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On an Application of the Hardy Classes to the
Riemann Zeta-Function

K. Ilgar Eroğlu and Iossif V. Ostrovskii

Abstract

We show that the function

f(z) :=
z

1− z ζ
�

1

1− z

�
, |z| < 1,

belongs to the Hardy class Hp if and only if 0 < p < 1.
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1. Introduction

In [1], some applications of the Hardy classes to the Riemann zeta-function ζ were
considered. In particular, the following fact has been established.

Theorem ([1]). The function

f(z) :=
z

1− z ζ
(

1
1− z

)
, |z| < 1, (1)

belongs to the Hardy class H 1
3
.

In this connection, the following question arises. What is the set of all values of the
parameter p, 0 < p ≤ ∞, such that f ∈ Hp? We answer this question. Our result is the
following:

Theorem. The function f defined by (1) belongs to Hp if and only if
0 < p < 1.

We also present a simpler proof of the main result of [1] (formula (8) below). Our
proof is independent of the theory of the Hardy classes.

AMS Subject Classification: Primary 11M26, Secondary 30D55

545
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2. Required results from the theory of zeta-function

Theorem 1 ([5], p.95).

ζ(s) = O(|s|), |s| → ∞, <s ≥ 1
2
.

Theorem 2 ([5], p.143).

∫ T

0

|ζ(1
2
± ix)|2dx = T logT +O(T ), 0 < T →∞.

Theorem 3 ([5], p.310). Let

ET =

t ∈ [−T, T ] :
log |ζ(1

2 + it)|√
1
2 log log(3 + |t|)

≥ 1

 . (2)

Then

lim inf
T→∞

1
T

measET > 0.

Note that the result (by A. Selberg and A. Ghosh) stated in [5] is much more precise
and general, than Theorem 3 which follows if one puts R = {z ∈ C : 1 ≤ <z ≤ 2, |=z| ≤
1} in the formula on p.310 (line 4 from below) of [5].

3. Required results from the theory of the Hardy classes

We remind ([2], p.68) that the Hardy class Hp, 0 < p ≤ ∞, is the set of all functions

g analytic in the unit disc {z : |z| < 1} and satisfying the condition:

kp(g) := sup
0≤r<1

∫ π

−π
|g(reiθ)|pdθ <∞, if 0 < p <∞,

or, for p =∞,

k∞(g) := sup
0≤r<1

max
−π≤θ≤π

|g(reiθ)| <∞.
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Evidently, Hq ⊃ Hp for q < p.

Theorem 4 ([2], p.70). If g ∈ Hp, then, for almost all θ ∈ [−π, π], there exists

lim
r→1

g(reiθ) =: g(eiθ)

and

kp(g) =
∫ π

−π
|g(eiθ)|pdθ. (3)

Theorem 5 ([2], p.74). Let g ∈ Hq. If q < p and∫ π

−π
|g(eiθ)|pdθ <∞,

then g ∈ Hp.

4. Proof of Theorem

Step 1. We show that f ∈ Hq for 0 < q < 1
2
.

If |z| < 1, then <(1/(1− z)) > 1/2. Therefore, by Theorem 1,

|f(z)| = |z|
|1− z|

∣∣∣∣ζ ( 1
1− z

)∣∣∣∣ ≤ K

|1− z|2

for some positive constant K. Hence

|f(reiθ)| ≤ K

|e−iθ − r|2 ≤
K

sin2 θ

and

kq(f) ≤
∫ π

−π

Kqdθ

sin2q θ
<∞, for q < 1/2.

Step 2. We show that f ∈ Hp for 0 < p < 1.

By virtue of Theorem 5, it suffices to prove that, for any 0 < p < 1,∫ π

−π
|f(eiθ)|pdθ <∞.
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Putting t = 1
2 cot θ2 and noting that

1
1− eiθ =

1
2

+ it,

we get ∫ π

−π
|f(eiθ)|pdθ =

∫ π

−π

∣∣∣∣ 1
1− eiθ ζ

(
1

1− eiθ

)∣∣∣∣p dθ =

∫ ∞
−∞

(t2 +
1
4
)
p
2−1|ζ(1

2
+ it)|pdt. (4)

Integration by parts gives ∫ T

1

tp−2|ζ(1
2
± it)|pdt =

T p−2

∫ T

1

|ζ(1
2
± ix)|pdx+ (2− p)

∫ T

1

tp−3

(∫ t

1

|ζ(1
2
± ix)|pdx

)
dt. (5)

Using the Hölder inequality and then Theorem 2, we get

∫ t

1

|ζ(1
2
± ix)|pdx ≤

(∫ t

1

|ζ(1
2
± ix)|2dx

)p
2

t
2−p

2 = t(log t)
p
2 + O(t), t→ +∞.

It follows that the RHS of (5) is bounded as T → +∞ and therefore the integrals in (4)
converge.

Step 3. We show that f 6∈ Hp for p ≥ 1.

Since Hp ⊂ H1 for p > 1, it suffices to prove that f 6∈ H1. By the formula (3) of
Theorem 4, the latter is equivalent to∫ π

−π
|f(eiθ)|dθ = +∞.

As in (4), the change t = 1
2 cot θ2 shows that

∫ π

−π
|f(eiθ)|dθ =

∫ ∞
−∞

|ζ(1
2

+ it)|√
t2 + 1

4

dt. (6)
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Let ET be the set defined by (2). Then

∫ T

−T

|ζ(1
2 + it)|√
t2 + 1

4

≥
∫
ET

exp
√

1
2

log log(3 + |t|)√
t2 + 1

4

dt. (7)

Observe that the integrand in the RHS of (7) is a decreasing function of |t| for large
enough |t|, say, |t| ≥ T0. Let FT := ET \ [−T0, T0]. By Theorem 3, we have

measFT > 2αT

for some constant α > 0 and sufficiently large T . The RHS in (7) diminishes if we replace
ET with FT . Using also the decrease of the integrand in |t|, we get for sufficiently large
T : ∫ T

−T

|ζ(1
2 + it)|√
t2 + 1

4

dt ≥
∫
FT

exp
√

1
2

log log(3 + |t|)√
t2 + 1

4

dt ≥

∫
(1−α)T<|t|<T

exp
√

1
2 log log(3 + |t|)√
t2 + 1

4

dt ≥ 2αT
exp

√
1
2 log log(3 + T )√
T 2 + 1

4

→∞

as T → +∞. Therefore the integral in the RHS diverges. 2

5. Remark

The fact f ∈ H 1
3

was applied in [1] for the proof of the following formula:

1
2π

∫
<s= 1

2

log |ζ(s)|
|s|2 |ds| =

∑
<ρk> 1

2

log
∣∣∣∣ ρk
1− ρk

∣∣∣∣ , (8)

where ρk’s are zeros of the function ζ. We will show that the formula (8) can be proved
in a simpler way that is independent of the theory of the Hardy classes. We use the
following known result:

Theorem 6 ([4], p.105, or, an equivalent result in [3], p.52). Let F be a function analytic
in the half-plane {w : =w ≥ 0} and let log |F (w)| has a positive harmonic majorant in
{w : =w > 0}. Then the following (Poisson) representation holds for =w > 0:

log |F (w)| = 1
π

∫ ∞
−∞

=w log |F (u)|
|w− u|2 du+

∑
=ak>0

log
∣∣∣∣w − akw − āk

∣∣∣∣+ σ=w, (9)
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where ak’s are zeros of F and

σ = lim sup
v→+∞

v−1 log |F (iv)|.

The integral and series in the RHS of (9) converge absolutely.

Let us derive the formula (8). Theorem 1 shows that, for <s ≥ 1
2
,

log |(s− 1)ζ(s)| ≤ K log |s+ 2|

holds with some positive constant K. The RHS of this inequality is a positive harmonic

function in the half-plane {s : <s ≥ 1
2}. The transformation

w = i(s− 1
2
) (10)

takes {s : <s ≥ 1
2} to {w : =w ≥ 0}. Therefore Theorem 6 is applicable to the function

F (w) := (s− 1)ζ(s), (11)

where w and s are connected by (10), and therefore the formula (9) holds for the function.
For the function (11), the parameter σ in (9) equals 0 because ζ(s) → 1 as 0 < s→ +∞.
Hence

log |F (i/2)| = 1
2π

∫ ∞
−∞

log |F (u)|du
u2 + 1

4

+
∑
=ak>0

log
∣∣∣∣ i− 2ak
i− 2āk

∣∣∣∣ . (12)

Taking into account that

F (i/2) = lim
s→1

(s− 1)ζ(s) = 1, 2ak = 2iρk − i,

we rewrite (12) in the form

1
2π

∫
<s= 1

2

log |(s− 1)ζ(s)|
|s|2 |ds| =

∑
<ρk> 1

2

log
∣∣∣∣ ρk
1− ρk

∣∣∣∣ .
It remains to note that∫

<s= 1
2

log |s− 1|
|s|2 |ds| = <

∫ ∞
−∞

log(1
2
− iu)

1
4

+ u2
du = 0

550
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by the residue theorem. 2
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