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Abstract

We give seven necessary and sufficient conditions for a metric space to be com-

plete.
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1. Introduction

Metric completeness has been characterized in various ways; in particular, Kuratowski

[3] proved that a metric space (X, d) is complete if and only if every sequence {Fn}
of closed subsets in X with Fn ⊃ Fn+1 and α(Fn) → 0 as n → ∞ has a nonempty

intersection. Using the existence of stationary points of a class of multimaps, Dancs,

Hegedus and Medvegyev [2] obtained a necessary and sufficient condition for a metric

space to be complete. For an ordered metric space Conserva and Rizzo [1] gave two

characterizations of order completeness by using fixed point theorems and the convergence

of Cauchy chains.

In this paper we introduce three classes of multimaps, one of which contains the

maps used in [2], and characterize the metric completeness by virtue of the classes of

multimaps. On the other hand we obtain connections between the metric completeness

and the convergence of nondecreasing sequences in ordered metric spaces.
1991 AMS subject classification. 54H25.
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2. Preliminaries

Throughout this paper, (X, d) is a metric space, ≤ an order (i.e, a reflexive, antisym-

metric and transitive relation) on X,CL(X) the family of all nonempty closed subsets

of X. N denotes the set of all positive integers. For A ⊂ X, δ(A) and
−
A denote the

diameter and the closure of A, respectively; α(A) = inf {ε > 0: there exists a finite

convering of A with sets having a diameter less than ε} if δ(A) < ∞ and α(A) = ∞ if

δ(A) =∞. A sequence {xn}nεN in X is said to be nondecreasing if xm ≤ xn for all m, n

in N with m ≤ n.

For each multimap f of X into CL(X), let

(a) fy ⊂ fx for each x in X and each y in fx;

(b) There exists a sequence {xn}nεN in X such that xn+1 ∈ fxn for all n in N and

that δ(fxn)→ 0 as n→∞;

(c) There exists a sequence {xn}nεN in X such that xn+1 ∈ fxn for all n in N and

that α(fxn)→ 0 as n→∞;

(d) limn→∞d(xn, xn+1) = 0 for each sequence {xn}nεN in X with xn+1 ∈ fxn, n ∈ N .

Motivated from Dancs et al [2], we introduce the following three classes of multimaps:

AB(X) = {f : f satisfies (a) and (b)}, AC(X) = {f : f satisfies (a) and (c)} and AD(X)

= {f : f satisfies (a) and (d)}.
In order to obtain our results, we need the following two lemmas.

Lemma 2.1. If f is in AD(X), then there exists a point x in X such that fx is bounded.

Proof. Suppose that fx is unbounded for each x in X. Then there exist a, b in fx

satisfying

2 < d(a, b) ≤ d(a, x) + d(b, x) ≤ 2max{d(a, x), d(b, x)}

Therefore there is x1 in fx such that d(x, x1) > 1. Suppose that x, x1, . . . . . . , xn were

chosen so that xi ∈ f xi−1 and d(xi, xi−1) > i for i = 1, 2, . . . , n, where x0 = x. Since

fxn is unbounded, there exist a, b in fxn such that

2n+ 2 < d(a, b) ≤ 2max{d(a, xn), d(b, xn)}
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This means that there exists xn+1 in fxn with d(xn, xn+1) > n + 1. By induction, we

obtain a sequence {xn}nεN in X such that xn+1 ∈ fxn, d(xn, xn+1) > n + 1 for all n

in N . Consequently d(xn, xn+1) → ∞ as n → ∞. Since f ∈ AD(X), it follows that

d(xn, xn+1)→ 0 as n→∞. This is a contradiction. 2

Lemma 2.2. AD(X) ⊂ AB(X) ⊂ AC(X).

Proof. Lef f be in AB(X). Note that α(fxn) ≤ δ(fxn). Then (b) implies (a) and

hence f ∈ AC(X), i.e, AB(X) ⊂ AC(X).

Lef f be in AD(X). In view of Lemma 2.1, there exists x0 in X such that fx0 is

bounded. We can easily construct a sequence {xn}nεN in X such that

d(xn, xn−1) ≥ δ(fxn−1)/2− 1/2n−1, xn ∈ fxn−1 for all n in N

.

By (d) and the above inequality it follows that δ(fxn) → 0 as n → ∞. Hence

f ∈ AB(X); i. e., AD(X) ⊂ AB(X). 2

3. Main Results

Now we state our characterizations of the metric completeness.

Theorem 3.1 For any metric space (X, d) the following statements are equivalent:

(1) (X,d) is complete;

(2) Every f in AC(X) has a fixed point;

(3) Every f in AB(X) has a fixed point;

(4) Every f in AD(X) has a fixed point.

Proof. Lemma 2.2 ensures that (2) ⇒ (3) ⇒ (4) hold.

(1) ⇒ (2) For each f in AC(X), by (c), we obtain that α(∩nεNfxn) ≤ α(fxn) → 0

as n → ∞. Consequently ∩nεNfxn = F is compact. It follows from (1) that F is

nonempty. For each x in F , (a) implies that fx ⊂ F , that is, F is invariant under f .

By Zorn’s lemma, there is a nonempty, minimal closed subset K of F which is invariant
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under f . Let x be in K. It follows from (a) that fx is a nonempty closed subset of K

which is invariant under f . By minimality of K, we conclude that K = fx. Therefore

x ∈ fx.
(4)⇒ (2) Suppose that (X, d) is not complete. Then there exists a sequence {An}n≥0

of nonempty closed subsets in X so that

X = A0 ⊃ A1 ⊃ . . . ⊃ An ⊃ . . . , δ(An)→ 0 as n→∞ and ∩nεN An = Φ.

Define a multimap f of X into CL(X) by fx = Ai+1 if x ∈ Ai and x 6∈ Ai+1. Clearly,

f has no fixed point. It is easy to verify that f satisfies (a). Let {xn}nεN be an arbitrary

sequence in X with xn+1 ∈ fxn for each n in N . By the definition of f , there exists a

sequence {in}nεN in N such that

xn+1 ∈ Ain+1 , xn+1 6∈ Ain+1+1 and in+1 ≥ in + 1 ≥ n for all n in N.

Consequently d(xn, xn+1) ≤ δ(Ain) → 0 as n → ∞; i.e, f satisfies (d). By (4), f has a

fixed point. This is a contradiction. 2

Theorem 3.2 For each metric space (X, d), (1) is equivalent to each of the following;

(5) Every f in AB(X) has a stationary point w in X; i. e., fw = {w};
(6) Every f in AD(X) has a stationary point.

Proof. It follows from Lemma 2.2 that (5) implies (6).

(1) ⇒ (5) Let f be in AB(X). From (a), (b) and the completeness of X we easily

conclude that ∩nεNfxn = {w} for some w in X. Consequently fw ⊂ ∩nεNfxn = {w} by

(a). Hence fw = {w}.
(6) ⇒ (1) Suppose that (X, d) is not complete. As in the proof of T heorem 3.1, we

can construct a multimap f of X into CL(X) such that f is in AD(X) and that f has

no fixed point. By (6), f has a stationary point w. Hence w is a fixed point of f . This

is a contradiction. 2
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Theorem 3.3 For any metric space (X, d), (1) is equivalent to each of the following:

(7) If ≤ is an order on X and if {xn}nεN in X is a nondecreasing sequence with

α({xn : n ∈ N}) = 0, then the sequence {xn}nεN is convergent

(8) If ≤ is an order on X and if f is a selfmap on X satisfying x ≤ fx and

α({fnx : n ∈ N}) = 0 for all x in X, then the sequence {fnx}nεN is convergent for

each x in X.

Proof. (1) ⇒ (7) In view of (1) and α({xn : n ∈ N}) = 0 we conclude that the

set {xn : n ∈ N} is compact. This means that there exists a subsequence {xnk}kεN of

{xn}nεN such that xnk → w in X as k → ∞. Since {xn}nεN is nondecreasing, it follows

that xn → w as n→∞.

(7) ⇒ (8) Note that {fnx}nεN is nondecreasing for each x in X. Thus (8) follows

from (7).

(8) ⇒ (1) Suppose that (X, d) is not complete. Then there exists a sequence X =

F0 ⊃ F1 ⊃ . . . ⊃ Fn ⊃ . . . of nonempty closed subsets of X such that δ(Fn) → 0 as

n→∞, but ∩nεNFn = Φ. Define a mapping i : X → N ∪ {0} by i(x) = n if x ∈ Fn and

x 6∈ Fn+1. Define a relation ≤ on X as follows:

x ≤ y inX if and only if y ∈ {x} ∪ Fi(x)+1

We now prove that the relation ≤ is an order on X. Actually, reflexivity is clear. For

antisymmetry, suppose that x ≤ y, y ≤ x and x 6= y. Then y ∈ Fi(x)+1 and x ∈ Fi(y)+1,

which implies that i(y) ≥ i(x)+1 and i(x) ≥ i(y)+1. Therefore i(y) ≥ i(x)+1 ≥ i(y)+2.

This is a contradiction. For transitivity, suppose that x ≤ y and y ≤ z. If either x = y

or y = z, then x ≤ z; if x 6= y and y 6= z, then i(z) ≥ i(y) + 1 ≥ i(x) + 2 > i(x) + 1; i. e.,

z ∈ Fi(z) ⊂ Fi(x)+1 and hence x ≤ z.
Choose a choice function f on {Fi(x)+1 : x ∈ X}. It is easy to verify that x ≤ fx and

a 6= fx for all x in X. For any x in X and n in N , let xn = fnx. By the definitions of f

and i and fxn = xn+1 in Fi(xn)+1 we conclude that i(xn) > i(xn) + 1 ≤ i(xn+1) for all n

in N ; i.e, i(xn)→ ∞ as n→∞. From Fi(xn) ⊃ {xm : m ≥ i(xn)} it follows that

α({xm : m ≥ i(xn)}) ≤ δ(Fi(xn))→ 0 as n→∞.
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Therefore for each ε > 0 there exists k in N such that α({xm : m ≥ i(xk)}) < ε. Thus we

have

α({xn : n ∈ N}) = max{α({x1, x2, . . . , xi(xk−1)}), α({xm : m ≥ i(xk)})} < ε

Letting ε tend to zero we obtain that α({xn : n ∈ N}) = 0. Hence the sequence {xn}nεN
does not converge because ∩nεNFi(xn) = Φ and Fi(xn) ⊃ {xn, xn+1, . . .}. But, (8) implies

that the sequence {xn}nεN is convergent. This is a contradiction.
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