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Representing Systems of Exponentials and Projection

on Initial Data in the Cauchy Problem∗

Yu. F. Korobeinik

Abstract

The Cauchy problem for the equation

Mw ≡
m∑
j=0

lj∑
s=0

as,j
∂s+jw(z1, z2)

∂zs1∂z
j
2

= 0 (1)

∂nw(z1, z2)

∂zn2
|z2=0= ϕn(z1), n = 0, 1, . . . , m− 1 (2)

is investigated under the condition lj ≤ lm, j = 0, 1, . . . ,m− 1. It is shown that the

operator of projection of solution of (1) on its initial data (2) in a definite situation

has a linear continuous right inverse which can be determined effectively with the

help of representing systems of exponentials in the space of initial data.

Introduction

The Cauchy problem (C.p.) for the equation

Mw ≡
m∑
j=0

lj∑
s=0

as,j
∂s+jw(z1, z2)

∂zs1∂zj2
= 0 (3)

with as,j ∈ C was investigated in a number of works and in particular in the paper [1].

We need in what follows the contents of
∮ ∮

1-4 and
∮

1 of this paper. For reader’s
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convenience let us remind some definitions and results from [1]. Let F1(l = 1, 2) be a

dense in itself subset of C and let C∞(F1) be a space of functions y(z1) : F1 → C infinitely

differentiable at each point of F1. The sequence {yn(z1)}∞n=1 tends to y(z1) in C∞(F1)

if ∀s ≥ 0y
(s)
n (z1)→ y(s)(z1) uniformly on each compact of F1. Let E1(F1) be a complete

separable locally convex space (CSLCS) satisfying the following conditions:

1) E1(F1) ↪→ C∞(F1) ;

2) the operator Dy ≡ y′ is continuous in E1(F1) ;

3) there exists an absolutely representing system (ARS) of exponentials EΛ,1 =

{expλkz1}∞k=1 such that for each k ≥ 1EΛ,k = {expλjz1}∞j=k is also an ARS in E1(F1)

and limk→∞ | λk |=∞.

It is worth reminding that he system {xk}∞k=1 of elements xk of a complete locally

convex space H is said to be an ARS in H (see e.g. [1], p. 556) if each element x of H

can be represented in the form of the series x =
∑∞

k=1 akxk, absolutely converging in H .

Suppose that a standard decomposition of the polynomial Q(λ, µ) :=
∑m

j=0 µj∑lj
s=0 as,jλ

s contains no irreducible polynomials depending only on one variable λ or µ.

Then in some neighborhood of infinity the equation Q(λ, µ) = 0 generates N different

branches µj(λ) with multiplicity pj :
∑N
j=1 pj = m.

The symbol (E1(F1); E2(F2)) denotes the set of functions u(z1, z2) such that ∀zl ∈
Fl u(z1, z2) ∈ E3−l(F3−l) as a function of z3−1, l = 1, 2.

Assuming that 0 ∈ F2 throughout the paper we look for the function w(z1, z2) from

(E1(F1); E2(F2)) satisfying the equation (1) and initial conditions with respect to z2:

∂nw(z1, z2)
∂zn2

|z2=0= ϕn(z1), n = 0, 1, . . . , m− 1 (4)

where ϕn ∈ E1(F1), 0 ≤ n ≤ m− 1. To do this we expand at first the functions ϕn into

series with respect to ARS EΛ,1

ϕn(z1) =
∞∑
k=1

bk,nexpλkz1, n = 0, 1, . . . , m− 1 (5)
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All the series (3) converge absolutely in E1(F1). If k ≥ 1 is fixed we always can find

numbers a
(k)
j,s from the system

bk,n =
N∑
j=1

qj(n)∑
s=0

a
(k)
j,s s!Cs

nµ
n−s
j,k , n = 0, 1, . . . , m− 1 (6)

where µj,k = µj(λk), qj(n) = min(n, pj − 1). After that we form the series

w0(z1, z2) =
N∑
j=1

pj−1∑
s=0

∞∑
k=1

a
(k)
j,s (z2)sexp(λkz1 + µj,kz2) (7)

It was proved in [1] under definite suppositions that w0 belongs to (E1(F1); E2(F2))

and satisfies (1), (2). We cite one result from [1] in this direction. Suppose that

lj ≤ lm if j ≤ m− 1 and if alj ,j 6= 0 (8)

Then [1] ∃R0 > 0 : v := sup{| µj(λ) |:| λ |≥ R0, 1 ≤ j ≤ N} <∞.

We put F2 = C, β := max{(pj − 1) : 1 ≤ j ≤ N} and introduce the Banach space

E2(C) = E(v, β) of entire functions y(z2) such that ‖ y ‖2:= supz2∈C
|y(z2)|exp(−v|z2|)

|z2|β+1
<∞.

Let P = {p} be the set of seminorms defining the topology in CSLCS E1(F1) with

properties 1)-3). Denote by {E1(F1); E(v, β)} the subspace of (E1(F1); E(v, β)) contain-

ing all functions y(z1 , z2) for which ∀p ∈ P

(p)y(z1 , z2) := supz2∈C
p(y(z1 , z2))exp(−v | z2 |)

| z2 |β +1
<∞.

{E1(F1); E(v, β)} is a CSLCS with topology defined by the set (P ) := {(p)}p∈P of

seminorms (p). According to theorem 1 ([1], p. 559-560) the series (5) described above

converges absolutely in {E1(F1); E(v, β)} and its sum w0(z1, z2) is a solution of the

Cauchy problem (1)(2) for arbitrary chosen ϕn from E1(F1). Let us introduce the CSLCS

(E1(F1))m with the standard set of seminorms P(m) = {pm(ϕ) =
∑m−1

k=0 p(ϕk), p ∈
P, ϕ = (ϕ0, . . . , ϕm−1)} and the operator TM of projection to initial data: for each

w(z1, z2) ∈ A := M−1(0) ∩ {E1(F1); E(v, β)}

TMw =
(

w(z1, 0), . . . ,
∂m−1w(z1, z2)

∂zm−1
2

|z2=0

)
.
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It is easy to see that TM is a continuous operator from A (with the topology induced

from {E1(F1); E(v, β)} into (E1(F1))m). Under the relation (6) and conditions 1)-3) TM

is an epimorphism of A onto (E1(F1))m. We shall indicate further the conditions under

which the operator TM has a linear continuous right inverse (LCRI). In order to formulate

the main result we need to introduce the CSLCS

Ak
2 = A2(EΛ,k, E1(F1)) = {c = (cs)∞s=k : qkp (c) :=

∞∑
s=k

| cs | p(expλsz1) <∞, ∀p ∈ P }

with the set of seminorms Qk
P = {qkp}p∈P and the representation operator (RO) Lk:

∀c = (cs)∞s=k ∈ Ak
2 → Lkc =

∞∑
s=k

csexpλsz1 ∈ E1(F1).

It is evident that Lk acts continuously from Ak
2 into E1(F1).

Theorem 1. Let the relations (6) be valid and let the CSLCS E1(F1) satisfy the

conditions 1)-3). Suppose that ∀k ≥ 1 the operator Lk has a LCRI Bk. Then the

projection operator TM has a LCRI which can be determined effectively.

Proof. Let us fix R0 <∞ so that the above described branches µj(λ) are determined

in the set | λ |≥ R0. Let us also fix k ≥ 1 so that | λj |≥ R0, ∀j ≥ k. If ϕ = (ϕn)m−1
n=0 ∈

(E1(F1))m then ∀z1 ∈ F1ϕn(z1) =
∑∞
s=k(Bkϕn)sexpλsz1, n = 0, 1, . . . , m− 1. Moreover

∀p1 ∈ P ∃d <∞ ∃p0 ∈ P

∀y ∈ E1(F1)
∞∑
s=k

| (Bky)s | p1(expλsz1) ≤ dp0(y). (9)

Following [1],
∮

3 and
∮

11 we form the series (5)

wk(z1, z2) =
N∑
j=1

pj−1∑
s=0

∞∑
r=k

a
(r)
j,s(z2)sexp(λrz1 + µj,rz2) =

∞∑
r=k

ur(z1, z2)

where µj,r = µj(λr) and the coefficients a
(r)
j,s (r ≥ k) are determined from the system

(Bkϕn)r =
∑N

j=l

∑qj(n)
s=0 a

(r)
j,ss!C

s
nµ

n−s
j,r , n = 0, 1, . . . , m − 1. According to inequality (9)

from [1]
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∃D <∞∃H <∞ : ∀r ≥ k∀j ≤ N∀s ≤ qj(n) | a(r)
j,s | ≤ D(λr |H

m−1∑
n=0

| (Bkϕn)r | .

The constants D, H do not depend on j, s and r (when k is fixed). We have for all

p ∈ P and r ≥ k

(p)ur ≤ supz2∈C

N∑
j=1

pj−1∑
s=0

| a(r)
j,s |

exp(−v | z2 |)
| z2 |β +1

| z2 |s p(expλrz1)exp | µj,r || z2 |

≤ D | λr |H
m−1∑
n=0

| (Bkϕn) | p(expλrz1) ≤ D2

m−1∑
n=0

| (Bkϕn)r | p1(expλrz1).

Taking into account (7) we find that ∀p ∈ P∃p0 ∈ P :

∞∑
r=k

(p)uk ≤ D2d

m−1∑
n=0

p0(ϕn) = D3(p0)m(ϕ).

Hence wk(z1, z2) = Qkϕ where Qk is a linear continuous operator from (E1(F1))m

into {E1(F1); E(v, β)}. Besides, wk ∈ M−1(0) ∩ {E1(F1), E(v, β)} and Tmwk = ϕ, i.e.

TMQkϕ, ∀ϕ ∈ (E1(F1))m. 2

In conclusion we mention some examples of the spaces E1(F1) of initial data and some

classes of equations (1) satisfying the suppositions of theorem I.

I. 1. Let G be a bounded convex domain in C and let H(G) be the Frechet space of all

functions analytic in G with the standard open-compact topology. It is proved in [2] that

if the function Ψ(z) maps conformly the disc | z |< 1 onto G and satisfies the condition

sup{| Ψ′(z) |:| z |< 1} < ∞, then there exists an ARS (expλkz)∞k=1 in H(G) such that

limk→∞sup k
|λk| <∞, ∀k ≥ 1(expλrz)∞r=k is an ARS in H(G) and the corresponding RO

Lk has a LCRO Bk. So we can put in theorem I F1 = G, E1(F1) = H(G).
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2. For any R ∈ (0, +∞) denote by C∞[−R, R] the Frechet space of all complex-

valued functions infinitely differentiable on [−R, R], with the set of norms ‖ y ‖n= max{|
y(j)(x) |: x ∈ [−R, R], 0 ≤ j ≤ n}, n = 0, 1, . . . According to [3],

∮
5, for each θ < 1 and

k ≥ 0Ek
θ,R := {exp ijθπxR }|j|≥k is an ARS in C∞[−R, R] and the RO Lk has a LCRI. So

theorem I is valid if F1 = [−R, R], 0 < R <∞, E1(F1) = C∞[−R, R].

3. Assume that M0 = 1, Ml ↑ +∞, l ≥ 1, R ∈ (0, +∞). Denote by E(Ml
[−R, R] the

Beurling space of all functions y(x) from C∞[−R, R] such that

∀h > 0 | y |R,h:= sup

{
| y(l)(x) |

hlMl
: l ≥ 0, x ∈ [−R, R]

}
<∞.

The topology in E(Ml)[−R, R] is defined by the set of norms | y |R,1/n, n = 1, 2, . . .

Suppose that (Ml) satisfies the following conditions:

∀ε < 0∃δ > 0∃d <∞ : ∀l ≥ 0
l∑

j=0

Mjδ
jCj

l ≤ dεlMl, (10)

sup
mp

p

∑
j≥p

1
mj

<∞, (11)

sup(mp)1/p <∞, (12)

where m0 = 1, Mp = mpMp−1, p ≥ 1. It is proved in [3] (
∮

5, theorem 5.3) with the help

of the results of [4] that for each θ < 1 and k ≥ 0Ek
θ,R is an ARS in E(Ml)[−R, R] and

the RO Lk has a LCRI Bk. So under conditions (8)-(10) theorem I works in the case

F1 = [−R, R], E1(F1) = E(Ml)[−R, R]. In particular, we can put Ml = (l!)α, α > 1, l ≥ 1.

In this case E1(F1) coincides with the well-known Gevrey class of minimal type:

E1(F1) = {y(x) ∈ C∞[−R, R] : ∀h > 0sup[| y(l)(x) | (l!)−αh−l : l ≥ 1, x ∈ [−R, R]] <∞}.

4. As the last example we regard the Roumieu space

E{Ml}[−R, R] = {y ∈ C∞[−R, R] : ∃h > 0 :| y |R,h<∞}.
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If M0 = 1, Ml ↑ +∞, if the conditions (8), (10) are fulfilled and if

∃l > 1 lim
p→∞

mp

p

∞∑
j=lp

1
mj

= 0 (13)

then according to
∮

5 of [3] for each θ < 1 and k ≥ 0Ek
θ,R is an ARS in E{Ml}[−R, R].

Moreover under the conditions (8), (10), (11) the operator Lk has a LCRI, and theorem

I is again applicable. In particular, we can take for E1(F1) the Gevrey space of maximal

type:

E1(F1) = {y(x) ∈ C∞[−R, R] : ∃h > 0sup[| y(l)(x) | (l!)−αh−1 : l ≥ 1, x ∈ [−R, R]] <∞}.

II. The characteristical polynomial of the equation (1) can be written in the following

form

Q(λ, µ) =
m∑
j=0

lj∑
s=0

as,jµ
jλs =

m∑
k=0

µkRk(λ) = Tλ(µ).

It is well known that discriminant of Tλ(µ) (as a polynomial with respect to µ) is a

polynomial v(λ) in λ. Suppose that v(λ) is not identically zero. Then ∃R1 ∈ (0, +∞) :

v(λ) 6= 0, if | λ |≥ R1. If the space E1(F1) satisfies the conditions 1)- 3), then (see
∮

12

of [1]) the representation (5) of the solution w0 can be simplified:

w0(z1, z2) =
m∑
j=1

∞∑
k=1

a
(k)
j exp(λkz1 + µj(λk)z2)

where each branch µj(λ) is a simple one (i.e. pj = 1, j = 1, 2, . . . , m). If the condition (6)

holds, then Theorem 1 is applicable, and the magnitude β is equal to zero : E(v, β) =

E(v, 0). In particular, the polynomial v(λ) is not identically zero, if Q(λ, µ) is an

irreducible polynomial.

Let us consider as an example the Cauchy problem for the Sobolev-Galpern equation

ll∑
k=0

ak
∂k+1w(z1, z2)

∂zk1 ∂z2
=

l0∑
s=0

bs
∂sw(z1, z2)

∂zs1
; w(z1, 0) = f(z1). (14)
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We have for this equation m = 1,

Q(λ, µ) = µ

l1∑
k=0

akλ
k +

l0∑
s=0

bsλ
s = µP1(λ) + P2(λ).

If l0 ≤ l1, the conditions 1)-3) for E1(F1) are satisfied and if ∀k ≥ 1 the operator Lk

has a LCRJ Bk, then the projection operator Tµ has a LCRJ Qk. The operator Qk can

be expressed in the following form:

wk(z1, z2) =
∞∑
r=k

a
(r)
1 exp(λrz1 + µ1(λr)z2).

Here µ1(λr) = −P2(λr)
P1(λr) , a

(r)
1 = (Bkf)r ; β = 0; v = ε + |bl0 |

|al0 |
for the case l0 = l1, and

v = ε if l0 < l1. The positive number ε can be fixed arbitrarily small.
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