] · · · [tn−1, xn−1])χ(xn).

By induction, ∑
t1,t2,··· ,tn−1∈G χ(xng[t1, x1][t2, x2] · · · [tn−1, xn−1])

= ( |G|χ(1))
n−1χ(xngx1x2 · · ·xn−1)χ(x1)χ(x2) · · ·χ(xn−1),
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so that ∑
t1,t2,··· ,tn∈G χ(g[t1, x1][t2, x2] · · · [tn, xn])

= ( |G|χ(1) )
nχ(gx1x2 · · ·xn)χ(x1)χ(x2) · · ·χ(xn).

2

Lemma 3. Let χ be an irreducible character of G. Then

a) For any natural number n and g ∈ G

∑
g1g2···gn=g

χ(g1)χ(g2) · · ·χ(gn) = (
|G|
χ(1)

)n−1χ(g).

b) For any g ∈ G,

∑
ti, xi ∈ G

i ∈ {1, 2, . . . , n}

χ(g[t1, x1][t2, x2] · · · [tn, xn]) = (
|G|
χ(1)

)2nχ(g). (6)

Proof. a) The element

eχ =
χ(1)
|G|

∑
g∈G

χ(g)g

is an idempotent of the algebra Z(C′ G). Since enχ = eχ, it follows that

χ(1)
|G|

∑
g∈G χ(g)g

=
∏n
i=1(

χ(1)
|G|

∑
gi∈G χ(gi)gi)

= (χ(1)
|G| )

n
∑

gi∈G χ(g1) · · ·χ(gn)g1 · · ·gn

= (χ(1)
|G| )

n
∑

g∈G(
∑

g1g2···gn=g χ(g1)χ(g2) · · ·χ(gn))g.

Comparing the coefficients of g in the first and the last expressions, we get the required
result.
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b) Summing up equations (5) over x1, x2, · · · , xn ∈ G we get∑
ti,xi∈G χ(g[t1, x1][t2, x2] · · · [tn, xn]) =

( |G|χ(1))
n
∑

x1,x2,··· ,xn∈G χ(gx1x2 · · ·xn)χ(x−1
1 )χ(x−1

2 ) · · ·χ(x−1
n ) =

(
∑

x1,x2,··· ,xn∈G χ(gx1x2 · · ·xn)χ(x−1
n )χ(x−1

n−1) · · ·χ(x−1
1 ))( |G|χ(1))

n.

(7)

Put
u1 = gx1 · · ·xn, u2 = x−1

n , · · · , un+1 = x−1
1 .

Then u1 · · ·un+1 = g, and the last expression in (7) can be rewritten as

(
|G|
χ(1)

)n
∑

u1···un+1=g

χ(u1)χ(u2) · · ·χ(un+1),

and hence, by part (a), it is equal to

(
|G|
χ(1)

)2nχ(g),

as required. 2

Theorem 1. Let G be a finite group. Then G is an n-commutator group if and only if

|G|2n−1
∑

χ∈Irr(G)

χ(g)
χ(1)2n−1

(8)

is a natural number for all g ∈ G′, where n is the smallest natural number with this
property.

Proof. Let ρ =
∑

χ χ(1)χ be the regular character of G. Multiplying both sides of (6)

by χ(1) and summing over all χ ∈ Irr(G), we get

∑
ti,xi∈G,

i∈{1,2,··· ,n}

ρ(g[t1, x1][t2, x2] · · · [tn, xn]) = |G|2n
∑

χ∈Irr(G)

χ(g)
χ(1)2n−1

. (9)
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Suppose that G is an n-commutator group. We now deduce from the first equality in (9)
that if g ∈ G′, then since g can be represented as a product of n commutators, we have

|G|2n−1
∑

χ∈Irr(G)

χ(g)
χ(1)2n−1

= fn(g),

where fn(g) is the number of representations of g as a product of n commutators. Since,
fn(g) ≥ 1 for any g ∈ G′,

|G|2n−1
∑

χ∈Irr(G)

χ(g)
χ(1)2n−1

is a natural number for any g ∈ G′. If |G|2n−1
∑

χ∈Irr(G)
χ(g)

χ(1)2n−1 is a natural number for

all g ∈ G′, where n is the smallest natural number with this property, then we deduce from
the equality (9) that if g ∈ G′, then g can be represented as a product of n commutators,
and n is the smallest natural number with this property. Thus, G is an n-commutator
group. 2

Remark 1: Let G be a finite group. Then by using the character table of G one can say
that whether G is an n-commutator group or not, an observation that follows immediately
from Theorem 1.

Gallagher proved in [1] that:

Theorem 2. (Gallagher) Let {x1, · · · , xn} be a complete system of representatives of the
sets T (χ)(χ ∈ Irr1(G)). Then any element of G′ can be represented as

[g1, x1][g2, x2] · · · [gn, xn],

where gi ∈ G,i ∈ {1, 2, · · · , n}.

Corollary. For any finite group G, c(G) ≤ |Irr1(G)|.
Proof. Proof is obvious by Theorem 2. 2

Proposition. Let G be a finite group. Then ln(|G′|)
ln(|G:Z(G)|) ≤ 2c(G). In particular, if

c(G) = 1, then |G′| ≤ |G : Z(G)|2.

Proof. If T is a transversal for Z(G) in G, an easy calculation shows that every com-
mutator in G actually has the form [s, t] for elements s, t ∈ T. Thus, by definition of c(G)

we have |G′| ≤ (|T |)2c(G) = (|G : Z(G)|)2c(G). Thus, ln(|G′|)
ln(|G:Z(G)|) ≤ 2c(G). 2
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Question: Let n be a natural number. Does there exist a finite group G such that
c(G) = n?

Remark 2: Generalize this for some class of simple groups see attached paper. From
Theorem 1 we have c(A5) = 1. But A5 is not solvable. Thus, it is not true that if
c(G) = 1, then G is solvable.

Conjecture: Let G be a finite solvable group. Then c(G) ≤ derived length of G.
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