Some Commutativity Results for S-unital Rings

Moharram A. Khan

Abstract

In the present paper, it is shown that if R is a left (resp. right) s-unital ring satisfying $\left[f\left(y^{m} x^{r} y^{s}\right) \pm x^{t} y, x\right]=0$ (resp. $\left[f\left(y^{m} x^{r} y^{s}\right) \pm y x^{t}, x\right]=0$), where m, r, s, t are fixed non-negative integers and $f(\lambda)$ is a polynomial in $\lambda^{2} \mathbf{Z}[\lambda]$, then R is commutative. Commutativity of R has also been investigated under different sets of constraints on integral exponents.

Key Words and phrases: Automorphisms, commutativity theorems, nilpotent elements, polynomial constraints, s-unital rings.

1. Introduction

Throughout this paper, R will denote an associative ring (may be without unity 1), $N(R)$ the set of nilpotent elements of $R, U(R)$ the group of units of R and $\mathbf{Z}[X]$ the totality of polynomials in X with coefficients in \mathbf{Z}, the ring of integers. As usual, $[x, y]$ will denote the commutator $x y-y x$.

Following [3], a ring R is said to be a left (resp. right) s-unital ring if $x \in R x$ (resp. $x \in x R$) for each $x \in R$. Further R is called s-unital if it is left as well as right s-unital.

Now, we consider the following ring properties:
(C) Let m, r, s and t be fixed non-negative integers. For each $x, y \in R$, there exists a polynomial $f(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda]$ such that

$$
\left[f\left(y^{m} x^{r} y^{s}\right) \pm x^{t} y, x\right]=0
$$

$\left(C^{*}\right)$ For each $x, y \in R$, there exist a polynomial $f(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda]$ and non-negative integers m, r, s, t such that

$$
\left[f\left(y^{m} x^{r} y^{s}\right) \pm x^{t} y, x\right]=0
$$

[^0]
KHAN

$\left(C_{1}\right)$ Let m, r, s and t be fixed non-negative integers. For each $x, y \in R$, there exists a polynomial $f(\lambda)$ in $\lambda^{2} \mathbf{Z}[\lambda]$ such that

$$
\left[f\left(y^{m} x^{r} y^{s}\right) \pm y x^{t}, x\right]=0
$$

$\left(C_{1}^{*}\right)$ For each $x, y \in R$, there exist a polynomial $f(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda]$ and non-negative integers m, r, s, t such that

$$
\left[f\left(y^{m} x^{r} y^{s}\right) \pm y x^{t}, x\right]=0
$$

$\left(C_{2}\right)$ For each $y \in R$, there exist polynomials $f(\lambda), p(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda]$ such that

$$
p(y)[x, f(y)] q(x)= \pm x^{t}\left[x^{m}, y\right] \text { and } p(y)[x, f(y)] q(x)= \pm x^{t}\left[x^{n}, y\right]
$$

for all $x \in R$, where $q(\lambda) \in \mathbf{Z}[\lambda]$ is a fixed polynomial with $q(1)= \pm 1$, and m, n, t are fixed positive integers such that $(m, n)=1$.
$\left(C_{2}^{*}\right)$ For every $x, y \in R$, there exist polynomials $f(\lambda), p(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda]$ and non-negative integers $m \geq 1, n \geq 1$ and t with $(m, n)=1$ such that

$$
p(y)[x, f(y)] q(x)= \pm x^{t}\left[x^{m}, y\right] \text { and } p(y)[x, f(y)] q(x)= \pm x^{t}\left[x^{n}, y\right]
$$

where $q(\lambda) \in \mathbf{Z}[\lambda]$ is a fixed polynomial.
$\left(C_{3}\right)$ For each $y \in R$, there exist polynomials $f(\lambda), p(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda]$ such that

$$
p(y)[x, f(y)] q(x)= \pm\left[x^{m}, y\right] x^{t} \text { and } p(y)[x, f(y)] q(x)= \pm\left[x^{n}, y\right] x^{t}
$$

for all $x \in R$, where $q(\lambda) \in \mathbf{Z}[\lambda]$ is a fixed polynomial with $q(1)= \pm 1$, and m, n, t are fixed positive integers such that $(m, n)=1$.
$\left(C_{3}^{*}\right)$ For every $x, y \in R$, there exist polynomials $f(\lambda), p(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda]$ and non-negative integers $m \geq 1, n \geq 1$ and t with $(m, n)=1$, such that

$$
p(y)[x, f(y)] q(x)= \pm\left[x^{m}, y\right] x^{t} \text { and } p(y)[x, f(y)] q(x)= \pm\left[x^{n}, y\right] x^{t}
$$

where $q(\lambda) \in \mathbf{Z}[\lambda]$ is a fixed polynomial.
(CH) For every $x, y \in R$, there exist $f(\lambda), h(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda]$ such that $[x-f(x), y-h(y)]=0$.

KHAN

A well-known theorem of Herstein [2] asserts that if for each $x, y \in R$, there exists a polynomial $f(t) \in t^{2} \mathbf{Z}[t]$ such that $[x-f(x), y]=0$, then R is commutative. Further, the author jointly with Bell and Quadri [1], established the commutativity of R with identity 1 satisfying the polynomial identity $[x y-f(x y), x]=0$, where $f(t) \in t^{2} \mathbf{Z}[t]$. More recently, several commutativity theorems have been found when the underlying polynomials $f(\lambda), p(\lambda), \in \lambda^{2} \mathbf{Z}[\lambda]$, and $q(\lambda) \in \mathbf{Z}[\lambda]$ in $(C),\left(C_{1}\right),\left(C_{2}\right)$ and $\left(C_{3}\right)$ are particularly assumed to be monomials [$3,5,6,7,10]$. In the present paper, our objective is to extend these results to the rings satisfying the above properties. Moreover, commutativity theorems for one-sided s-unital rings are obtained under different sets of conditions. Finally, commutativity of rings satisfying Chacron's criterion (CH) together with any one of the properties $\left(C^{*}\right),\left(C_{1}^{*}\right),\left(C_{2}^{*}\right)$ and $\left(C_{3}^{*}\right)$ has been studied. In fact, our results generalise many well-known commutativity theorems namely; [1, Theorems 2 and $3]$, [5, Theorem 2], [6, Theorems 1-3], [7, Theorem], [8, Theorem] and [10, Theorem].

2. Preliminary Results

Consider the following types of rings.
$(i)_{l}\left(\begin{array}{cc}G F(p) & G F(p) \\ 0 & 0\end{array}\right), p$ a prime.
$(i)_{r}\left(\begin{array}{cc}0 & G F(p) \\ 0 & G F(p)\end{array}\right), p$ a prime.
(i) $\left(\begin{array}{cc}G F(p) & G F(p) \\ 0 & G F(p)\end{array}\right), p$ a prime.
(ii) $\quad M_{\sigma}(F)=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & \sigma(a)\end{array}\right) \right\rvert\, a, b \in F\right\}$, where F is a finite field with a non-trivial automorphism σ.
(iii) A non-commutative ring with no non-zero divisors of zero.
(iv) $S=<1>+T, T$ is non-commutative subring of S such that $T[T, T]=[T, T] T=0$.

In a recent paper [11], Streb classified non-commutative rings, which have been used effectively to establish several commutativity theorems [5, 6, 7, 8, 9]. One can easily observe, from the proof of [9, Corollary 1], that if R is a non-commutative s-unital ring, then there exists a factor subring S of R which is of type $(i)_{l}$, (ii), (iii) or (iv). This gives the following result which plays a vital role in our subsequent discussion [9, Meta

KHAN

theorem].
Lemma 2.1. Let P be a ring property which is inherited by factor subrings. If no ring of type $(i)_{l}$, (ii), (iii) or (iv) satisfies (P), then every left s-unital ring satisfying P is commutative.

Remark 2.1. We pause to remark that the dual of the above lemma holds; if P is a ring property which is inherited by factorsubrings, and if no ring of type $(i)_{r}$, (ii), (iii) or (iv) satisfies (P), then every right s-unital ring satisfying P is commutative.

3. Main Results

The main results of the present paper are as follows.
Theorem 3.1. Let R be a left (resp. right) s-unital ring satisfying (C) (resp. (C_{1})). Then R is commutative.

Theorem 3.2. Let R be a left (resp. right) s-unital ring satisfying $\left(C_{2}\right)$ (resp. $\left(C_{3}\right)$). Then R is commutative.

We need the following known results.
Lemma 3.1 [5]. Let f be a polynomial in n non-commuting indeterminates
$x_{1}, x_{2}, \ldots, x_{n}$ with relatively prime integer coefficients. Then the following statements are equivalent:
(a) For any ring R satisfying $f=0$, the commutator ideal of R is nil ideal.
(b) For every prime p, the ring $(G F(p))_{2}$ fails to satisfy $f=0$.

Lemma 3.2 [8]. Let R be a left (resp. right) s-unital ring which is not right (resp. left) s-unital. Then R has a factor subring of type $(i)_{l}$ (resp. $\left.(i)_{r}\right)$.

Lemma 3.3 [9]. Let R be a ring with unity 1 satisfying (CH). If R is non-commutative, then there exists a factorsubring of R which is of type (i) or (ii).

Proof of Theorem 3.1. Let S be any ring of type $(i)_{l}$, and let $f(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda]$. Then

$$
\left[f\left(e_{12}^{m} e_{11}^{r} e_{12}^{s}\right) \pm e_{11}^{t} e_{12}, e_{11}\right]= \pm e_{12} \neq 0
$$

hence S does not satisfy (C). It follows by Lemma 3.2 that if R is any left s-unital ring satisfying (C), then R is right s-unital as well. Thus, in view of Proposition 1 of [3], we may assume that R has unity 1 .

Suppose that $R=M_{\sigma}(F)$, is the ring of type (ii). Taking $x=\left(\begin{array}{cc}a & 0 \\ 0 & \sigma(a)\end{array}\right)(\sigma(a) \neq$ $a), y=e_{12}$ in (C) we get

$$
\left[f\left(y^{m} x^{r} y^{s}\right) \pm x^{t} y, x\right]= \pm a^{t}(a-\sigma(a)) e_{12} \neq 0,
$$

for every $f(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda]$ and then R does not satisfy (C).

KHAN

Let R be a ring of type (iii). Since $x=e_{22}$ and $y=e_{21}$ do not satisfy (C), by Lemma 3.1, we see that the commutator ideal of R is nil and hence no ring of type (iii) satisfies (C).

Let R be a ring of type (iv) and let $a, b \in T$ such that $[a, b] \neq 0$. Then by hypothesis, we have

$$
\left.(1+a)^{t}[a, b]= \pm\left[1+a, f(1+a)^{m} b^{r}(1+a)^{s}\right)\right]=0 .
$$

This implies that $[a, b]=0$, which gives a contradiction.
Hence we have seen that no ring of type $(i)_{l},(i i),(i i i)$ or $(i v)$ satisfies (C) and by Lemma 2.1, R is commutative.

Using the similar arguments as above we see that no ring of type $(i)_{r}$, (ii), (iii), or (iv) satisfies the property $\left(C_{1}\right)$ (see also Remark 2.1).

Proof of Theorem 3.2. Let S be of type $(i)_{l}$ and let $f(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda], g(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda]$ and $h(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda]$. Taking $x=e_{11}+e_{12}, y=e_{12}$ in $\left(C_{2}\right)$, we get

$$
x^{t}\left[x^{m}, y\right]= \pm g(y)[x, f(y)] h(x)=e_{12} \neq 0
$$

because $x^{t}\left[x^{m}, y\right]=e_{12} \neq 0$ and $\pm g(y)[x, f(y)] h(x)=0$. Hence, R does not satisfy $\left(C_{2}\right)$. It follows by Lemma 3.2 that if R is any left s-unital ring satisfy $\left(C_{2}\right)$, then R is right s-unital and hence, s-unital. In view of Proposition 1 of [3], we may assume that the ring R has unity 1 .

Consider the ring $R=M_{\sigma}(F)$, a ring of type (ii). Notice that $N(R)=F e_{12}$. Hence for $b \in N(R)$ and arbitrary unit $u \in U(R)$, we obtain that there exists a polynomial $f(\lambda) \in \lambda^{2} \mathbf{Z}[\lambda]$ such that

$$
u^{t}\left[u^{m}, b\right]= \pm g(b)[u, f(b)] h(u)=0
$$

and

$$
u^{t}\left[u^{n}, b\right]= \pm g(b)[u, f(b)] h(u)=0
$$

Since $b^{2}=0$ and u is a unit of R, the last two equations yield $\left[u^{m}, b\right]=0$ and $\left[u^{n}, b\right]=0$. This implies that $[u, b]=0$. Now, particularly for non-central element $b=e_{12},\left[u, e_{12}\right]=0$. This gives that e_{12} is central which is a contradiction.

Let R be a ring of type (iii). By hypothesis we have

$$
\begin{equation*}
p(y)[x, f(y)] q(x)= \pm x^{t}\left[x^{m}, y\right] . \tag{1}
\end{equation*}
$$

Replacing x by $x+1$ in (1), we get

$$
\begin{equation*}
p(y)[x, f(y)] q(x+1)= \pm(x+1)^{t}\left[(x+1)^{m}, y\right] \tag{2}
\end{equation*}
$$

KHAN

Multiply (1) (resp. (2)) by $q(x+1)$ (resp. $q(x)$) on the right and compare the equations so obtained to get

$$
(x+1)^{t}\left[(x+1)^{m}, y\right] q(x)=x^{t}\left[x^{m}, y\right] q(x+1)
$$

This is a polynomial identity, and $x=e_{12}-e_{22}$ and $y=e_{12}$ in $(G F(p))_{2}$ fail to satisfy this equality. Hence, by Lemma 3.1, the commutator ideal of R is nil, yields a contradiction.

Finally, let R be a ring of type $(i v)$ and let $[a, b] \neq 0$, where $a, b \in T$. There exists $f(\lambda)$ in $\lambda^{2} \mathbf{Z}[\lambda]$ such that

$$
\left.m[a, b]=(1+a)^{t}\right)\left[(1+a)^{m}, b\right]= \pm p(b)[a, f(b)] q(1+a)=0
$$

and

$$
n[a, b]=(1+a)^{t}\left[(1+a)^{n}, b\right]= \pm p(b)[a, f(b)] q(1+a)=0 .
$$

Since $(m, n)=1$, we get $[a, b]=0$, and this gives a contradiction.
Hence, no ring of type $(i)_{l},(i i),(i i i)$ or $(i v)$ satisfies $\left(C_{2}\right)$ and by Lemma 2.1, R is commutative.

We remark that the same conclusion holds; if R satisfies $\left(C_{3}\right)$, then trivially, we see that no ring of type $(i)_{r}$, (ii), (iii) or (iv) satisfies $(C)_{3}$.

From the previous proofs of Theorems 3.1 and 3.2, we see that no ring of type $(i)_{l}$ satisfies $\left(C^{*}\right)$ or $\left(C_{2}^{*}\right)$, and no ring of type $(i)_{r}$ satisfies $\left(C_{1}^{*}\right)$ or $\left(C_{3}^{*}\right)$.

Combining this fact with Lemma 3.2, we obtain the following:
Theorem 3.3 Let R satisfy $(C H)$. Then the following are equivalent:
(I) R is commutative.
(II) R is left (resp. right) s-unital ring satisfying $\left(C^{*}\right)\left(\right.$ resp. $\left.\left(C_{1}^{*}\right)\right)$.
(III) R is left (resp. right) s-unital ring satisfying $\left(C_{2}^{*}\right)$ (resp. $\left(C_{3}^{*}\right)$).

Remark 3.1 The following example shows that in the hypotheses of Theorem 3.2, the existence of both conditions in $\left(C_{2}\right)$ are not superfluous (even if R has unity 1).

Example 3.1. Let

$$
R=\left\{\left.\left(\begin{array}{ccc}
\alpha & \beta & \gamma \\
0 & \alpha & \delta \\
0 & 0 & \alpha
\end{array}\right) \right\rvert\, \alpha, \beta, \gamma, \delta \in G F(2)\right\}
$$

Then R is a non-commutative ring with unity satisfying the condition $x^{t}\left[x^{4}, y\right]=y^{s}\left[x, y^{4}\right]$, where s and t are fixed non-negative integers.

KHAN

Remark 3.2. The following example demonstrates that there are non-commutative left (resp. right) s-unital rings satisfying $\left(C_{1}\right)$ (resp.(C)).

Example 3.2. Let

$$
\begin{gathered}
R_{1}=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right\} \\
\left(\operatorname{resp} \cdot R_{2}=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right\}\right)
\end{gathered}
$$

be subring of 2×2 matrices over $G F(2)$. Then for any fixed positive integers m, n, r, s, t larger than $1, R_{1}\left(\right.$ resp. $\left.R_{2}\right)$ satisfies $\left[\left(y^{m} x^{r} y^{s}\right)^{n} \pm y x^{t}, x\right]=0$
(resp. $\left[\left(y^{m} x^{r} y^{s}\right)^{n} \pm x^{t} y, x\right]=0$). However, R_{1} (resp. R_{2}) is a non-commutative left (resp. right) s-unital ring.

References

[1] H. E. Bell, M. A. Quadri and M. A. Khan, Two commutativity theorems for rings, Rad. Mat. 3 (1987), 255-260.
[2] I. N. Herstein, Two remarks on the commutativity of rings, Canad. J. Math. 7 (1955), 411 - 412.
[3] Y. Hirano, Y. Kobayashi and H. Tominaga, Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.
[4] T. P. Kezlan, A note on commutativity of semiprime PI-rings, Math. Japon. 27 (1982), 267 - 268.
[5] M. A. Khan, Commutativity of right s-unital rings with polynomial constraints, Jour. Inst. Math \& Comp. Sci. 12 (1999), 47-51.
[6] M. A. Khan, Commutativity theorems through a Streb's classification, Proc. Irish Math. Acad. Sci. No. 2 (2000) (to appear).
[7] H. Komatsu, A commutativity theorem for rings, Math. J. Okayama Univ. 26 (1984), 109 - 111.
[8] H. Komatsu, T. Nishinaka and H. Tominaga, On commutativity of rings, Rad. Mat. 6 (1990), 303-311.
[9] H. Komatsu and H. Tominaga, Chacron's condition and commutativity theorems, Math. J. Okayama Univ. 31 (1989), 101-120.
[10] E. Psomopoulos, A commutativity theorem for rings, Math. Japon. 29 (1984), 371-373.
[11] W. Streb, Zur struktur nichtkommtativer ringe, Math. J. Okayama Univ. 31 (1989), 135 140.

Moharram A. KHAN
Received 25.04.2000
Department of Mathematics
Faculty of Science
King Abdulaziz University
P.O.Box 30356

Jeddah - 21477-SUADI ARABIA
e-mail nassb@hotmail.com

[^0]: Mathematics Subject Classification: Primary 16U80; Secondary 16U99.

