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The canonical class of a symplectic 4-manifold

Ronald Fintushel and Ronald Stern

1. Introduction

In this article we present examples of simply connected symplectic 4-manifoldsX whose
canonical classes are represented by complicated disjoint unions of symplectic submani-
folds of X:

Theorem 1.1. Given finite collections {gi}, {mi}, i = 1, . . . , n, of positive integers, there
is a minimal symplectic simply connected 4-manifold X whose canonical class is repre-
sented by a disjoint union of embedded symplectic surfaces

K ∼ Σg1,1 ∪ · · · ∪ Σg1,m1 ∪ · · · ∪ Σgn,1 ∪ · · · ∪ Σgn,mn
where Σgi,j is a surface of genus gi. Furthermore, c21(X) = χh(X) − (2 + c) where

c =
n∑
i=1

mi is the total number of connected components of this symplectic representative

of the canonical class and χh(X) denotes one-quarter the sum of the Euler characteristic
and signature of X.

There are several interesting questions which arise:
1. Let X be a symplectic 4-manifold whose canonical class is represented by a dis-

joint collection of symplectic surfaces of genera and multiplicities {gi, mi} as above.
Suppose also that each gi > 1. Are these numbers a symplectic invariant of X?

2. Let CK(X) be the number of components of a symplectic representative K of the
canonical class of a symplectic 4-manifold X, and let C(X) be the maximum of
CK(X) over all K. Is it true that

c21(X) ≥ χ
h
(X) − (2 + C(X))?

This question should be compared with the conjecture of [9] which states that

c21(X) ≥ χh(X) − 2b− 1

where b represents the number of Seiberg-Witten basic classes up to sign. For the mani-
folds in Theorem 1.1 this would read

c21(X) ≥ χ
h
(X) − 2c−1 − 1
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and this is far from optimal, whereas they are likely optimal for the conjecture of (2)
above.

The techniques which are used to prove Theorem 1.1 are standard, namely, ‘symplectic
sum’ [7] and ‘rational blowdown’ [2]. For the convenience of the reader, we review the
notation introduced in [2]. Let Cp denote the simply connected smooth 4-manifold with
boundary obtained by plumbing (p − 1) disk bundles over the 2-sphere according to the
linear diagram:

• • . . . •
−(p + 2) −2 −2

Here, each node denotes a disk bundle over S2 with Euler class indicated by the label; an
interval indicates that the endpoint disk bundles are plumbed, i.e. identified fiber to base
over a hemisphere of each S2 . Label the homology classes represented by the spheres in Cp
by u1, . . . , up−1 so that the self-intersections are u2

p−1 = −(p+2) and, for j = 1, . . . , p−2,
u2
j = −2. Further, orient the spheres so that uj · uj+1 = +1. Then Cp is a 4-manifold

with negative definite intersection form and with boundary the lens space L(p2, 1 − p).
The lens space L(p2, 1 − p) = ∂Cp bounds a rational ball Bp with π1(Bp) = Zp and a
surjective inclusion-induced homomorphism π1(L(p2, 1 − p) = Zp2 → π1(Bp). If X is
a smooth 4-manifold containing an embedded copy of Cp, its ‘rational blowdown’ is the
result of replacing Cp by the rational ball Bp.

2. The Construction

Lemma 2.1. The elliptic surface E(m + 2) admits a symplectic structure with respect
to which it contains a pair of disjoint configurations of smooth, symplectically embedded
surfaces. The first is a K3-nucleus and the second is a linear plumbing of 4m−1 spheres:

• • . . . •
−(m+ 2) −2 −2

where the sphere of self-intersection −(m + 2) is met transversely, in a single positive
point, by a symplectically embedded torus F of self-intersection 0.

A ‘nucleus’ of an elliptic surface E(n), is a regular neighborhood of the union of a cusp
fiber and a section C of the fibration. (See [6].) The section C is an embedded sphere of
self-intersection −n.

Proof. In S2×S2 let SA = S2×{pt} and SB = {pt}×S2. Then E(m) may be constructed
as the double branched cover of S2 × S2 branched over 4 copies of SA and 2m copies of
SB . (Either one takes the double branched cover branched over the singular curve as
described and then resolves the singularities, or equivalently, smooths the double points
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of the branch set and then takes the double branched cover. See e.g. [13].) In this
way, one sees two fibrations on E(m) — the elliptic fibration whose fibers are the double
branched covers of the spheres in S2 × S2 which are parallel to SA and a genus (m− 1)
fibration whose fibers are the double branched covers of the spheres in S2 × S2 which
are parallel to SB . This construction also imbues E(m) with the structure of a Kahler
surface.

Take the 4 copies of SA in the branch set to be S2×{xi} and S2×{yi}, i = 1, 2 where
the xi lie in the northern hemisphere of S2 and the yi lie in the southern hemisphere.
The double branched cover of S2 × S2 branched over 2 copies of SA and 2m copies of
SB is a complex surface R(m) which also admits a pair of fibrations, an ‘A’-fibration by
2-spheres and a ‘B’-fibration by surfaces of genus m− 1.

It follows that E(m) may be obtained as the fiber sum

E(m) ∼= R(m)#Σm−1R(m)

of the ‘B’-fibrations. It is not difficult to identify R(m). The ‘A’-fibration has 2m singular
fibers as in Figure 1.

−2

−2

−1

Figure 1

The vertical sphere of self-intersection −1 has multiplicity 2. If we blow down this ex-
ceptional curve, we obtain a configuration which may be blown down again to obtain a
smooth 2-sphere of self-intersection 0. Since there are 2m singular fibers, after blowing
down 4m times, we obtain an S2-bundle over S2. It follows that R(m) is the rational
surface

R(m) = CP 2#(4m+ 1)CP
2
.

We next need a second description of R(m). Let W (m) denote the canonical resolution
of the (2, 2m− 1, 4m− 3) Brieskorn singularity. It is given by the plumbing manifold

• • • • . . . •

•

−m −2 −2 −2 −2

−2

Figure 2

where the right-hand ‘branch’ has 4(m−1) nodes. LetN(m) denote the manifold obtained
by adding a pair of 2-handles to the 4-ball, the first with framing 0 along the torus knot
T (2, 2m − 1), the second with framing −1 attached along a meridian to T (2, 2m − 1).
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For example, N(2) is a neighborhood of a cusp fiber and a section in E(1) (an E(1)-
nucleus). The boundaries of W (m) and N(m) are easily seen to be orientation-reversing
diffeomorphic.

We claim that W (m)∪∂ N(m) is a rational surface isomorphic with R(m). To see this,
start with a configuration of 4 lines in CP 2, three of them passing through a point x0,
together with a line at infinity. If we blow up CP 2 at x0 we obtain the configuration of
rational curves in CP 2# CP

2
shown in Figure 3.

+1−1
0

0

0

•

•

•

Figure 3

Now blow up at each of the three points indicated in Figure 3 to obtain the configuration
of rational curves in CP 2# 4 CP

2
as shown in Figure 4.

HHHHHHHH

��������

HHHHHHHH

��������

HHHHHHHH

��������

−2 −1

−1

−1

−1

−1

−1

−1
•

•

•

Figure 4

Three more blowups at the points indicated in Figure 4 give the configuration of Figure 5
in CP 2# 7 CP

2
.
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Figure 5

Continue blowing up at the indicated points to obtain Figure 6.

HHHHHH

�����

�
�
�

HHHHHH

�����

�
�
�

HHHHHH

������

−2 −1

−2

−2

−2

−3

−3

−2

−2

−2

−1

−1

−1•
•

Figure 6

Continue blowing up, at both indicated points if m ≥ 3, otherwise just at the bottom
point. After a total of 5m+1 blowups one achieves a configuration in CP 2# (5m+1) CP

2

which consists of two subconfigurations separated by three −1-curves. On the left is the
canonical resolution for the (2, 2m− 1, 4m− 3) Brieskorn singularity and on the right is
the configuration whose dual graph (which has m+ 2 nodes) is shown in Figure 7.

• • • • . . . •

•

−2 −1 −3 −2 −2

−(4m− 3)

Figure 7

Blow up one more time at a point on the curve corresponding to the node labelled
−(4m− 3). This gives a disjoint pair of configurations in CP 2# (5m+ 2) CP

2
. One is

the canonical resolution for the (2, 2m− 1, 4m− 3) Brieskorn singularity and the other is
the configuration whose dual graph (which has m+ 3 nodes) is shown in Figure 8.
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• • • • . . . •

•

•

−2 −1 −3 −2 −2

−(4m− 2)

−1

Figure 8

Now start blowing down the configuration of Figure 8 starting with the (−1) node of
order 3. After m+1 blowdowns (along the top row of Figure 8) one obtains the manifold
N(m). (See, e.g. [1].) We thus decompose CP 2# (4m + 1) CP

2
as W (m) ∪∂ N(m).

Hence we may identify R(m) with W (m) ∪∂ N(m).
This identifies an A-fiber of R(m) with H −E1, one of the horizontal lines in Figure 3.

Here H denotes the homology class of a line in CP 2 and E1 is the class of the exceptional
curve arising from the first blowup. Looking at Figure 2 we see a linear configuration
of 4m − 1 rational curves in R(m) (along the top row). The sphere S labelled ‘−m’
represents the sum of m exceptional curves and intersects H − E1 once. (For example,
see Figure 6.) In the fiber sum E(m) ∼= R(m)#Σm−1R(m), the A-fibers of the two copies
of R(m) glue together to form an elliptic fiber of E(m), thus S is a section of the elliptic
fibration.

We consider E(m+2) as the result of a fiber sum E(m)#FE(2). The K3-surface E(2)
contains three disjoint nuclei. To get an appropriate symplectic structure on E(2), we
first fix a hyperkahler metric g. This gives a Kahler form ω0 on E(2) so that in one
nucleus, N1, the fiber T1 and section C1 are both symplectic submanifolds, but for the
other two nuclei, N2, N3, the fibers Fi and sections Ci are Lagrangian. There are self-
diffeomorphisms fi, i = 2, 3, of E(2) which take (Ni, Ti, Ci) to (N1, T1, C1). For small
enough t > 0, ω = ω0 + t(f∗2ω + f∗3ω) is a symplectic form on E(2) for which Ti, Ci are
symplectic for i = 1, 2, 3. Choose one nucleus, say N1, in order to make the fiber sum
E(m)#F=T1E(2). (The fact that E(2) has a big diffeomorphism group implies that the
result is actually E(m + 2).) In this construction, the sections add, and we obtain the
plumbing claimed in the statement of the lemma.

Call a K3-nucleus in which the fiber T and section C are both symplectic a symplectic
nucleus.

Lemma 2.2. Suppose that we are given a positive integer g and a symplectic simply con-
nected 4-manifold X whose canonical class KX is represented by an embedded symplectic
surface of m disjoint components of genus g1, . . . , gm. Suppose also that X contains a
symplectic K3-nucleus N disjoint from this surface. Then there is a symplectic simply
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connected 4-manifold Y whose canonical class KY is represented by m + 1 disjoint em-
bedded surfaces of genus g, g1, . . . , gm. Furthermore, Y contains a symplectic K3-nucleus
disjoint from these surfaces, and

c21(Y ) = c21(X) + g − 1, χ
h
(Y ) = χ

h
(X) + g.

Proof. First suppose that g ≥ 2. Let E(g) carry the symplectic structure given by
Lemma 2.1, and form the symplectic sum of E(g) and X by identifying the torus F given
in Lemma 2.1 with a symplectic c-embedded torus T in the symplectically embedded
nucleus of X. The existence of the sphere C which is transverse to T in the nucleus
implies that the fiber sum E(g)#F=TX is simply connected. It follows from [12] (see e.g.
[3]) that the basic classes of E(g)#F=TX all have the form k + r[F ] where k is a basic
class of X, |r| ≤ g, and r ≡ g (mod 2). Since the class r[F ] is represented by r symplectic
tori, it follows from [16] that the canonical class is given by KE(g)#F=TX = KX + g[F ].

By Lemma 2.1, E(g)#F=TN ⊂ E(g)#F=TX contains a symplectic configuration Cg
and a disjoint symplectic nucleus. (In case, g = 2, this follows directly without the use
of the lemma.) The configuration Cg is taut in the sense of [2]. Let Y be the result of
rationally blowing down Cg. Then Y is simply connected and minimal. According to
Symington [14], Y inherits a symplectic structure, and by [2], the basic classes of Y have
the form k̄± g[F̄ ], where k̄ and [F̄ ] denote the unique images of these classes in Y . Thus,
KY = K̄X + g[F̄ ] (see [16]). The claims concerning c21 and χ

h
follow easily.

The canonical class of E(g)#F=TX is represented by a disjoint union of symplectic
surfaces

KE(g)#F=TX ∼ F1 ∪ · · · ∪ Fg ∪ Σg1 ∪ · · · ∪ Σgm

where KX ∼ Σg1 ∪ · · · ∪ Σgm is the symplectic surface in X \N given in the hypothesis,
and F1, . . . , Fg are symplectic tori. Let the spheres in the configuration Cg be denoted
by U0, U1 . . . , Ug−2 where U0 is the sphere of self-intersection −(g + 2). Then for each j,
we have Fj · U0 = 1 and Fj · Uk = 0, k > 0. Also, Σi · Uk = 0 for all i, k. Techniques
of [11] show that we may assume that all the intersections Fj ∩ U0 are orthogonal with
respect to the symplectic structure. The configuration Cg is blown down by replacing a
regular neighborhood with a rational ball Bg with π1 = Zg . The symplectic structure on
Bg is induced from an embedding in a ruled surface Fg−1: Let S+ and S− be the positive
and negative sections and f a fiber of Fg−1. Then S+ + f and S− are represented by
rational curves, and the complement of the configuration consisting of these two curves is
diffeomorphic to Bg . According to [10], the symplectic structure on Fg−1 is determined
by the areas of S+ and S−. In [14], Symington shows that for an appropriate choice of
these areas, we obtain a symplectic structure on Bg which gives the symplectic structure
on the rational blowdown.

Note that S+ · (S+ + f + S−) = g; so S+ ∩Bg is a sphere with g holes. Again, we may
assume that these intersections are orthogonal with respect to the symplectic form on
Fg−1. Thus (F1 ∪ · · ·∪Fg) \Cg glues together with S+ ∩Bg to form a genus g symplectic
surface in Y which represents g[F̄ ], and this completes the proof.
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We may now prove our theorem:

Proof of Theorem 1.1. First take X1 = E(3), and, for g > 1, let Xg be the result of
rationally blowing down the configuration Cg in E(g + 2). These minimal symplectic
simply connected 4-manifolds are discussed in [2]. The fact that the canonical class of
Xg is represented by an embedded symplectic surface of genus g is proved exactly as in
Lemma 2.2. Note that c21(Xg) = g − 1 and χh(Xg) = g + 2. Now using Lemma 2.2,
construct the required manifold X inductively, starting with Xg1 . Then

c21(X) =
n∑
i=1

mi(gi − 1), χ
h
(X) = 2 +

n∑
i=1

mi gi

To see that X is minimal, compute its Seiberg-Witten invariant: It is clear that (up
to sign) Xg1 has a single basic class, of self-intersection g1 − 1. Since g1 ≥ 1, Xg1 is
minimal. As in the proof of the above lemma, we see that Xg1,g2 has basic classes of the
form ±k1 ± k2 where k2

1 = g1− 1, k2
2 = g2 − 1, and k1 · k2 = 0. Continuing, one sees that

the basic classes of the manifold X constructed in this theorem have the form
n∑
i=1

mi∑
j=1

(±ki,j)

where k2
i,j = gi − 1 and ki,j · ki′,j′ = 0 unless (i, j) = (i′, j′). It follows easily from the

blowup formula [5] that, ifX is not minimal, there are two basic classes of the form A+E,
A − E where E has square −1 and A · E = 0. So ((A + E) − (A − E))2 = −4. But our
formula for the basic classes of X shows that the square of the difference of any two basic
classes has the form

(
n∑
i=1

mi∑
j=1

(±ηi,jki,j))2 =
n∑
i=1

mi∑
j=1

η2
i,j(gi − 1) ≥ 0

where ηi,j = 0 or 2 (and gi ≥ 1). Thus X is minimal.
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