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Abstract

The purpose of this article is to introduce p-Stirling numbers of the first and

second kinds.
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1. Introduction

Pronounced “m-choose-n”, C(m, n) is the number of n-element subsets of {1, 2, . . . , m}.
Let Cm be the m-by-m matrix whose (i, j)-entry is C(i, j). Then, for example,

C5 =



1 0 0 0 0

2 1 0 0 0

3 3 1 0 0

4 6 4 1 0

5 10 10 5 1


.

Because det(Cm) = 1, not only is Cm invertible, but C−1
m is an integer matrix. Indeed,

among the many wonderful properties of binomial coefficients is the fact that C−1
m can be

obtained from Cm by inserting a few well chosen minus signs: The (i, j) -entry of C−1
m is

(−1)i+jC(i, j). Thus
AMS Numbers: Primary 05A05; Secondary, 15A69
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C−1
5 =



1 0 0 0 0

−2 1 0 0 0

3 −3 1 0 0

−4 6 −4 1 0

5 −10 10 −5 1


.

One way to insert this “checkerboard array” of minus signs is by means of matrix

multiplication:

C−1
m = DmCmDm, (1)

where Dm = D−1
m = diag(−1, 1,−1, . . . , (−1)m) is the m − by −m diagonal matrix of

∓1’s.

The Stirling number of the second kind, S(m, n), is the number of ways to partition

{1, 2, . . . , m} into a disjoint union of n nonempty subsets caled the parts of the partition.

The 2-part partitions of {1, 2, 3, 4} are

{1} ∪ {2, 3, 4}, {2} ∪ {1, 3, 4}, {3} ∪ {1, 2, 4}, {4} ∪ {1, 2, 3},

{1, 2} ∪ {3, 4}, {1, 3} ∪ {2, 4}, and {1, 4} ∪ {2, 3}

Thus, S(4, 2) = 7. More colorfully, S(m, n) is the number of ways to distribute m

distinguishable (labeled) cows among n identical (unlabeled) pastures, with each pasture

containing at least one cow. So, S(m,m) = 1 = S(m, 1), m ≥ 1, and S(m, n) = 0 if

m ≥ 1 > n or n > m. Moreover,

S(m+ 1, n) = S(m, n − 1) + nS(m, n), m ≥ 1. (2)

(While the author is most familiar with [7], standart facts like this can be found in

almost any undergraduate combinatorics text.) Let Tm (T for “two”) be the m-by-m

matrix whose (i, j)-entry is S(i, j). Then, for example,

T5 =



1 0 0 0 0

1 1 0 0 0

1 3 1 0 0

1 7 6 1 0

1 15 25 10 1


.
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Given Stirling numbers of the second kind, one naturally expects there to be other

kinds. The (unsigned) Stirling number of the first kind, s(m, n), is the number of

permutations of degree m whose disjoint cycle factorizations consist of n cycles (including

cycles of length one). Of the permutations of degree 4, three have “cycle type” [2,2],

namely, (12) (34), (13) (24), and (14) (23), and eight have cycle type [3,1], namely, the

3-cycles (123), (124), . . . . Thus, s(4, 2) = 3 + 8 = 11

In general, s(m, 1) = (m− 1)!, s(m,m) = 1, m ≥ 1, and s(m, n) = 0 if m ≥ 1 > n or

n > m. Moreover,

s(m + 1, n) = s(m, n− 1) +ms(m, n), m ≥ 1. (3)

Let Fm be the m-by-m matrix whose (i, j)-entry is s(i, j). Then,

F5 =



1 0 0 0 0

1 1 0 0 0

2 3 1 0 0

6 11 6 1 0

24 50 35 10 1


.

Inverting Fm is not as simple as sprinkling minus signs among its entries; they must be

sprinkled among the entries of Tm! That is,

F−1
m = DmTmDm (4a)

or, because D−1
m = Dm,

T−1
m = DmFmDm. (4b)

In particular,

F−1
5 =



1 0 0 0 0

−1 1 0 0 0

1 −3 1 0 0

−1 7 −6 1 0

1 −15 25 −10 1


.
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2. Extensions

Suppose a rancher has p bulls and m cows that he plans to graze on p + n identical

pastures. In how many ways can he distribute the cattle among the pastures so that

no pasture is left emty and no two bulls occupy the same pasture? If we assume he

knows his cattle well enough to distinguish one from another, then the answer is a p-

Stirling number of the second kind. Denote by Sp(m, n) the number of ways to partition

{1, 2, . . . , p, p + 1, . . . , p + m} into a disjoint union of p + n nonempty parts, subject

to the condition that no two elements of {1, 2, . . . , p} belong to the same part. Then

S0(m, n) = S(m, n), Sp(m, 0) = pm, p > 0, and Sp(m,m) = 1.

Example 2.1. Suppose m = 5, n = 2, and p is arbitrary. Once the bulls have been

distributed among the pastures, we can isolate

(i) all 5 cows from the bulls in S(5, 2) = 15 ways;

(ii) 4 cows from the bulls in 5× p× S(4, 2) = 35p ways;

(iii) 3 cows from the bulls in C(5, 2)× p2 × S(3, 2) = 30p2 ways; and

(iv) 2 cows from the bulls in C(5, 3)× p3 × S(2, 2) = 10p3 ways.

Because no pasture can be left empty, this exausts all the possibilities, i.e., Sp(5, 2) =

10p3 + 30p2 + 35p+ 15.

Because C(m,m− k) = C(m, k), the argument illustrated in Example 2.1 proves the

following:

Theorem 2.2. Let p 6= 0 be fixed but arbitrary. If 1 ≤ n ≤m then

Sp(m, n) =
m∑
k=1

C(m, k)S(k, n)pm−k. (5)

Because S(k, n) = 0, k < n, Sp(m, n) is a polynomial of degree m−n in p with leading

coefficient C(m, n) and constant coefficient S(m, n). That S1(m, n) = S(m + 1, n + 1)

follows from (5) and the well known relation (see, e.g., [7, p. 76])
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S(m+ 1, n+ 1) =
m∑
k=1

C(m, k)S(k, n).

Theorem 2.3. Let p 6= 0 be fixed but arbitrary. Define Sp(0, 0) = 1, and Sp(m, n) = 0

if n < 0 or n > m. Then

Sp(m+ 1, n) = Sp(m, n− 1) + (p+ n)Sp(m, n), m ≥ 1. (6)

Proof. There are Sp(m, n − 1) distributions that leave the (m + 1) st cow alone in a

pasture. In the Sp(m, n) ways to distribute the first m cows without leaving an empty

pasture, the (m+ 1) st cow can join any of the resulting p+ n herds. 2

Theorem 2.3 can also be proved using Theorem 2.2 and the rcurrence relations for

binomial coefficients and Stirling numbers of the secod kind.

Predictably, there is a family of p-Stirling numbers of the first kind. Denote by

sp(m, n) the number of permutations of degree p+m whose disjoint cycle factorizations

consist of p + n cycles, subject to the condition that no two elements of {1, 2, . . . , p}
belong to the same cycle. Then, s0(m, n) = s(m, n) and sp(m,m) = 1, m ≥ 1..

Example 2.4. Suppose p > 0. Imagine modifying the identity permutation of degree

p by successively inserting p + 1, p + 2, . . . , p + m into what is initially a product of

the 1-cycles, (i), 1 ≤ i ≤ p, according to the following rule: Having previously inserted

k integers, the next one, p + k + 1, may be placed in any one of p + k places, namely,

immediately following any of 1, 2, . . . , p + k. The number of different ways to insert all

m integers is

sp(m, 0) = p(p + 1)(p+ 2) · · · (p+m− 1) (7)

= p(m),

the so-called “rising factorial function”.

If 0 < n ≤ k ≤ m, then each of the C(m, k) k-element subsets of {p+1, p+2, . . . , p+m}
can be distributed among n empty cycles in s(k, n) ways, and the remainingm−k integers
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among the cycles already containing the first p positive integers in p(m−k) ways. Hence

(because s(k, n) = 0, k < n),

sp(m, n) =
m∑
k=1

C(m, k)s(k, n)p(m−k). (8)

Theorem 2.5. Let p 6= 0 be fixed but arbitrary. Define sp(0, 0) = 1 and sp(m, n) = 0

if n < 0 or n > m. Then

sp(m+ 1, n) = sp(m, n− 1) + (p +m)sp(m, n), m ≥ 1. (9)

Proof. Among the sp(m + 1, n) permutations under consideration, sp(m, n − 1) fix

m+ 1. If it is not left fixed, m+ 1 immediately follows one of the other p +m integers.

That is, (p+m)sp(m, n) of the permutations do not fix m+ 1. 2

While (8) may be regarded as an analog of (5), it is more useful to have sp(m, n)

expressed as a polynomial in ordinary powers of p.

Theorem 2.6 Let p 6= 0 be fixed but arbitrary. If m ≥ n ≥ 1 then

sp(m, n) =
m∑
k=1

s(m, k)C(k, n)pk−n. (10)

Because C(k, n) = 0, k < n, sp(m, n) is a polynomial of degree m−n in p with leading

coefficient C(m, n) and constant coefficient s(m, n). That s1(m, n) = s(m+1, n+1) follows

from (10) and the well known relation (see, e.g., [7, p. 111])

s(m+ 1, n+ 1) =
m∑
k=1

s(m, k)C(k, n).

The appearance of (10) suggests a proof that splits the enumeration into m− n + 1

cases (as in the derivation of (8)). If such a revealing argument exists, it has escaped the
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author. (See, e.g., [8 p. 232] for a recurrence argument proving the equivalence of (8)

and (10); the existence of a combinatorial argument is not the issue.)

Proof. The proof is by induction on m. If m = 1 then both sides of (10) are equal to

1. By (9) and the induction hypothesis,

sp(m+ 1, n) = sp(m, n− 1) + (p +m)sp(m, n)

=
m∑
k=1

s(m, k)C(k, n− 1)pk−n+1 + (p +m)
m∑
k=1

s(m, k)C(k, n)pk−n

=
m∑
k=1

s(m, k)[C(k, n− 1) +C(k, n)]pk−n+1 +m

m∑
k=1

s(m, k)C(k, n)pk−n

= C(m+ 1, n)pm+1−n +
m−1∑
k=1

s(m, k)C(k + 1, n)pk+1−n

+
m∑
k=1

ms(m, k)C(k, n)pk−n

= C(m+ 1, n)pm+1−n +
m∑
k=2

s(m, k − 1)C(k, n)pk−n

+
m∑
k=1

ms(m, k)C(k, n)pk−n

= s(m + 1, m+ 1)C(m+ 1, n)pm+1−n

+
m∑
k=2

[s(m, k − 1) +ms(m, k)]C(k, n)pk−n +ms(m, 1)C(1, n)

=
m+1∑
k=1

s(m+ 1, k)C(k, n)pK−n,

by the recurrence relations for binomial coefficients and Stirling numbers of the first kind,

an the facts that s(m,m) = 1 = s(m + 1, m+ 1) and s(m+ 1, 1) = ms(m, 1). 2

Corollary 2.7. Suppose p is fixed but arbitrary. Let Am and Bm be the m-by-m

matrices whose (i, j)-entries are sp(i, j) and Sp(i, j), respectively. Then
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A−1
m = DmBmDm (11a)

and

B−1
m = DmAmDm. (11b)

Proof. Because D−1
m = Dm, (11a) and (11b) are equivalent. If p = 0, they become

(4a) and (4b), respectively. Otherwise, let Pm be the matrix whose (i, j)-entry is pi−j,

1 ≤ i, j ≤ m. By Theorem 2.2, Bm = (Cm ◦ Pm)Tm, where Cm ◦ Pm is the Hadamard

(entry-wise) product of Cm and Pm, and Tm is the “T for two” matrix from Section 1.

Thus, B−1
m = T−1

m (Cm◦Pm)−1.Observe that the (i, j)-entry of [Dm(Cm◦Pm)Dm][Cm◦Pm]

is

m∑
k=1

(−1)i+kC(i, k)pi−kC(k, j)pk−j = pi−j
m∑
k=1

(−1)i+kC(i, k)C(k, j)

= pi−jδi,j

by (1). Thus, (Cm ◦ Pm)−1 = Dm(Cm ◦ Pm)Dm. Together with (4b), this yield

B−1
m = T−1

m (Cm ◦ Pm)−1

= [DmFmDm][Dm(Cm ◦ Pm)Dm]

= Dm[Fm(Cm ◦ Pm)]Dm

= DmAmDm,

by Theorem 2.6. 2

3. Generating Functions

Define exponential generating functions

fpn(x) =
∑
m≥0

sp(m, n)
m!

xm (12)
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and

gpn(x) =
∑
m≥0

Sp(m, n)
m!

xm. (13)

(Because sp(m, n) = 0 = Sp(m, n), m < n, the first n terms of both summations are

zero.)

Theorem 3.1. If p is a nonnegative integer and n ≥ 1, then

gpn(x) = epx(ex − 1)n/n!,

and

fpn(x) =
[− ln(1 − x)]n
n!(1− x)p .

Proof. It is well known (see, e.g., [7, pp 208-209]) that g0
n(x) = (ex − 1)n/n! and

f0
n = [− ln(1− x)]n/n!. If p 6= 0 then by (5),

gpn(x) =
∑
m≥0

Sp(m, n)
m!

xm

=
∑
m≥0

(
1
m!

m∑
k=1

C(m, k)S(k, n)pm−k)xm

=
∑
m≥0

(
m∑
k=0

S(k, n)
k!

pm−k

(m− k)!)x
m

= (
∑
m≥0

S(m, n)
m!

xm)(
∑
m≥0

pm

m!
xm)

= g0
n(x)e

px.
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Similarly, using (8),

fpn(x) =
∑
m≥0

sp(m, n)
m!

xm

=
∑
m≥0

(
1
m!

m∑
k=1

C(m, k)s(k, n)p(m−k))xm

=
∑
m≥0

(
m∑
k=0

s(k, n)
k!

p(m−k)

(m− k)! )x
m

= (
∑
m≥0

s(m, n)
m!

xm)(
∑
m≥0

p(m)

m!
xm)

= f0
n(x)

∑
m≥0

C(p+m− 1, m)xm

= f0
n(x)(1− x)−p,

because C(p+m− 1, m) = (−1)mC(−p,m) (see, e.g., [7, p. 196]). 2

Consider the function

hpm(x) =
m∑
n=0

sp(m, n)xn. (14)

Then, for example,

hp1(x) = sp(1, 0) + sp(1, 1)x

= p+ x (15)

and

hp2(x) = sp(2, 0) + sp(2, 1)x+ sp(2, 2)x2

= p(2) + (p+ [p+ 1])x+ x2

= (p+ x)([p+ 1] + x)

= (p+ x)(2), (16)

because sp(2, 1) = sp(1, 0) + (p+ 1)sp(1, 1).
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Theorem 3.2. The function hpm(x) = (p+ x)(m).

Proof. Equations (15)-(16) start a proof by induction. From Equation (9),

hpm+1(x) =
m+1∑
n=0

sp(m+ 1, n)xn

=
m+1∑
n=1

sp(m, n− 1)xn +
m∑
n=0

(p +m)sp(m, n)xn

= x
m∑
n=0

sp(m, n)xn + (p+m)
m∑
n=0

sp(m, n)xn

= (x+ [p+m])hpm(x),

because sp(m, n) = 0 if n < 0 or n > m. 2

4. Symmetric Functions.

The rth elementary symmetric function of the variables x1, x2, . . . , xn is

E0(x1, x2, . . . , xn) = 1, if r = 0, and

Er(x1, x2, . . . , xn) =
∑

α∈Qr,n

r∏
t=1

xα(t),

1 ≤ r ≤ n, where Qr,n is the set of all C(n, r) strictly increasing functions from

{1, 2, . . . , r} to {1, 2, . . . , n}. In other words, Er(x1, x2, . . . , xn) is the sum of all products

of the x’s taken r at a time. In particular, Er(x1, x2, . . . , xn) = 0 if r < 0 or r > n.

Moreover,

Er(x1, x2, . . . , xn) = Er(x1, x2, . . . , xn−1)

+xnEr−1(x1, x2, . . . , xn−1), 1 ≤ r ≤ n. (17)

Theorem 4.1. If p is fixed but arbitrary, the p-Stirling number of the first kind is

given by the formula

sp(m, n) = Em−n(p, p+ 1, . . . , p+m− 1). (18)
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When p = 0, (18) reduces to the well known identity

s(m, n) = Em−n(0, 1, . . . , m− 1)

= Em−n(1, 2, . . . , m− 1),

for Stirling numbers of the first kind.

Proof. From Theorem 3.2, sp(m, n) is the coefficient of xn in the polynomial

hpm(x) = (p+ x)(m)

= (p+ x)([p+ 1] + x) · · · ([p+m− 1] + x).

On the other hand, the coefficient of xn in the generic polynomial

(x+ r1)(x+ r2) · · · (x+ rm)

is Em−n(r1, r2, . . . , rm) 2

Theorem 4.1 can also be proved using Equations (9) and (17). The analog of Theorem

4.1 for p-Stirling numbers of the second kind involves homogeneous symmetric functions.

Let H0(x1, x2, . . . , xn) = 1 and

Hr(x1, x2, . . . , xn) =
∑

α∈Gr,n

r∏
t=1

xα(t),

r ≥ 1, where Gr,n is the set of all C(n+r−1, r) nondecreasing functions from {1, 2, . . . , r}
to {1, 2, . . . , n}. In other words, Hr(x1, x2, . . . , xn) is the sum of all monomials of (total)

degree r in the x’s. In particular, Hr(x1, x2, . . . , xn) = 0 if r < 0, and

Hr(x1, x2, . . . , xn) = Hr(x1, x2, . . . , xn−1)

+xnHr−1(x1, x2, . . . , xn), r ≥ 1. (19)

Theorem 4.2. If p is fixed but arbitrary, the p-Stirling number of the second kind is

given by the formula

Sp(m, n) = Hm−n(p, p+ 1, . . . , p+ n). (20)
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When p = 0, (20) reduces to the well known identity

S(m, n) = Hm−n(0, 1, . . . , n)

= Hm−n(1, 2, . . . , n),

for Stirling numbers of the second kind.

Proof. Using (19) one sees that the arrays defined on either side of (20) obey the same

recurrence. Because Hm(p) = pm = Sp(m, 0), the proof is complete. 2

Corollary 4.3. The ordinary generating function for p-Stirling numbers of the second

kind is

∑
m≥0

Sp(m, n)xm =
n∏
t=0

xn

1− (p+ t)x
.

Proof. From Theorem 4.2,∑
m≥0

Sp(m, n)xm =
∑
m≥0

Hm−n(p, p+ 1, . . . , p+ n)xm

= xn
∑
m≥0

Hm−n(p, p+ 1, . . . , p+ n)xm−n

= xn
∑
m≥0

Hm(p, p+ 1, . . . , p+ n)xm.

The result now follows from the well known fact (see, e.g., [5, p. 21] or [8, p. 285]) that

∑
m≥0

Hm(x0, x1, . . . , xn)zm =
n∑
t=0

(1− xtz)−1. (21)

2

Note that the right-hand sides of (18) and (20) are valid for any real p. This suggests

an extension of the definitions of p-Stirling numbers
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Definition 4.4. Let p ∈ IR be fixed but arbitrary. For integers m and n satisfying m ≥
n ≥ 0, the p-Stirling number of the first kind is sp(m, n) = Em−n(p, p+1, . . . , p+m−1),

and the p-Stirling number of the second kind is Sp(m, n) = Hm−n(p, p+ 1, . . . , p+ n).

What are the implications of this definition for the results in Sections 2 and 3? Answer:

None! Theorems 2.3 and 2.5 are the recurrence relations that led to (and are reflected

in) the extended definitions. For fixed m and n, Theorems 2.2 and 2.6 are polynomial

identities of degree m−n in p, valid for all positive integers p. Thus, they remain valid for

all p ∈ IR. Finally, because they depend only on previous results (and Newton’s Binomial

Theorem [7, p. 196]), the proofs of Corollary 2.7 and Theorems 3.1 and 3.2 are unaffected.

Restated in terms of symmetric functions, Equation (11b) becomes:

Corollary 4.5. For any p ∈ IR,

m∑
r=0

(−1)m+rEm−r(p, p+ 1, . . . , p+m− 1)Hr−n(p, p+ 1, . . . , p+ n) = δm,n , (22)

where m and n are positive integers.

Because the numbers of variables are not the same, Corollary 4.5 is not an obvious

consequence of the well known identity

m∑
r=0

(−1)rEr(x0, x1, . . . , xn)Hm−r(x0, x1, . . . , xn) = 0, m > 0.

(See, e.g., [5, p. 21], [7, p. 204] or [8, p. 286].) It is , however, a special case of the

following,

Theorem 4.6. Let m be a positive integer. If x0, x1, . . . , xm are independent variables,

then
m∑
r=0

(−1)i+rEi−r(x0, x1, . . . , xi−1)Hr−j(x0, x1, . . . , xj) = δi,j,

1 ≤ i, j ≤ m.

The author is indebted to the anonymous referee of an earlier effort for the following

simple proof of Theorem 4.6.
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Proof. Because Ei−r(x0, x1, . . . , xi−1)Hr−j(x0, x1, . . . , xj) = 0 unless i ≥ r ≥ j and

the product is 1 when i = r = j, we may assume i > j. From Equation (21) and the

relation between the roots of a generic monic polynomial and its coefficients (see the proof

of Theorem 4.1),∑
r≥0

(−1)rEr(x0, x1, . . . , xi−1)zr
∑
s≥0

Hs(x0, x1, . . . , xj)zs

=
(1− x0z) · · · (1 − xi−1z)
(1 − x0z) · · · (1− xjz)

= (1− xj+1z) · · · (1 − xi−1z), (23)

where (23) should be interpreted as 1 when i = j + 1. Because (23) is a polynomial in z

of degree i− j − 1, the coefficient of zi−j is zero. 2

It should be observed that analogous results can be proved for the “q-Stirling numbers”

[2] that can be defined as

s[m, n] = Em−n(1, 1 + q, 1 + q + q2, . . . , 1 + q + q2 + · · ·+ qm−2)

and

S[m, n] = Hm−n(1, 1 + q, 1 + q + q2, . . . , 1 + q + q2 + · · ·+ qn−1).

Indeed, both the p and the q-Stirling numbers (not to be confused with p, q Stirling

numbers [10]) are special cases of “Comtet numbers” [1], [11].

5. Applications

Because it is the sum of its proper divisors, 6 = 1 + 2 + 3 is said to be perfect. In

this context, 1 + 2 + 3 is the same as 3 + 2 + 1, but different from 4 + 2. In expressing

the “perfection” of 6, what interests us is the “partition” [3,2,1].

A partition of m of length n is an unordered collection of n positive integer parts that

sum tom. Because a partition is unordered, we may arrange its parts any way we like. The

notation [π1, π2, . . . , πn] ` m means π1 +π2 + · · ·πn = m, where π1 ≥ π2 ≥ · · · ≥ πn ≥ 1.

The 3-part partitions of 6 are [4,1,1], [3,2,1], and [2,2,2]. (The words “partition” and

“part” were used previously in a different way.)
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The “Ferrers diagram” of π = [π1, π2, . . . , πn] ` m is an array of n rows of “boxes”

Bij , 1 ≤ j ≤ πi, 1 ≤ i ≤ n. If box Bij contains the expression x− i+ j, then the product

of the contents of all m boxes is the monomial

fπ(x) =
n∏
i=1

πi∏
j=1

(x− i+ j).

Figure 1 illustrates the computation for f[3,2](x) = x2(x2 − 1)(x+ 2).

[ x ][x+ 1][x+ 2]

[x− 1][ x ]

Figure 1.

Corresponding to each π ` m is an “irreducible character”, χπ, of the symmetric

group Sm. For our surposes, it suffices to think of χπ as a function from Sm into the

integers. The following formula arises in the context of the polynomial representations of

the general linear group (see, e.e., [6]). If n is a fixed but arbitrary nonnegative integer,

then

nk =
∑
π`m

(χπ(em)χπ(τ )/m!)fπ(n), m ≥ 1, (24)

where em is the identity, and τ is any permutation in Sm whose disjoint cycle factorization

consists of k cycles. If, for example, τ has just one cycle in its disjoint cycle factorization,

then

χπ(τ ) =


(−1)m−r , if π = [r, 1m−r]

0, otherwise

(25)

where [r, 1m−r] is shorthand for [r, 1, 1, . . . , 1] ` m. If π = [r, 1m−r], then χπ(em) =

m!/[(r − 1)!(m− r)!m]. Substituting these values into (24), we obtain

n =
m∑
r=1

(−1)m−rC(n+ r − 1, m)C(m− 1, r − 1), m ≥ 1,
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a well known combinatorial identity. (See, e.g., [9, p.8].) More significant in the present

context is the identity

fπ(x) =
m−r∑
j=1−r

(x − j)

=
m∑
n=1

(−1)m−nEm−n(1− r, 2− r, . . . , m− r)xn

=
m∑
n=1

(−1)m−ns1−r(m, n)xn, (26)

when π = [r, 1m−r]. Observing that the right-hand side of (26) is valid whether or not

m ≥ r, we define

fm,r(x) =
m∑
n=1

(−1)m−ns1−r(m, n)xn, (27)

for all positive integers m and r.

n

0 1 2 3 4 5

1 -3 1

2 6 -5 1

m 3 -6 11 -6 1

4 0 -6 11 -6 1

5 0 -6 5 5 -5 1

Figrue 2. s−3(m− n)

Example 5.1. Suppose r = 4 so that the coefficient of xn in fm,r(x) is (−1)m−ns−3(m, n).

From s−3(m,m) = 1, s−3(m, 0) = (−3)(m), and s−3(m + 1, n) = s−3(m, n − 1) + (m −
3)s−3(m, n), the table in Figure 2 is easily constructed. Together with (27), this table
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yields

f1,4(x) = x

f2,4(x) = −(−5)x + x2 = x(x+ 5)

f3,4(x) = 11x− (−6)x2 + x3 = x(x2 + 6x+ 11)

f4,4(x) = −(−6)x + 11x2 − (−6)x3 + x4 = x(x+ 1)(x+ 2)(x+ 3)

f5,4(x) = −6x− 5x2 + 5x3 − (−5)x4 + x5 = (x− 1)x(x+ 1)(x+ 2)(x+ 3),

and so on. Notice that

fm,4(x) =
m−4∏
j=−3

(x − j)

= f[4,1m−4 ](x), m ≥ 4

Equation (27) expresses fm,r(x) as a linear combination of xn, 1 ≤ n ≤ m. The inverse

is an analog of a result of Kramer [3] concerning single-hook class sums and the center of

the group algebra of Sm.

Theorem 5.2. Let r be a fixed but arbitrary positive integer. Then

xm =
m∑
k=1

S1−r(m, k)fk,r(x). (28)

Proof. For any m ≥ k, we have from (27) that

S1−r(m, k)fk,r(x) = S1−r(m, k)
k∑

n=1

(−1)k−ns1−r(k, n)xn.

summing both sides on k yields

m∑
k=1

S1−r(m, k)fk,r(x) =
m∑
k=1

S1−r(m, k)
m∑
n=1

(−1)k−ns1−r(k, n)xn
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because sp(k, n) = 0 for n > k. Interchanging the order of summation,

m∑
n=1

(−1)m−n(
m∑
k=1

(−1)m+kS1−r(m, k)s1−r(k, n))xn =
m∑
n=1

δm,nx
n = xm

by (11b). 2

Example 5.3. When r = 1, fm,1(x) = f[1m](x) = x(x− 1) · · · (x−m+ 1), the “falling

factorial function”, and s1−1(m, n) = s0(m, n) = s(m, n), a stirling number of the first

kind. In this case (28) becomes one of the classical facts about Stirling numbers of the

second kind.

Our final result is an analog of a classical identity equating the Jacobi-Trudi and

Nägelsbach-Kostka formulas for Schur functions. The transpose of the Ferrers diagram of

π ` m is the Ferrers diagram of the conjugate partition π∗ ` m. Thus, π∗ is the partition

of length π1 whose ith part is π∗i = ◦({j : πj ≥ i}).

Corollary 5.4. Suppose π = [π1, π2, . . . , πr] is partition ofm. Let π∗ = [π∗1, π∗2 , . . . , π∗s ]

be its conjugate partition. Then, abbreviating Er(x0, x1, . . . , xk) as Er(, xk) and

Hr(x0, x1, . . . , xk) as Hr(, xk)

det(Hπi−i+j(, xs−πi+i)) = det((−1)i+jEπ∗i −i+j(, xs+π∗i−i)). (29)

Using the Theorem 4.6 and Jacobi’s Identity [8, p. 237], the proof of (29) is identitical

to the proof in the classical case [8, p. 287]. (While he hasn’t seen it, the author has

been told that a result equivalent to Corollary 5.4 can be found in [4].)

Example 5.5. Suppose m = 5 and π = [3, 2], so r = 2, s = 3, and π∗ = [2, 2, 1].

Setting x0 = v, x1 = w, x2 = x, x3 = y, and x4 = z the lefthand side of (29) becomes

det

(
H3(v, w) H4(v, w)

H1(v, w, x, y) H2(v, w, x, y)

)
= H3(v, w)H2(v, w, x, y)−H4(v, w)H1(v, w, x, y)
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which, after some computation, can be expressed as

(v3 + v2w + vw2 + w3) (x2 + xy+ y2) + (v3w + v2w2 + vw3) (x+ y) + v2w2(v +w)

After substituting appropriate values, the righthand side of (29) becomes

det


E2(v, w, x, y, z) −E3(v, w, x, y, z) E4(v, w, x, y, z)

−E1(v, w, x, y) E2(v, w, x, y) −E3(v, w, x, y)

0 −E0(v, w) E1(v, w)


= E2(v, w, x, y, z)[E2(v, w, x, y)E1(v, w)− E3(v, w, x, y)]

+E1(v, w, x, y)[E4(v, w, x, y, z)−E3(v, w, x, y, z)E1(v, w)]

= (v3 + v2w + vw2 +w3)(x2 + xy + y2) + (v3w + v2w2 + vw3)(x+ y) + v2w2(v + w).

(The coefficient of z in the penultimate expression is

E1(v, w, x, y)[E2(v, w, x, y)E1(v, w)− E3(v, w, x, y)]

+E1(v, w, x, y)[E3(v, w, x, y)− E2(v, w, x, y)E1(v, w)] = 0.

While the (common) value of the two determinants is symmetric in v and w, and in x

and y, unlike the Jacobi-Trudi and Nägelsbach-Kostka determinants, it is not symmetric

in all four variables, much less in v, w, x, y, and z.
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