Turk J Math
24 (2000) , 373 — 378.
© TUBITAK

On subspaces isomorphic to /7 in interpolation of

quasi Banach spaces

J.A. Lépez Molina*

Abstract
We show that every sequence {z,}52; in a real interpolation space (Eo, E1)o,q,
0<0<1,0<q< oo, of quasi Banach spaces Fo, E1, which is 0—convergent in
Eo + E1 but infy ||znl(gy,5,),, > 0, has a subsequence which is equivalent to the

standard unit basis of £9.
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1. Introduction

The classical theory of interpolation of Banach spaces by the real method has been
extended to interpolation of quasi Banach spaces by Sagher (see [4]). An important
theorem about the geometric structure of such Banach spaces (Eo, E1)gq, 1 < g < 00,
0 < @ < 1, concerning to the existence of subspaces isomorphic to £ on it is established
by Levy in [3]. On this paper we extend Levy’s result to the case of interpolation of
quasi Banach spaces by the real method, although we present our result in a sligtly
different way. We recall that a quasi Banach space is a vector space E over the field K
of real or complex numbers which is complete under the metric d(z,y) = ||z — y|| where

Il : E — [0, c0[ is a quasinorm, i.e. a function with properties
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1) ||z|| = 0 if and only if 2z = 0.
Q)Vexe E, VAeK |Ax| =\ |z|.
3) There is K > 1 such that for all z,y € K ||z +y|| < K(||z| + ||y]])-

By a theorem of Aoki and Rolewicz, if (E,|.||) is a quasi Banach space, there is
0 < r <1 and an equivalent quasinorm .||z on E which is indeed an r-norm, i.e. the

properties 1), 2) and

HYVvzyeE |z+yls <lzlE+ lvlE
are verified by ||| g
We shall use the following elementary consequence of Holder’s inequality: if a > 1,

A €R and B € R, then

|A+ B|* <2°7Y(|A|* + |B|?) (1)
and hence
A (e
a-pe = A0 g @

2. Main result

Theorem 1 Let0 < g < oo and let E;, i =0,1 be quasi Banach spaces. Let {x,}52 4
be a bounded sequence in the interpolation space (Eo, E1)g,q, such that limp oo Tn =0
for each n € N. Then there
is a subsequence {xk, }22, such that its closed linear span in (Eo, E1)g,q is isomorphic to
09,

in Eo + Ey but there is ¢ > 0 such that ¢ < ||z (5,5,

)9,:2

Proof. Let B;, i = 0,1 be the closed unit ball of the space E;. Let ||.||n, h € Z be
the Minkowski functional of the set e="By + e=D2B, ¢ Ey + E;. The quasinorm of

(Il = (ZIxIZ)é.

heZ

(Eo, E1)g 4 is equivalent to

(The proof is given in §4, proposition 4 of chapter I in [1] in the case of Banach spaces,

but the proof is also valid in the quasi Banach case). In consequence, we can suppose
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that for some M >0, >0
VneN M > |||z,]|| > e. (3)
There are numbers 0 < r; < 1, ¢ = 0,1 such that every F; is an r;-Banach space

respectively. Fix 0 <7 < min{rg,r1,¢}. Suppose we have found strictly increasing finite

sequences (k;)i; and (¢;)7; in N with ¢; = 1 such that for every 1 < j <n

E‘q
PO = >l l1E < ITPINCESIIIEY (4)
|hI<k; |hl>k; 2T
and
. el
Vi=23,...n > le,li<——Fsz (5)

. (a—m)(G+2) *
ot (=ri+2)
h| <k 2 E

Since (35 1<p.. [2]|#)1/4 is an equivalent quasi norm to the quasi norm of Ey + E1, (see
[1]) and limz, = 0 in Ey + E, there is ¢,41 > ¢, such that (5) holds for j = n + 1.
Now, by (3), there is k41 > ky, such that (4) holds for j = n+ 1 and the process can be
repeated indefinitely. Remark that, by (4) and (5), for every n € N we have

k
= el &
q —
VNEN Z thth>5q_§—§- (6)
|h|=kn_1+1
Take a finite scalar sequence {\,}:_; and put kg := —1. Since each F;, i = 0,1 is

an r—Banach space, every ||.||n, h € Z is an r—norm (see section 6.3 of [2]) . Moreover

g/r > 1. Then we have

q s L
<M (Z |Anlr|$tw,|ﬁ> =

h€Z \n=1

S
§ )\nxtn
n=1

s ki s % s %
DS (zwmmz) N z( wmnm) <
1

i=1 |h|=k;—1+1 \n=1 |h|>ks \n=

and applying (1) several times and by (3) and (4)

S

s ki
o> 25 [ leli+ | DD Pl el +

=1 |h|=k;—1+1 n=1,n#i
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S
(g=r)(n+1)
Yoo ke Nl <

[h|>ks n=1
s ki

2.2

i=1 |h|=k;_1+1 i=1 |h|=k;_1+1n=1,n%i

gl &
n=1

)Zmuz Sy e

i=1 |h|=k;—1+1 n=1,n#i

Now remark that

(@=r)(n+1)

Z 27 [l I =
=ki_

s ki

i1
(g=r)(n+1)
Yoo Pl i+

i=1 |h|=k;—1+1n=1

ki s

(g—r)(n+1)
) S 2 D, 1 =

i=1 |h|=ki_1+1 n=i+1

")

ki s s ki s
Z Z binn + Z Z Z Cinh
|=ki—

i=1 |h 1+1n=1 i=1 |h|=k;—1+1n=1
where
, QU N, |4 i n<i—1, kiq < |h] < ki
h p—
" ifn>i—1, ki_1<|h|SkJi
and

2 i 0> ke < b <K
=
in if n<i, ki1 <I|h| <.
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Then

i=1 |h|=ki_1+1 n=1 i=1 |h|=ki_1+1 n=1

n=1i=1 |h|=hk;_1+1 n=1i=1 |h|=k,_,+1

ZIA PY S e

i=n+1|h|=k;—1+1

ZP‘ |qz Z 2<q r)(w+1)thth <

i=1 |h|=ki—1+1

and by (4) and (5)

e? - e? - e? -
g g — Nl < = pWL 8
iz LN e SN = e Y ;| RO
In definitive, by (7)
q P
nLt,, < ( + 5) Z |)\i|q-
i=1
On the other hand, using (2) several times, (6) and (8)
q s ki s q
w25 3 S ke >
i=1 B =k 41 lln=1 h
r 4L
s ki s "
Z Sl | X M| | 2
i=1 |h|=k;—1+1 n=1,n#i h
ki s 1
Z 1=l S || | =
=1 |h|=ki_1+1 " n=1,n#i A
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a
r

")

ki s

1
—= Nl lf =1 D0 alllze Iy >
i=1 |h|=k;—1+1 27 n=1,n#i

and using (1) repeatedly

. i 1 . (g=r)(n+1)
q—Tr n
) > 2q77~l>\z‘|q|\xtml\ﬁ— > 2 Dl I ) >
=

=1 |h|=k;—1+1 n=1,n%i

and by (6) and (8)

S

e? - e? - e?
ol+ 4T Z Al = 92+ 9" Z Aaf? = 92+4=" Z [An]?
"=l " n=1 "

n=1

which proves the theorem. W
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