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Asymptotic Formulas for the Eigenvalues of the

Schrodinger Operator
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Abstract

In this paper, we obtain asymptotic formulas for the eigenvalues of the d-

dimensional Schrodinger operator
L=-A+q(x)
in d-dimensional parallelepiped F' with Dirichlet and Neumann boundary conditions.

Let Q = {mywy +mowa + ... + mqwg : m; € Z,i=1,2,...,d} be a lattice in R® with

the reduced orthonormal basis
w1 = (al, 0, ceey 0), wo = (0, an, 0, ceey 0), ey Wy = (0, ey 0, ad)

and T = {mim + maye + ... + mava : m; € Z,i = 1,2,...,d} be the dual lattice
of Q, where the vectors {7;}¢_, are biorthoganal to the vectors {w;}%_, . Denote by
F =[0,a;1) x [0,az) X ... x [0, aq) the fundamental domain R?/§) of the lattice (2.

We consider the Schrodinger operators Lp(q(z)) and Ly (g(x)), defined by the differ-

ential expression

Lu = —-Au+q(x)u (1)
in Ly(F) with the Dirichlet boundary condition

ulgp =0 (2)
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and the Neumann boundary condition

ou
- =0 3
on |8F ) ( )
respectively.
Here OF denotes the boundary of F, z = (x1,z2,...x4) € RY,d > 2, A is the Laplace

operator in R%, % denotes differentiation along outward normal n and ¢(x) is a real

valued, periodic (with respect to lattice ) function of W (F'), where [ > % +d+1.

First asymptotic formula for the eigenvalue of Schrodinger operator in parallelpiped
with quasiperiodic boundary condition is obtained in papers [6], [7], [8]. The other
asymptotic formulas for quasiperiodic boundary conditions in two and three dimensional
cases are obtained in [4], [5], [1], [2]. The asymptotic formula for Dirichlet boundary
condition in two dimension is obtained in [3].

We use the method of papers [7], [8] to find the asymptotic formula for the eigenvalues
of Lp(q(x)) and Ly(g(x)) in arbitrary dimension.

We denote the eigenfunctions and the eigenvalues of the operator Lp(q(z)) by @,
and p,, respectively and denote the eigenfunctions and the eigenvalues of the operator
Ly (q(z)) by ¥, and A, , respectively.

The eigenvalues of the operators Lp(0) and Ly (0) are |y|? for v € L. The normalized
eigenfunctions of the operators Lp(0) and Ly (0), corresponding to the eigenvalue |y|? are
ZaeAw (sign Hle a;)el®®) and ZaeAw e{®) respectively, where v = (71,72, ...,71) € 5
and

A, ={a=(a,a9,...,0q) € R : || = |yil,i = 1,2, ..., d}.

The potential ¢(x) in the expression (1) can be written in the form

q(z) = Z Gy Z el (4)

yeh acA,

where ¢, = [ q(2)> ¢ A, eitor)dz for v € T (without loss of generality we can assume
qo = [pq(x)dz = 0 .) are the Fourier coefficients of the potential g(x) with respect to
the basis {> 4 e@) 1y e L} Since g(z) € W(F), one can write
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Yooa Y P 0, (5)

YEL(p™)  BeAy

where p =1—d, T(p®) = {y € 5 :0 < |y| < p*},a =1/(d+2) and p is a large parameter.

Let us introduce the following notations:

M=) o (6)

velg
Vi(p®) = {x € R*: ||z|* — [ + bJ*| < p*}

Up*.p)=RN |J Valp
bel'(pp)
The domain U(p®, p) is said to be non-resonance domain and the eigenvalues |y|? are
called non-resonance eigenvalues, if v € U(p®, p) . The domains V,(p*) for all b € T'(pp*)
are called resonance domains and the eigenvalues |y|? are called resonance eigenvalues, if
v € Vu(p®*). Note that the number of non-resonance eigenvalues is essentially greater than

the number of resonance eigenvalues. Namely, if N, (p) and N,.(p) denote the number of

v € U(p*,p) (R(2p)\R(p)) and v € Uper(ppe) Vo (p*) N(E(2p)\R(p)), respectively, then

N, _
D) _ gyt = o) g
for (d+ 1)a < 1 where R, = {z € R? : |z| < p} (see remark 1).

In this paper, we obtain asymptotic formulas for non-resonance eigenvalues by using

the following well-known formulas:

(A |’Y| Wn, Z el al) (W, q(x) Z e“a’x)) (8)

a€A, a€A,

(Mn - |’y|2)(CI)n, Z SlgnHa i(o 1) (q)n; Z SlgnHOé i(o 1) (9)

a€A, a€A,
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where (.,.) is the inner product in Lo(F') .
Note that (8) can be obtained from

—AV, (2) 4+ ¢(2)T,(z) = AU, (z) (10)

by multiplying both sides of this equation by ZaeA7 eila®)

The Formula (9) can be obtained in the same way.

We say that |y|? is of the order of p? and write |y|? ~ p?, if c1p? < |y|? < cap?, where
by ¢i,i = 1,2, ... we denote the positive, independent on p constants whose exact values

are not important.

Lemma 1 Let |y|? be the eigenvalue of the operators Lp(0) and Ly (0) of the order of

p* . Then there are n1 and ng such that |A,, — |y|*| < 2M,

—(d—1)

lpins — 71?4 < 2M,|(Wnys Xonea, e > c3p— 2 and

(@, ZaeA7 (sign Hle o )eHte®))| > C4p7(d271) , where M is the number defined in (6).

proof: It is well known that the set of eigenfunctions ¥,, of the self-adjoint operator

Ly (g(z)) is an orthonormal basis in Ly(F'). Using (8) and (6) we get

Z |(n(z), Z ei<a7w))|2 <

ni|Ap—|y|2|>2M acA,

Ny

Hence by the Parsevals equality, we have

S W), Y s 2 ()

nilAn—|y[2|<2M a€A,

On the other hand, it is well known that if @ ~ p then the number of v € L

2
satisfying ||y| — a| < 1 is less than csp?~!. Therefore the number of eigenvalues of

Ly (0) lying in (a® — p,a® + p) is less than cgp?~!.

Since, by general perturbation
theory, the n-th eigenvalue of Ly (g(x)) lies in M-neighborhood of the n-th eigenvalue
of Ly (0), the number of the eigenvalues A, of the operator Ly(g(x)) in the interval

I = [|7|? —2M, |y|? +2M] is less than c7p?~t. By this fact and the inequality (11), there
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exists n1 € I such that

|(\I/n1($), Z ei<a,g;))| > Csp_@

a€A,

Similarly, by using (9) for ®,(z), we get

d
|(¢TL2) Z (SignHaz)ez<a7l>)| > C4p_%
1=1

a€A,

The lemma is proved. O

Lemma 2 Let v € U(p®,p), i-e. |y|> be the non-resonance eigenvalue of Lp(0) and
Ly (0) and A,, and py, be the eigenvalues of Ly (q(z)) and Lp(q(x)), respectively, lying in
the interval I = [|v]2 —2M, |y|>+2M], then |A, —|y+b|?| > $p* and |py —|y+b[*| > p°
for all b € T(mpy,).

proof: If v € U(p®, p), then for all b € T'(mp,,) we have the inequality
7P = Iy + b > p°

which, together with the fact that A,, € I, implies

An = |7+ B[ = [An = |y + 81 F 7% Z {107 = |7 + b7 = [An = [1*]] > [0 = 2M],
where p® is sufficiently large so the result follows. Similarly |p, — |y + b|?| > 2p*. O

Theorem 1 Let v € U(p®,p),|y| ~ p; i-e,|v|? be non-resonance eigenvalue of the
operators Lp(0) and Ly (0) . Then there exists an eigenvalue A, of the operator Ly (q(x))

and an eigenvalue uy, of the operator Lp(q(x)) satisfying the following formulas :

A =1?+0(p™) (12)

fin = [7* +O0(p™). (13)
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proof: First, we prove the theorem for Ly (¢(z)), i.e., we prove (12).

By Lemma 1, there is an index n such that |A,, — |y|?| < 2M and
(D, (), ZaeA7 i > c3p™ “FH L We prove that this eigenvalue satisfies the Formula
(12). Substituting the decomposition (5) of the potential ¢(x) in the Formula (8) we have:

(A = [7*) (¥, Z OE Z 4y (Y, Z el Z ™) + O(p7P).

€Ay Y1E€L(p*) Br1EA,, a€A,

Using the formula

Z 6 i(B1,z) Z ez (a,z) _ Z Z zaa) (14)

BrEA~, acAy B1EAy; a€Ayip

which can be easily proved by direct calculation, we get

Ay = P (, D7 ey = 3" N g, (T, Y )+ 0(p7P).

acd,y Y1 ET(p>) fr1EA, Q€A 45

Since v + 1 € , i.e; |y + Bi|? is an eigenvalue of the operator Ly (0) with the

corresponding eigenfunction e’} we can use the Formula (8). Therefore

Q€A
using (8) in the last equation we obtain

(@) T, €@+ 0(p)

(Wn,q
L M D D D e

acA, Y1EL(p*) B1EA~,

) ZaeA7+51 ei<a7l‘>)

B S S S T 09

a€A, Y€ (p%) B1EA,

+O(p7)

Here, we use the fact(see Lemma 2) that the denominator of the fraction in (15) satisfies
2 1 (e
[An = [y + Bul*| > P
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since 51 € T'(p*). Again, substituting the decomposition of ¢(z) in Equation (15) and

using the last inequality, we get

(An — |’Y|2)(\Ijm Z e“a’x))

a€A,

Z Z . \I/n; 2’7261—‘(/7"‘) q’)’2 ZogeAAY2 71‘) ZaeA7+51 ei(a,a;)) + O(p—poz)
o = v+ 4l

1 €T (p*) BreAy,;

+O(p).

Now using the Equation (14), we have

(q/nazae,q +0 ei(a,a;))
( |’Y| U, Z ez o 1) Z Z Gy G y+B1 TP2 _
a€cA, Y1,72€0(p*) B1EA,,B2E€A,, An = |’y + ﬁll
+0(p7)

If the terms with coefficient (¥, ZaeAw e{@7)) are isolated, we obtain

(\I/n; ZaeA ei(a,x))

RN D D DI D N S W n

€A, " 2€0(p%) f227 0
5261“1;
(U, ZaeA e“a’x))
+ ) Y+B81482 + O —pa 16
Z Z A1 92 An _ |’Y+ﬁ1|2 (p ) ( )

[(pe) Ba#—p1
m2€l(p%) G272

B2 €A~y

By the same method as above, iterating p times the formula (16) and isolating each

time the terms with multiplicant (¥, >, c 4 ell)) we get

(Ao = ) Wy 3 609) = (380, 3 609) +.G, 1 0(™),  (17)
=1

a€A, a€A,
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where

Gy -Gy
Sm(An) = 3. > ; ;
Vs Amp1 ED(PY)  Bmp1=—(B1+.--+6m) (An =Py + 512 (An = [y + Br+ o+ B?)

B1EAY o B 1€ A,

(18)

C Z Z q’h .“q’yp+1 (llln’ Za€A7+51 +-+Bpr1 ei(aﬂ‘))
T (An_|’Y+ﬁ1|2)...(An—|fy+ﬁl+m+ﬁp|2)

Ay p 1 E(p%)  Bpg1#—(B1+-+8p)
BLEANL - Bp+1€Av, 11

(19)

For all m =1,2,...,p,vm € T'(p®) and
Bm € Ay, = |Ym| = 18m| < p® and |B1 + B2 + ... + Bm| < pp®, hence we can use Lemma
2 and the Equation (6). Then we have

37 Su(Aa) = O(p~), Cp = 0(p7). (20)

m=1

Taking into account that for A,,, we only used the condition A,, € I, we have

Z Sm(a) = 0(p™?), Ya € I (21)

m=1

If we substitute (20) into (17), we get

(Ao~ )@, 32 €)= 0(p=) (W, 30 @07 1 0(p™)  (22)

aEA, a€cA,

dividing both sides of the Equation (22) by (¥, ZaeA7 e!@?)) using Lemma 1 and the

obvious inequality pa > % +a (see definition of p and «), we get the proof for Ly (¢(x)).
By the same way, we can prove the theorem for Lp(q(x)), i.e, for the non-resonance

eigenvalue |y|2 of Lp(0) (y € U(p®, 1)), there is an eigenvalue y,, of Lp(q(x)) such that
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the Formula (13) is satisfied. Indeed, to prove this, instead of (8), we use the Formula

(9) with the same decomposition (5) of ¢(x) and we get

(Mn - |’Y|2)(q)na Z SlgnHa i al)

a€A,

= Z q'yl ns Z et {B1,z) Z SlgnHOé zaa) (p_pa)

1€l (p) B1€Ay, acAy

and instead of (14), using the following formula

Z et {Pr.x) Z 51gnHa ““”— Z Z s1gnHa ““‘>

Br1EAy, acAy B1EAy, a€Ayypy

we get
(ttn = 17*) (@, Z 51gnHa e
€A,
Z Z 4, (q)n; Z s1gnH a; z o 1) (p_pa)
71 €D(p) BrEA, aEA

By the similar considerations, we can iterate the above formula p times and by isolating

the coefficient of (®n, > ,c 4, (sign Hle a;)e’{®?)) we obtain the equation

P

(Mn — |’y|2)(CI)n, Z SlgnHa i ozl) Z Sm D, Z SlgnHOé i oza) 23)

aeA m=1 aeA

+Cp 4+ O(p™7?),
instead of (17), where S, is the same as Equation (18) and
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Cp=

by 2

Yo Yp+1 €D (p%)  Bpp1#—(F1+..+6p)
PLEAy o Bpyp1 €Ay, 1

. d ; .
Gy, "'q’)’p+1 (cI)m ZO‘GA7+51+...+5P+1 (Slgn H’i:l ai)e“‘”‘))

(i — 1Y + 6112 (o — 1Y+ Br + .+ Bp]?)

Hence, by similar calculations, we get the proof. O

Theorem 2 Let v € U(p®,p), |7| ~ p then there is an eigenvalue A, of the operator
Ly (q(z)) and an eigenvalue p, of the operator Lp(q(x)) satisfying the formulas

Ap = |72+ Fyor + O(p~F®), (24)
and
pin = Y2+ Fy1 + O(p~F®), (25)

forallk =1,2,...p— z where

|q’)’1|2
B=0R= 3. ) [pip-aP

€T (p>) B1EA,

S
Fs = Z‘S’z(|,y|2 + Fs—l)a §= 2) 3) - D

i=1
and z = [%=2] + 1. ([%=] is the integer part of L.

proof: We prove that for the eigenvalues A,, and p,, satisfying the Formulas (12) and
(13) the Formulas (24) and (25) hold, respectively. Let us prove it by mathematical
induction on k :

for k =1 ; by Theorem 1,A,, and pu,, satisfy the equations
An =P+ Fo+0(p™),
pin = [V* + Fo + O(p™),

where Fy =0,
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for k = j ; assume that it is true, i.e

Ap =+ Fj_14+0(p77%). (26)

fin = Y|+ Fj_1+ O(p™7%). (27)

For k£ = j + 1, we must prove that

A = 71 + Fj+ O(p~ U, (28)

pn = >+ Fj +0(p~ D), (29)

To prove this we put Expression (26) into S,,(A;,) and (27) into Sy, () and divide both
sides of (17) by (¥, (z), ZaeA7 e’y and (23) by

(@n(@), Ypea, (sign [T, ai)e@®)) | we get

p
A =P+ Sml[7? + Fj—1 + O(p77%) + O(p~P=2)%)) (30)
m=1
p .
pn = Y7+ D SV + Fjo1 + 0(p77%) + O(p~#=2)) (31)
m=1

adding and subtracting the term Y7 _ S, (|7]? + Fj—1) in (30) and (31), we have

14
Ap = |'Y|2 + [Z Sm(|’7|2 + Fj—l + O(p_Ja)) - Sm(|,7|2 + Fj—l)]

m=1

+ > S+ Fio1) + O(p~P=9%) (32)

m=1
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14
Hn = |'Y|2 + [Z Sm(|’7|2 + Fj—l + O(p_Ja)) - Sm(|,7|2 + Fj—l)]

m=1

+ 3 Sy + Fj—1) + O(p~P=) (33)

m=1

> 1 Sm(|V]? + Fj—1) = F}, so we need only to show that the expressions in the square
brackets in (32) and (33) are equal to O(p~UTY). First we prove that F; = O(p~?) for
all j = 0,1,2,...,p by induction. By Theorem 1 Fy = 0. Suppose Fj_1 = O(p~%) then
by (21)Fj = Su(|7[* + Fj-1) = O(p™*).

Using this and Lemma 2, we have

i 1
[+ Fj—1 + O(p~ D) — |y + B + oo + B > 37"

1
2+ Fyox = Iy B+ ot Bl > 3% m= 1,2,

Hence, by direct calculations and using the above inequalities, it can be easily checked

that the expressions in the square brackets are equal to O(p—(j+1)a)D.

Remark 1 It is clear that Vi(p®) ((R(2p)\R(p)) is the part of (R(2p)\R(p)) which
is contained between two parallel hyperplanes {x : |z|*> — |x + b*> = —p*} and {x :
|z|? — |z + b]? = p*}. The distance of this hyperplanes from the origin is %. Therefore
w(Va(p®) N(R(2p)\R(p))) = O(p?=+). Since the number of the vectors v in T'(pp®) is
equal to p™ and p(R(2p)\R(p)) ~ p, we have (Uper ppey Vo(0™) N(R(20)\R(p))) =

O(p= V) “and (U (p*, p) N(R(20)\R(p)) = n((R(20)\R(p))(1 + O(p!*+D1))
from which we get (7).
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