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On the Centroid of the Prime Gamma Rings 11

M. Ali Oztiirk and Young Bae Jun

Abstract

The aim of this paper is to study the properities of the extended centroid of
the prime I'-rings. Main results are the following theorems: (1) Let M be a simple
I'-ring with unity. Suppose that for some a # 0 in M we have avyixzvy2a081y62a =
afBryBaavyixvyea for all z,y € M and ~1,72,01,02 € I'. Then M is isomorphic
onto the I'-ring Dy, y,, where D,, ., is the additive abelian group of all rectangular
matrices of type n X m over a division ring D and I' is a nonzero subgroup of the
additive abelian group of all rectangular matrices of type m X n over a division ring
D. Furthermore M is the I'-ring of all n x n matrices over the field Cr. (2) Let
M be a prime I'-ring and Cr the extended centroid of M. If a and b are non-zero
elements in S = MI'Cr such that ayzBb = bBxvya for all x € M and 3,7 € T,
then a and b are Cp-dependent. (3) Let M be prime I'-ring, @ quotient I-ring
of M and Cr the extended centroid of M. If ¢ is non-zero element in @ such
that ¢yi1xv2901y02q9 = qB1yB2qy1xy2q for all x,y € M, v1,7v2,61,82 € I then S
is a primitive I'-ring with minimal right ( left ) ideal such that eI'S, where e is

idempotent and Crl'e is the commuting ring of S on el'S.

Key Words: I'-division ring, I'-field, extented centroid, central closure.

Introduction

Nobusawa [11] introduced the notion of a I'-ring, more general than a ring. Barnes

[1] weakened slightly the conditions in the definition of I'-ring in the sense of Nobusawa.
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Barnes [1], Luh [7] and Kyuno [4] studied the structure of I'-rings and obtained various
generalizations analogous of corresponding parts in ring theory. Oztiirk and Jun [12]
studied the extended centroid of a prime I'-ring. As a continuation of [12], in this paper,

we study further properities of the extended centroid of the prime I'-rings.

2. Preliminaries

Let M and I' be two abelian groups. If for all z,y,z € M and all o, 8 € T the
conditions
(i) zaye M,
(ii) (x4 y)az =zaz+ yaz,z(a+ f)z = xaz+ Bz, zaly + 2) = zay + xaz,
(i) (vay)z = za(ys2)
are satisfied, then we call M a T'-ring. By a right (vesp. left) ideal of a I-ring M we mean
an additive subgroup U of M such that UTM C U (resp. MTU C U). If U is both a
right and a left ideal, then we say that U is an ideal of M. For each a of a I'-ring M the
smallest right ideal containing a is called the principal right ideal generated by a and is
denoted by (a),. Similarly we define (a); (resp. (a)), the principal left (resp. two sided)
ideal generated by a. An ideal P of a I'-ring M is said to be prime if for any ideals A
and B of M, ATB C P implies A C P or B C P. An ideal Q of a I'-ring M is said to be
semi-prime if for any ideal U of M, UT'U C @ implies U C Q. A TI'-ring M is said to be
prime (resp. semi-prime) if the zero ideal is prime (resp. semi-prime).
Theorem 2.1 ([4, Theorem 4]). If M is a T-ring, the following conditions are

equivalent:

(i) M is a prime D-ring.

(ii) If a,b € M and al MTb = (0), then a =0 or b =0.

(iii) If (a) and (b) are principal ideals in M such that (a)T'(b) = (0), thena =0 orb = 0.
(iv) If A and B are right ideals in M such that ATB = (0), then A = (0) or B = (0).

(v) If A and B are left ideals in M such that AT B = (0), then A= (0) or B = (0).
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A T-ring M is said to be simple if MT'M # 0 and M has no ideals other 0 and M
itself. When a T-ring M has the descending (resp. ascending) chain condition for right
ideals, it is abbreviated to M has min-r condition (resp. maz-r condition). The terms
min-l condition or max-l condition on a I'-ring M are likewise defined. Let M be a I'-ring

and let F' be the free group generated by I" x M. Then

A= {Zni(,yiaxi) eF | ace M= Zniafyixi = 0}
‘ i

is a subgroup of F. Let R = F/A be the factor group, and denote the coset (y,z) + A
by [, z]. Clearly, every element of R can be expressed as a finite sum ) _,[v;, z;]. Also it
can be verified easily that [o, z] + [«, y] = [o, 2 + y] and [, 2] + [5, 2] = [a + 5, 2] for all
a,B €l and z,y € M. We define a multiplication on R by

> leww] > Byl = > les wiBy;)-

i J %7

Then R forms a ring. If we define a composition on M x R into M by
GZ[%,%] = Za%xi, Va e M, VZ[%,%] €R
i i i

then M is a right R-module, and we call R the right operator ring of M. Similarly, we can
define the left operator ring L of M. A T-ring M is said to be right (resp. left) primitive

if it satisfies:
(i) the right (resp. left) operator ring of M is a right (resp. left) primitive ring
(i) MTz =0 (resp. zI'M = 0) implies z = 0.

A T-ring M is said to be two-sided primitive (or simply, primitive) if it is both right
and left primitive.

Theorem 2.2 ([7, Theorem 3.4]). If M is a T-ring possessing minimal left (resp.
right) ideal, then M is primitive if and only if it is prime.

Theorem 2.3 ([7, Theorem 3.6]). For a T'-ring M with min-l condition, the following
are equivalent:

(i) M is prime,
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(ii) M is primitive,

(iii) M is simple.

Theorem 2.4 ([7, Theorem 4.2]). If M is a simple T'-ring possessing minimal left
(resp. right) ideals, then M is a direct sum of minimal left (resp. left) ideals.

Theorem 2.5 ([5, Theorem 3.23]). Let M be a semi-prime I'-ring with min-r
condition and let M = I ® s @ - & Ly = J1 & Jo & -+ ® Jp, where I, Iz, -,

Ly, J1, Jo, -+, Jn are minimal right ideals. Then m = n.

The integer m = n in Theorem 2.5 is called the right dimension of the semi-prime
I-ring with min-r condition and denoted by dim(Mp). One can define the left dimension
of a I-ring in a similar way. If M is simple, then M is semi-prime (see [5]). For an
additive group G, denote by G, , the additive group of all matrices over G. Let M be
a I'-ring M and let M, ,, and I';, ,, denote, respectively, the sets of m x n matrices with
entries from M and of n x m matrices with entries from I'. For (ai;), (bij) € M, and
(7i3) € Tnm, define (ai;)(7i;)(bi) = (cij), where ¢i5 = 32,32 @ipVpgbgj- Then My,

forms a I'y, ,,,-ring.

Theorem 2.6 ([6, Theorem 4.2]). Let M be a simple I'-ring with min-r and min-
I conditions and Ty = T'/k, where k :== {y € T' | MyM = 0}. Then the Ty-ring
M is isomorphic to the I'-ring D, m, where Dy, ., is the additive abelian group of all
rectangular matrices of type n X m over a division ring D and I is a nonzero subgroup
of the additive abelian group of all rectangular matrices of type m Xn over a division ring
D and m = dim(My) and n = dim(MRg).

Lemma 2.7 ([12, Lemma 3]). Let M be a prime T'-ring such that MTM # M and
quotient T'-ring Q@ of M. Then, for each non-zero q € QQ there is a non-zero ideal U of
M such that ¢(U) C M.

Lemma 2.8 ([12, p. 476]). Let M be a prime I'-ring such that MTM # M and
Cr the extended centroid of M. If a; and b; are mon-zero elements of M such that
SraivizBib; = 0 for all x € M and ~;,5; € T, then the a;’s (also a;’s ) are linearly
dependent over Cr. Moreover, if ayxBb = byxfBa for all x € M and v,8 € T where
a(#£0),b € M are fived, then there exists A € Cr such that b = Aaa for alla € T.
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3. Centroids

Let M be a prime I'-ring such that MT'M # M. Denote

M:={(U,f)| U(#£0) is an ideal of M and
f:U— M is aright M-module homomorphism}.

Define a relation ~ on M by (U, f) ~ (V, g) if and only if 3W(#£ 0) C U NV such that
f =g on W. Since M is a prime I'-ring, it is possible to find a non-zero W and so “~”
is an equivalence relation. This gives a chance for us to get a partition of M. We then
denote the equivalence class by CI(U, f) = f, where f:={g: V — M|(U, f) ~ (V,9)},
and denote by @ the set of all equivalence classes. Now we define an addition “+” on @

as follows:
f+a=ClU f)+ClL(V,g) =CUUNV, f +g)

where f4+¢g: UNV — M is a right M-module homomorphism. Then @ is an additive
abelian group (see [12]). Since MT'M # M and since M is a prime I'-ring, MT'M (# 0) is
an ideal of M. We can take the homomorphism 1y : MT'M — M as a unit M-module
homomorphism. Note that M3M # 0 for all 0 # 3 € I' so that 1y : MBM — M is

non-zero M-module homomorphism. Denote
N = {(MBM, 1np) | 0 # B €T},

and define a relation “~” on N by (MBM,1yp) ~ (M~yM,1y.) if and only if IW :=
MaM(#0) C MBM N M~M such that 1y = 1p4 on W. We can easily check that “~”
is an equivalence relation on . Denote by Cl(MBM, 1yp) = B the equivalence class
containing (MBM, 1) and by I the set of all equivalence classes of A with respect to
=, that is,

B = {1ary : MYM — M | (MBM, 1n5) ~ (MYM, 1p74)}

and I := {# ] 0 # 8 € T'}. Define an addition “+” on T as follows:

o))
_|_
S

I

Cl(MpBM, 1) + Cl(MOM, 1as6)
= Cl(MﬁMﬂM(SM, Iy + 1ars)
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for every (£ 0), 6(# 0) € T'. Then (f’, +) is an abelian group. Now we define a mapping
(_a B _) : Q X f X Q - Q) (f)B)g) = fﬁga as follows:

fBg CUU, f)CUMBM, 1y)CUV, g)

= Cl(VPMﬁMFU, flMBg)
where
VI'MBMTU = {Z vivimifniou; | v; € Viu; € Uymg,ng € M and ay,y; € T'}

is an ideal of M and flpgg : VI'MBMTU — M which is given by
flMBQ(Z vy BN i) = f(z g(vi)yimiBn; o)

is a right M-module homomorphism. Then @ is a f—ring with unity. Noticing that the
mapping ¢ : I' — I defined by (3) = 3 for every 0 # 8 € I is an isomorphism, we know
that the I-ring Q is a I-ring (see [12]). For purposes of convenience, we use ¢ instead of
Jdeaq.

Definition 3.1. Let M be a I'-ring with unity. An element u in M is called a unit
of M if it has a multiplicative inverse in M. If every nonzero emenet of M is a unit, we
say that M is a I'-division ring. A D-ring M is called a I'-field if it is a commutative
I'-division ring.

Definition 3.2. The set

Cri={9€Q|gvf=fygforal feQandyel}

is called the extended centroid of a I'-ring M.

Lemma 3.3. Let M be a prime I'-ring. Then the extended centroid Cr of M is a
T'-field.

Proof. Noticing that Cr is a commutative ring with unity, it is sufficient to show that
every nonzero element of Cr is invertible. If ¢(# 0) € Cr, then ¢ = CI(U, u). Thus, by
Lemma 2.7., there is a nonzero ideal U of M such that u(U) C M. Clearly, 0 £ V = u(U)
is an ideal of M. Since UTM C U, therefore u(U)I'M C p(U). Hence we can define a
mapping f : u(U) — M by f(p(u)) = u for all w € U, and this is a right M-module

372



OZTURK, JUN

homomorphism. In fact, let v1,v3 € V = p(U) and so there exists uy,us € U such that

vy = p(ur) and vy = p(ug). It follows that

flor+wv2) = fu(ur) + p(uz))
= f(u(ul—i—ug = U1 + u2
= f(u( (u(uz))
(

Now, for any v € V, m € M and v € ', we have

floym) = f(p(u)ym) = f(u(uym)) = uym = f(u(w))ym = f(v)ym

Finally, considering d = CI(V, f), we get

dye = CI(V, ))CUMAM, 1y)CUU. 1)
= CUAUTMAMTYV, {1y p)
= CI(UTM~yMTu(U),1)=1.
This completes the proof. O

Definition 3.4. For the extended centroid Cr of a prime I'-ring M, we say that
S := MT'Cr is the central closure of M.

Remark 3.5. Fora,b € S, if al'STb = 0 then al’' MT'Crb = 0 and so al’ MT oI’ MTal'Crb =
0. Since M is a prime ['-ring, it follows that al’' MT'b =0 or al'Crb=0soa=0o0r b= 0.
Thus S is a prime I'-ring.

If M has a unit element, then Cr = Z(S), the centre of S. If M is a simple I'-ring
with unity, then Q = S = M. Because the only non-zero ideal of M is M itself. In this
case; M is its own central closure.

Throughout, we shall use M as a prime I'-ring such that MT'M # M.

Theorem 3.6. Let Cr be the extended centroid of a prime I'-ring M. If a is a
nonzero element of M such that ayixveabiyPea = afrylbrayvizyea for all x,y € M,
Y,7%2, 1, P2 € T then S = MTUCr is a primitive T'-ring with minimal right (left) ideal
and the commuting ring of S on this right (left) ideal is merely Cr itself.

Proof. Let fixed ay; 27720 element in the relation (ay1zy2a)81yb2a = aB1yfa(ay1zy2a) =
0 then, from Lemma 2.8 we get ayi2y2a = A(z)aa, where A(z) € Cr and « € T' and for
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all x € M. Similarly we also get afi1yf2a = A(y)da, where A(y) € Cr and & € T
and for all y € M. Thus, since afyfa = A(y)da € Crl'a we get al'STa C Crla.
Since @ # 0 and S is prime I['-ring, there is some y, € S such that afiy,02a # 0
for some (1,02 € T. Thus, af1y,f2a = A(yo)da, where 0 # A(y,) € Cp. Simi-
larly we get avizoy2a = A(w,)aa, where 0 # A(wz,) € Cr. If 2, = A71(yo)ay,, then
a117oY2a0 = ayi A" (Yo)ayor2a = A" H(yo)aayiyorea = A" H(yo)aX(yoaa = a. Thus, let
e = anZ,. eyre = (anZo)y2(anz,) = (aN1ZoYea)N1Zo = ay1Z, = e. From this we
will have e idempotent. In this case; e['STe = (ayz,)T'ST (ayz,) C Crl'(ayx,) = Cre.
Thus el''S is a minimal right ideal of S and CrI'e is the commuting ring of S on eI'S by
Lemma 3.3. Since S is prime I'-ring and has a minimal right ideal. S is primitive I'-ring

by Theorem 2.2. O

Theorem 3.7. Let M be a simple I'-ring with unity. Suppose that for some a # 0
in M we have ayixy2a81yP2a = afryBeayixzyea for all x,y € M and 71,72, 51,82 € T.
Then M is isomorphic onto the I'-ring Dy, r,, where Dy, »,, is the additive abelian group of
all rectangular matrices of type n x m over a division ring D and ' is a nonzero subgroup
of the additive abelian group of all rectangular matrices of type m Xn over a division ring

D. Furthermore M is the I'-ring of all n X n matrices over the field Cp.

Proof. Since M is simple I'-ring we have M = S and from Theorem 3.6 we get M
has a minimal right ( left ) ideal of M. In this case, M is the sum of minimal right (
left ) ideals by Theorem 2.4, that is, M is the sum of minimal right ideals N;, where
N; = ;TN ( N is a non-zero minimal right ideal of M ) for some x; € M. Also, since
M hasunit (1€ M ), 1 € Ny + ...+ N, for some n, we get M = Ny + ... + N,, and so
M is the sum of a finite number of minimal right ideals, each of which is an irredicible
right M-module. Thus M, as a M- module, has a composition serises. Thus M has min-r
condition and so M is primitive I'-ring by Theorem 2.3. In this case, by Theorem 3.6, the
commuting ring of M on an irreducible module is Cr = Z(M), the center of M. Thus,

this finishes the proof of the theorem by Theorem 2.6. O

Theorem 3.8. Let M be prime I'-ring and Cr the extended centroid of M. If a and
b are non-zero elements in S = MI'Cr such that ayz(Bb = bBxvya for all x € M and
v,08 € T, then a and b are Cp-dependent.

Proof. Firstly, we assume that a # 0 and b # 0. Let U be a non- zero ideal of
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M such that aT'U C M and al'U C M, and set V = UTal'U = {>_ x;vialBiy; | xi,y; €
U, 7, B; € T}. We define a mapping f : V — M defined by v — f(v) = fO_ xiyiabiyi) =
> avibBiys, for all x;,y; € U and 4, 8; € T'. We suppose that > z;v;a8;y; = 0. Then,

0 = baymo; in%aﬁwi = Z bai(mo;x;)vialiy

> aci(moizi)vibBiy = acimo; Y ivibBiyi

Thus, we get, for all z;,y; € U and ;,8; € T

GFMF(Z 2;v:bBiyi) = 0

and so since a # 0 and M is prime T-ring we get > x;v;00;y; = 0. Therefore, f is well
defined. Also, specially f((zyaBy)am) = zybByam = f(zyafy)am for all z,y € U and
m € M and v, 8, € T and so f is a M-module homomorphism. Let ¢ denote the element
of @ determined by f, that is, ¢ = CI(V, f). Let p be any element of Q with p(W) C M

for some non-zero ideal W of M by Lemma 2.7. In this case,
(flMap)(Z wivimianBiziviaBiy;)
= O pwi)vimianiBiziviaBiy:)
= Zp(wi)VimianiBixiVibﬁiyi
= p(zwi%miam@m%bﬁwi)
= p(laafY witimianiBizyiaBivi))
= (leaf)(Z wivimianBiziviaBiy;)
and so qap = CIIWTMaMTV, flyoP)=CI(WTMaMTV, Plyaf) = pag. Thus, we
get ¢ € Cr. Forvy, B, a €T,
g(waaBy) = CIUV, )CUMYM, 13-)CUV, zaafy)
= CUVIMyMTV, fly(zaaSy))
= CUVTM~yMTV, zaaby)

= zabfy,
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Hence we have (zyqaa — xab)By = 0 for all z,y € U and v, 3, « € T'. Therefore, since M
is prime I" -ring we get xyqaa —xab = 0 for all x,y € U and v, a € T'. Now writing o + -y
for in the previous equation we get, xy(gya—b) = 0 for all v, € T and « € U. Thus, since
M is prime I'-ring, we get, gya = b for all v € T and so this completes the proof. O

Theorem 3.9. Let M be prime I'-ring, Q quotient I'-ring of M and Cr the extended
centroid of M. If q is non-zero element in @Q such that qy1xv2qB1y0B2q = qB1YP2qV1xY2q
for all x,y € M, 1,72, 01,52 € T then S is a primitive T -ring with minimal right (left)
ideal such that el'S, where e is idempotent and Crle is the commuting ring of S on el'S.

Proof. If ¢ € M, then the proof finishes from Theorem 3.6. If ¢ € @ then one can
pick a € M such that ¢ = qaa is a non-zero element of M by Lemma 2.7. Also, ¢ satisfies

d1xYv2qB1YyB2q = (Br1yPagrixyeqd for all z,y € M, v1, 72, (1, B2 € I' and so this completes
the proof. O
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