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On an Application of the Hardy Classes to the
Riemann Zeta-Function
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Abstract
We show that the function

f(z) = 1f C<1i—z> |z < 1,

z

belongs to the Hardy class H) if and only if 0 < p < 1.
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1. Introduction

In [1], some applications of the Hardy classes to the Riemann zeta-function ¢ were

considered. In particular, the following fact has been established.

Theorem ([1]). The function

0= (122) . H<L 1)

1—-2 1—-2
belongs to the Hardy class H%.

In this connection, the following question arises. What is the set of all values of the
parameter p, 0 < p < oo, such that f € H,7 We answer this question. Our result is the

following;:

Theorem. The function f defined by (1) belongs to Hy if and only if
0<p<l.

We also present a simpler proof of the main result of [1] (formula (8) below). Our
proof is independent of the theory of the Hardy classes.
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2. Required results from the theory of zeta-function
Theorem 1 ([5], p.95).

((s) = O(Is]), |s| = o0, Rs >

| =

Theorem 2 ([5], p.143).

T
1
/ |C(§ iil‘)lex:TlOgT-i-O(T), 0<T — oo.
0

Theorem 3 ([5], p.310). Let

10g|C(% + it)] _—. @)

\/ 3 loglog(3 + [¢])

Epr={te[-T,T):

Then

1
lim inf —meas E7 > 0.
T—oo T

Note that the result (by A. Selberg and A. Ghosh) stated in [5] is much more precise
and general, than Theorem 3 which follows if one puts R={2€ C: 1 <Rz <2, |Jz| <
1} in the formula on p.310 (line 4 from below) of [5].

3. Required results from the theory of the Hardy classes

We remind ([2], p.68) that the Hardy class H,, 0 < p < oo, is the set of all functions
g analytic in the unit disc {z : |z| < 1} and satisfying the condition:

ky(g) := sup / lg(re'®)|Pdh < co, if 0<p < oo,

0<r<1J—x
or, for p = oo,

R i0
ko (9) == QSup  max |g(re”)| < oc.
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Evidently, H, D H), for ¢ < p.

Theorem 4 ([2], p.70). If g € H,, then, for almost all 0 € [—m, 7], there exists

lim g(re'®) =: g(e'?)

r—1
and

i) = | " g s,

—T

Theorem 5 ([2], p.74). Let g € Hy. If ¢ < p and

/ l9(e)|Pd8 < oo,

—T

then g € Hp.

4. Proof of Theorem

Step 1. We show that f € Hy for0 < g < %

If |z] < 1, then R(1/(1 — 2)) > 1/2. Therefore, by Theorem 1,

| 2] 1 K
<

=2 = i=ap

£ =

for some positive constant K. Hence

. K K
0 < : <
Fe)| < 1 <

sin? 0
and
T Kido

_. sin®?6

kq(f) <

<oo, for ¢g<1/2.

Step 2. We show that f € H, for0 <p < 1.

By virtue of Theorem 5, it suffices to prove that, for any 0 < p < 1,

/W |f(e)|Pdf < .

-7
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Putting ¢t = %cot g and noting that

! —1+'t
1—e¢f 2"
we get
s ; ™ 1 1 p
/_wlf(ee)lpw:/_w 1—ei9C<1—ei9> =

/oo (£ + i)%—wc(% +it)[Pdt.

—00

Integration by parts gives

T 1
/ tP72|¢(= £ it)|Pdt =
1 2

T T t
Tp—2/1 |C(%iix)|pdx+(2—p)/l r=? (/1 IC(%iiw)l”dx> dt.

Using the Holder inequality and then Theorem 2, we get

t t 5,
/ |c(% +iz)Pdz < (/ |c(% iix)|2dx> 57 — t(logt)$ + O(t), t— +o0.
1 1

(5)

It follows that the RHS of (5) is bounded as T' — +oo and therefore the integrals in (4)

converge.

Step 3. We show that f & Hy, forp > 1.

Since H, C Hy for p > 1, it suffices to prove that f ¢ H;. By the formula (3) of

Theorem 4, the latter is equivalent to

/W |f(e?)]df = +o0.

-7

As in (4), the change t = %cot g shows that

/W |f(e)|d6 = /oo Gl

-7 —o00 /2 + i
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Let E7 be the set defined by (2). Then

/ (L +it)] / exp,/—loglog3+|t
-T t2 Er

+

(7)

Observe that the integrand in the RHS of (7) is a decreasing function of |¢| for large
enough |t|, say, |t| > Ty. Let Fr := Er \ [-To,Tp]. By Theorem 3, we have

meas Fpr > 2aT

for some constant « > 0 and sufficiently large 7. The RHS in (7) diminishes if we replace

Er with Fr. Using also the decrease of the integrand in [t|, we get for sufficiently large

T:
/ |C +it)| / exp,/—loglog 3+|t
-7 Fr

t2+— +

/ exp 1/ 3 loglog(3 + |t eXp \/ 3 loglog(3+1T)
— 00
(1—)T<|t|<T /42 + /T2 + i

as T'— 4o00. Therefore the integral in the RHS diverges. O

5. Remark

The fact f € H 1 was applied in [1] for the proof of the following formula:

L[ loelds)
- = 1
o M R

%pk>%

Pk

m‘a (8)

where py’s are zeros of the function . We will show that the formula (8) can be proved
in a simpler way that is independent of the theory of the Hardy classes. We use the
following known result:

Theorem 6 ([4], p.105, or, an equivalent result in [3], p.52). Let F' be a function analytic
in the half-plane {w : Sw > 0} and let log |F(w)| has a positive harmonic majorant in

{w: Sw > 0}. Then the following (Poisson) representation holds for Sw > 0:

1 [ Swlog|F(u
gl =+ [ 2L 3 b \

oo |w—ul?

+ oSQw, (9)
—ax

Sar>0
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where ay’s are zeros of F' and

o = limsupv ™! log |F(iv)|.
v—-+00

The integral and series in the RHS of (9) converge absolutely.

Let us derive the formula (8). Theorem 1 shows that, for Rs > 1,
log |(s = 1)¢(s)| < K'log|s + 2|

holds with some positive constant K. The RHS of this inequality is a positive harmonic

function in the half-plane {s: Rs > %} The transformation
w=1i(s — ) (10)
takes {s: Rs > 1} to {w: Sw > 0}. Therefore Theorem 6 is applicable to the function

F(w) := (s = 1)((s), (11)

where w and s are connected by (10), and therefore the formula (9) holds for the function.

For the function (11), the parameter o in (9) equals 0 because ((s) — 1 as 0 < s — +o0.

) 1 [ log|F(u)|du
10g|F(l/2)|=%/ log| Flu)ldu > log

2 1
us +
4 Sar>0

Hence
i — 2ak

: (12)

1 — 2ap

Taking into account that

F(i/2) = lim(s = 1)((s) = 1, 2ax = 2ipy — i,
S—
we rewrite (12) in the form

1 log|(s = NC(] 1 = > log|——

27 Joooa 5|2
Rs=3

It remains to note that

1 -1 < log(L —iu
/ log|s — 1] ||ds|:§R/ log(z ~ i) 4, _ g
Rs= |5| + u?

2

-
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by the residue theorem. O
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