
Turk J Math
24 (2000) , 367 – 371.
c© TÜBİTAK

On the Linearity of Certain Mapping Class Groups

Mustafa Korkmaz

Abstract

S. Bigelow proved that the braid groups are linear. That is, there is a faithful
representation of the braid group into the general linear group of some field. Using
this, we deduce from previously known results that the mapping class group of
a sphere with punctures and hyperelliptic mapping class groups are linear. In
particular, the mapping class group of a closed orientable surface of genus 2 is
linear.
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Introduction

One of the well-known open problem in the theory of mapping class groups is that
whether these groups are linear or not (cf. [2], Problem 30, p. 220). A group is called
linear if it has a faithful representation into GL(n, F ) for some field F and for some
integer n.

Recently, S. Bigelow [1] proved that the braid groups are linear. The braid group
Bn on n strings divided out by its center is isomorphic to a finite index subgroup of the
mapping class group of a sphere with n+1 marked points. Using this, we observe that the
mapping class group of a sphere with marked points and that the hyperelliptic mapping
class groups, which are defined below, are linear. In particular, the mapping class group
of a closed orientable surface of genus 2 is linear. The linearity of the mapping class group
of a surface of genus ≥ 3 still remains open.

Preliminaries

We first set up the notations and state the theorems used in the proof of the results
of this paper. Then we prove our results.
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Let S be a compact connected orientable surface of genus g with r marked points (also
called punctures) contained in the interior of S and with s boundary components. The
mapping class groupMs

g,r of S is defined to be the group of isotopy classes of orientation

preserving diffeomorphisms of S which preserve the set of marked points and are the
identity on the boundary. The isotopies are assumed to fix each marked point and each
boundary point. We denote the groupMg,0 simply byMg.

The braid group Bn on n strings is the group which admits a presentation with
generators σ1, σ2, . . . , σn−1, and with the relations

σiσj = σjσi, if |i− j| ≥ 2

and
σiσi+1σi = σi+1σiσi+1 .

In fact, the group Bn is isomorphic to M1
0,n, the mapping class group of a disc with n

marked points. The generator σi is the isotopy class of a certain diffeomorphism of Dn
which interchanges ith and i+ 1st marked points so that its square is a Dehn twist.

S. Bigelow proved the following remarkable theorem in [1].

Theorem 1 The braid groups are linear.

For a group G and for a subset X ⊆ G, the centralizer of X in G is defined to be

CG(X) = {y ∈ G : xy = yx for every x ∈ X}.

The center of G is CG(G) and it is denoted by C(G);

C(G) = {x ∈ G : xy = yx for every y ∈ G}.

For a field F , let Fn denote the space of n × n matrices with entries in F . As usual,
GL(n, F ) denotes the group of invertible matrices.

Theorem 2 ([5], Theorem 6.2.) Let G be a subgroup of GL(n, F ) ⊆ Fn and H a
normal subgroup of G such that H = CG(X) for some subset X of Fn. Then there exists

a homomorphism of G into GL(n2, F ) with kernel H.

Corollary 3 If G is linear, then so is G/C(G).

Proof. Take X = G in Theorem 2. 2

The following theorem is probably well known to algebraists and can easily be proved
by using the induced representation (cf. [4]).
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Theorem 4 Let G be a group and H be a subgroup of G of finite index n. Then
any injective homomorphism H → GL(k, F ) gives rise to an injective homomorphism
G→ GL(kn, F ). In particular, G is linear if and only if H is linear.

The results

We are now ready to state and prove our results of this note.

Theorem 5 The mapping class group M0,n of a sphere with n marked points is linear
for every n.
Proof. If n ≤ 3, then M0,n is a finite group and hence it is linear. Hence, we assume
that n ≥ 4.

Recall that the braid group Bn−1 is isomorphic to the mapping class group of a disc
Dn−1 with n− 1 marked points. The center of the braid group Bn−1 is the infinite cyclic
group generated by a Dehn twist about a simple closed curve isotopic to the boundary
component of the disc Dn−1 (cf. [2]). Let us glue a disc with one marked point x to the
boundary ofDn−1 to get a sphere S with nmarked points. Extending the diffeomorphisms
of Dn−1 to S by the identity gives a homomorphism ϕ from Bn−1 to M0,n. The image

ϕ(Bn−1) of ϕ is precisely the stabilizer of x under the action ofM0,n on the set of marked

points, which is of index n, and the kernel of ϕ is the center C(Bn−1) of Bn−1.
The group ϕ(Bn−1) is isomorphic to the quotient group Bn−1/C(Bn−1). Since the

group Bn−1 is linear, so is ϕ(Bn−1) by Theorem 2. By Theorem 4 the group M0.n is
linear. 2

Suppose that a closed connected orientable surface of genus g is embedded in the
xyz-space as in Figure 1 in such a way that it is invariant under the rotation J(x, y, z) =
(−x, y,−z) about the y-axis. Let us denote the isotopy class of J by . The hyperelliptic
mapping class group of genus g is defined to be the centralizer CMg() of  in Mg. If

g = 1 or 2, then the hyperelliptic mapping class group is equal to the mapping class
group.

Theorem 6 Let S be a closed connected orientable surface of genus g. Then the hyper-
elliptic mapping class group of S is linear. In particular, the mapping class group of a
closed connected orientable surface of genus 2 is linear.

Proof. Since the mapping class group of a torus is isomorphic to SL(2,Z), which is
linear, we can assume that g ≥ 2.
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Figure 1. A surface embedded in R3 which is invariant under J .

There is a well known short exact sequence

1 −→ Z2 −→ CMg()
p−→M0,2g+2 −→ 1,

where Z2 is the subgroup generated by the involution  (cf. [3]). Let ρ :Mg → Sp(2g, 3)
the natural homomorphism from the mapping class group to the symplectic group over
the finite field with three elements given by the action ofMg on the first homology group
of S. Let us denote by H the intersection of CMg() with the kernel of ρ. Hence, H is a

finite index subgroup of CMg(). As  acts as the minus identity on the first homology, it

is not contained in H . Hence, the restriction of p to H is injective. Since p(H) is of finite
index in M0,2g+2, H is linear. Therefore, the group CMg() is linear by Theorem 4.

The second statement follows from the fact thatM2 = CM2(). 2

Remark 7 Bigelow proves that the braid group Bn can be embedded in GL(n(n−1)
2

,Z[q±1,

t±1]). Since the ring Z[q±1, t±1] can be embedded in the field R of real numbers by
assigning to q, t two algebraically independent nonzero real numbers, the group Bn embeds

into GL(n(n−1)
2 ,R). Using Theorems 2 and 4 and the fact that the order of the group

Sp(2g, 3) is 3g
2 ∏g

i=1(3
2i−1), it can be deduced from the proofs of Theorems 5 and 6 that

1) M0,n embeds into GL(n(n−1)2(n−2)2

4 ,R),

2) the hyperelliptic mapping class group of genus g embeds into

GL(2(g + 1)g2(2g + 1)23g
2

g∏
i=1

(32i − 1),R).
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In particular, M2 embeds into GL(210 35 53,R).
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