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Asymptotic Behavior of the Zero Solutions to

Generalized Pipe and Rotating Shaft Equations

Ayfer Kurt

Abstract
A non-autonomous partial differential equation describing the dynamics of a
uniform pipe and a system describing the dynamics of a rotating shaft are con-
sidered.Sufficient conditions for the global asymptotic stability of the zero solution
of the boundary value problem for the differential equation and the system under

consideration are established by using the Lyapunov function technique.
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1. Introduction

In this paper we are concerned with the global asymptotic stability of the following
equation, for z € (0,L),t € RT

Wit + QWyzzz + WWizees + Wi + ()W + 1U(2) B(E)waz +Y(t)war = 0, (1)
under the boundary conditions

w(0,t) = w(L,t) = w,(0,t) = wy(L,t) =0,t € RT (2)
or

w(0,t) = w(L,t) = wer (0, 1) = e (L,t) =0,t € RT (3)

where a, b, c are given positive constants, and «(t), 5(t),v(t),l(z) are positive bounded

functions and the following system

Vit + A1 Vzzza — a(t)we — b(E)v — c(t)w + Prvtgzas + Y0 — d(t)w =0 (4)
1991 Mathematics Subject Classification, 34D20,58F10,73H10,93D05,93D20
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Wit + 0Wapryr — a(t)vy — b(t)w + c(t)v + PoWizgrs + yw: + d(t)v =0 (5)
under the boundary conditions

v(0,t) = wv(L,t) =w(0,t) =w(L,t)
= 0,(0,t) = v (L, t) = wy(0,¢) = wy (L, t) =0, t € RT

or

v(0,t) = wv(L,t) =w(0,t) = w(L,t)

7
= 032(0,t) = vy (L, t) = wer(0,) = wae(L,t) =0, €R Q

where a1, a, 81, f2 and v are given positive constants and a(t), b(¢), c(t), d(t) are positive
bounded functions.

In the article of Plaut [4] the following equation

0 = Elwepes + diEIwippes + dew; + MU W,y + (L — 2)MUw,,
+2MU’LU175 + (M + m)wtt

under the boundary conditions (2) (or (3)) and the following system
Evgzes + mug — 2mQuwy — mQ%v — mQw + d; EI Vigwws + dem(vy — Qw) =0 (9)
ELwypes + mwy — 2mQuy — mQ%w +mQu + d; ELbwippas + dem(wy + Qu) = 0(10)

under the boundary conditions (6) (or (7)) are considered. Equation (8) describes
the dynamics of a uniform pipe of length L,mass per unit length m,bending stiffness
EI,conveying a fluid of mass per unit length M and time varying velocity U(t) in the
positive x direction, d; and d. are internal and external damping coeflicients respectively.
Equations (9) and (10) describe the dynamics of a rotating shaft with time-varying
angular velocity (¢).The quantities L, m, d;, d. are the same as in equation (8).FI; and

EI, are bending stiffnesses. In [4] it is proven that the zero solution of the problem
(8),(2) (or (8),(3)) is stable with respect to the norm (fOL(wz,x + w?)dz)? and the zero
solution of the problem (9),(10), (6) (or (9),(10),(7)) is stable with respect to the norm
fOL (2, + w2, 4+ v + w?)dz)? under certain conditions.

Our main aim is to find sufficient conditions guaranteeing the global asymptotic
stability of the zero solution of (1),(2)( or(1),(3)) and (4),(5),(6) (or (4),(5),(7)) and to
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generalize the previous results of PLAUT [4] to equations with arbitrary time-dependent
coefficients. The Lyapunov function technique is used to obtain our results. The method
used in this paper is also applicable to nonlinear systems. KALANTAROV and KURT
[2] examined the global asymptotic stability of a class of similar equations with nonlinear
dissipative terms.

The state vector is denoted u and the equilibrium state is u = 0. The state space U
contains the elements u which satisfy the boundary conditions and appropriate smooth-
ness conditions. An initial state at ¢ = 0 is up and the ensuing motion is u(¢,up). A
specific norm ||.|| is defined on U. The extended Lyapunov’s direct method requires the
construction of a functional W, which is defined in the state space U having the follow-
ing properties (DYM [1], MOVCHAN [3], ZUBOV [6]). The subsequent three properties
of the function W represent a sufficient condition for stability of the equilibrium state

u=_0.
1. There exists a ¢; > 0 so that for every u € U W(u) < ¢ |Julf’.
2. There exists a ¢y > 0 so that for every u € U ,W(u) > ¢ ||ul®.
3. 4yy(u(t,ug)) < 0.

The zero solution is called globally asymptotically stable if the zero solution is
stable and all solutions tend to zero, in the appropriate sense, ast — oo.

We shall use the following notations throughout:
L 0
Jull = ([ @)t w,0)= [
0 L
We also use the Wirtinger inequality [5]
L L
/wQ(x)dx < )\/wz(x)dx (11)
0 0

where A = ﬁ—j if both ends are pinned, A = % if both ends are clamped. After the

integration of the equality (wwy), = wz + wwg,with respect to x and using Cauchy and
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Wirtinger inequalities respectively we obtain at once
L L
/wz(x)dx < )\/wzl(x)dx
0 0

Using (11)and (12), it is not difficult to see that

L L
/wQ(x)dx < )\Q/wi(x)dx.
0 0

2. Global Asymptotic Stability

Theorem 2.1.  Suppose that the following conditions are satisfied:
i) a,b,c are given positive constants,

ii) af.), B(.)are positive functions from C*[0, 00),satisfying the conditions

a(®) + 8L+ OLVA+ T < oy

o ()] + |8 (0| L+ B L1 < mo(5 — a0)

where ag s an arbitrary positive number which satisfies

ag <

A

a ) a—aph 2(% +c)— Ly
—, and 7o :mm{l, 2o 3

iii) v(.)is a positive function from C[0, c0)
w) I(.) € C*0, L] and

0<li(x) <L,
‘l'(x)‘ < L,Vz e [0, L],
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where Ly is a positive number satisfying

b
Ly < 2()\2

+ o).

(18)

Then the zero solution of (1),(2) (or (1), (8)) is globally asymptotically stable with

respect to the norm

L
/ w2, + w}) )dx)?.
0

Moreover for every solution of equation (1) satisfying the boundary conditions (2)
or (3) the following estimate holds:

s |” + [lwe]* < Kre™®

where Kyand § are positive parameters.

(19)

Proof. Suppose that w(z,t) is a solution of equation (1) satisfying the boundary

conditions (2(or (3)) and 7 is a parameter to be specified later. Multiplying the equation

(1) by wt + nw and using the boundary conditions(2) (or (3)) we obtain:

—F

dt "
where

Ey(w,wy) =
and

Hy(w,wy) =

(w,wy) + Hy(w, w) =0

2 2
n(we, w) + 0§ [|we | +772||w|\ 3 lwell” + § l[wea |

—ta(t) lwa|* - (t)ofl(x)wgdx

—na(t) Hwall2 + 1 |wae|* =1 we|”

L
—np(t) fl w2dx — nB(t) [ 1 (z)wewdz — ny(t)(we, wy)
0 0

L
+ia/ (1) lwa|? + 15 (t) g () wdz

(@) wewidz + ¢ lwe]|* + b[lwes|| -

(20)

(21)

(22)
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By using (13) we obtain the following inequality:

A2 2 n 2
nl(w, we)| < A Jwell lweell < 07 fweall™ + 5wl

Using (23), (12), and (13) in (21) we get:

Ey(w,wy) >

N |

If A2 — b <0, from (14) and for n < 1 we have:
Ey(w,we) = ko(|lwss||* + wel®)

for a suitable constant kq. If A2 —b > 0, from (14) and for

n < min{l, a)\;ilolj\}

we have

Ey(w, we) = ky(Jwae | + we]”)

for a suitable constant kq. Using (23) in (21) we obtain:

2 2 2 2 2 2
1% Nlwasl” + F lwell” + 03 weal® +nedy [[weal
2 2 2
3 el + § lwea|l” + 5 (a(t) + B)L) || wae |

E(w, wy)

IN 4+ IA

For

1
ko = gmaz {77)\2 +nb+neX? + a+agh, 1 + 77}

we obtain from (28) that:

Ey(w, we) < ka(|wae | + Jwe]”).

Using (12) and (17) we obtain the following inequalities:

2 1 2
7+ 5wl

) (w0 00)| < ;

x

T
2

72

[a =03 =) — (alt) + BOLIN fwsel|* + 51— ) e

1A% + b +1eA? + a+ ag)) [[waal|” + (1 +n) lwel|.
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(24)

(25)

(26)

(28)
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L

B(t) / ! (@)wgwdz < BE)Ly VX ||, |2 (32)
0
r 2(t L

50 (1 @prwde < ZO Ll + 2 (33)
0

By using (12),(13),(16),(31),(32) and (33) in (22) we obtain that the following inequality
holds:

—aft) = Bt)L — B(t)LivA
Lo )| + w'\L+m@wmw%w (34)

1

5
+(% o= =) [l

If we use the conditions (14)-(16), we obtain H,(w,w;) > 0 and 4 E,(w,w;) < 0 for

772—0§77<770 (35)

2 L
where 79 = min{l, ‘ll)\anb)l\, Ses ";C) ! } .So we obtained that E,(w,w;) is a Lyapunov

functional for the problem (1), (2) (and (1),(3)). Thus the zero solution of (1), (2) (and

h

(1),(3)) is stable with respect to the norm ([ (w2, +w?)dz)?. Let § be a positive number;
0
then we obtain from (20) that:
By (w,we) + 0By (w,w) = dn(we,w) + 0% Jwae|”
+0n5 |w])* + § [|we ] JFL%‘S s ||
—Sa(t) [lwa]|* — § (t)ofl(x)wﬁdx
+na(t) Jws||* = na we|” o e |*
+nB(t) Ofl( wdz + nB(t) fl Jwpwdz
() (W, we) — $a (1) Hwall
t)Ofl( widz + B(t) fl Ywzwsda

(36)

—cflwe]* = b llwesal|*.
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By using (11),(12),(13) and (14) we obtain from (36) that:

%En(w,wt) + 0B, (w,w) < (w + 577)‘72 + ok + 5770)‘—22
+nA(a(t) + B()L + B(t)LivA
+@)—na+g(‘o/(t)‘+ ﬁ'(t)‘L (37)
"‘ﬁQ(t)Ll) meHQ
HEE+ S+ + I —o— ) e

From the conditions (14)-(18), and for 7 chosen in (35), we obtain from (37):

%En(w,wt) + 5En(w,wt) < (M + 577)\72 u 577% " 52776)\_22
(1~ B)(a — o)) e (38)
2
N e 32) llwel-

Choosing § > 0 sufficiently small in (38) we obtain:

d
%En(w, wy) + 0By (w,wy) <0. (39)
It follows from the last inequality that:

E,(w,w;) < Ey(w(z,0),wy(z,0))e . (40)

Thus (25) (or (27)) and (40) imply the required inequality (19). O

Theorem 2.2.  Suppose

i) a1, a9, b1, P2,y are given positive constants,

i) a(.),b(.),c(.),d(.) are positive bounded functions of C1[0, 00) satisfying the following

conditions:
o)+ 2 < o, (1)
6 (®)| + c(t) + d(t) < mo(55 — ) (42)
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a(t) + ? + ? <70 (43)

4 ; Y J— i b} j—
where o, Bo, Yo are any positive numbers satisfying ag < 55 = minfay.ap} S, By =

B
. . o2 A2 2(v=v+58)
min{f1, B2}, 0 < 7, M0 = mm{ )|)\2aj-)\§iy AR |>\2aj->\gfy Ba]’ 3 - Then

the zero solution of (4),(5),(6) (or (4),(5), (7)) is globally asymptotically stable

L
with respect to the norm ([ (v2, + w2, +vi + wf)dx)%. Moreover for every solution
0

of the system (4),(5) satisfying the boundary conditions (6) (or(7)) the following

estimate holds:
[z ll” + weall® + [lvel® + [Jwe]| < Kpe™ (44)

where Koand § are positive parameters.

Proof. Let v(x,t) be a solution of the equation (4) and w(z, t) be a solution of equation

(5) satisfying the boundary conditions (6) ( or (7)) and n be a positive parameter which

will be chosen. Multiplying equation (4) by v:+nv and equation (5) by w;+nw, using the

boundary conditions (6) (or (7)) and adding the obtained equalities, we get the following

equality:

Let

0 = Z[L{lvell + & llwell® + % vaall? + % lwes|®
— 5 ) — A8 ||w||2+77(vt, ) &l w) + 0% vae|”
72 [|wes +772||v|| + 0% wl*] - 2a(t) (ve, we)
20 )2 4 S fu]® = e(t) (vr, w) + e(t) (wr, 0) (45)
+81 |vezal® + B2 llweasl|? + 7 loell + 7 llwel? — d(t) (vr, w)
+d(1) (wr, v) + 90 [[vall® + 02 [wasll* — 7 v
) [[wel|* = na(t) (we, v) — na(t)(ve, w) —nb(t) o> = b(t) [[w]|*.

2 2
() = 3 lloel® + 5 lwill® + G llosa|® + % llwee|®
_ b 2 b
ol - 22 || I +77(vt, )+77(wt, w) (46)
B lvsall® +77 lwea|* + 03 [oll* + 03 [[w]]®.
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Thanks to the inequality (13) we have:

n 2, 7N 2
0 |(we, w)| < 3 Jlwel|” + 5)\2 l[wes |

n 2 N 2
n](ve,v)] < 5 [loe] +§)\2va|\ :

Using (47), (48) and (13) in (46) we get:

Har = (A2 = (A2 + A2y = B1)) [|vee |* + (a2 — b(t)A?

o, (1) >
(N + A2y = ) [[we|” + 11— 1) [Joe]* +

If A2 4+ A2y — 31 <0 and A2 + A2y — 35 < 0 from (41) and for < 1 we obtain

2 2 2 2
®,(t) > Ao([[vaall”™ + lwaall” + loell™ + [Jwe[”)
for a suitable constant Ag. If A2 + X2y — 8; < 0 and A2 4+ A2y — 3, > 0 for

< min< 1 M
n ,)\2+)\2’}/_ﬁ2

we have
2 2 2 2
@, (1) > A1([[vaall” + lwasl|” + loell™ + [Jwe]”)
for a suitable constant A;. If A2 + A2y — 81 > 0 and A2 + A2y — B, < 0 for

. 051—050)\2
1., —
77<m11’l{a)\2+)\2,y_ﬁ1}

we have
2 2 2 2
@, (1) > As(([vaall” + lwasll” + loe)l™ + [Jwe[”)
for a suitable constant As. If A2 + X2y — 8; > 0 and A2 4+ A2y — 3, > 0 for

< mind 1 Q1 — Oéo)\Q Qo — Oéo)\Q
! "Ny = B N N2y — B

we get

2 2 2 2
Dy (t) = Ag([|vaall” + llwez ™ + oel|” + [lwe][”)
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for a suitable constant Az. From (46) we get the following inequality:

2 2 | ay 2 2
D) < glvell” + g llwell” + % vaall” + % lwee |
b 2 b 2
+20 o) + B2 | + 0] (ve, v)| + 7 | (wr, w)] (57)
L 2 2 2 2
+77% HUa:xH + 7762_2 Hwa:xH + 77% HUH + 77% HwH .

Using (41) and (13) we get:

(1) < 2(ar+ agA? + 022 + 0B+ nyA?) vze |l + 3(as + agh?

(58)
02 + 182 + 17A?) lwee | + 31 +0) oe|* + $(1+n) lwe) .

For
1
Ay = 3 max{a; +agA2 N2 4161 + 1A%, an+ag 2 +9\2 4162 + 1A%, 1 +n}(59)

we obtain from the last inequality:

2 2 2 2
@y (1) < Aa(llvae ™ + lwzel|” + lloa]™ + [lwe]|)- (60)
In (45) let:
By(t) = —2a(t)(ve,we) + 52 [lol|* + 2 {|w* — e(t) (vr, w)
+e(t)(we,v) + B [veaa® + B2 l[wewa |” + ol + 7 [Jwe]
—d(t) (v, w) + d(t) (we, v) + 1 [vae|* + naz |[wae | (61)

=1 Joel* = well® = na(t)(we. v) = nat)(ve, w)
—nb(#) [[v]|* = nb(t) [|w]*

Using (12) we obtain the following inequalities:

20(t) (v, 00)] < at) ] +a(0) (62
()] < 3 el + 5 e P (63
()] < 5 el + 3 o (o4
oft) (e, 0)] < & ol + L s (65)
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a?(t)

N e

1 2
a(t) |(we, v)] < 5 [lwe]|” +

Due to (62)-(66) we obtain from (61):

b (t
By(t) = (1 —pp(t)h —nn — L 20
d 2
—A = G [l ,
(222 pp(t)n — iy — 91y
d 2
B [
1 d
+(y + 5 —alt) = G — G — &) e
d
v+ 5 —alt) - L — K — ) |
Using the conditions (41)-(43) for
Mo
— <n<
9 = =T"o
. . o A? Coen?  2(v—0+28)
where By = min {81, B2} and np = min{1, FS5EeA Sgamgod o o

(68)

} we obtain

B, (t) > 0. So the zero solution of (4), (5), (6) (or (4), (5), (7)) is stable. Let § > 0, we

get from (45):

L@, (1) + 6P, (1)

78

= 2a(t)(vr,wr) — S [l|* = H2 w])? = B [[veaal®
—Ba |wewall® + c(t) (v, w) — c(t) (wi, v) = [|ve)?
=y l[we|* + d(t) (vr, w) = () (we, v) = ner [[vzs|®
=z [ wee | + 1 [vel|* + 0 [[wel|* + na(t) (we, )
+na(t) (ve, w) +nb(t) [0 * + nb(t) [[w]|* + § [[v]|?

s 2 o 2 o 2 b(t) 1 112

+5 lwell™ + 6% vae ™ + 0% [[weal|” — 05 [0
—6%2 |[w® + on(ve, v) + on(we, w) + 60F [[vre |
+0% weal|* + 0% ([0l + nF [lw]*.
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By using the inequalities (62)-(66) we obtain from the above equality:

LB, (t) +00,(t) < [0% + ol + oy +5777 — naq
+wu>i%+4<ﬂwu
Fd(O)] [veel® + (6% + 6022 + oy + ns
—nay + A (b(t) + %%+7wﬁﬂ
te(t) + d()] lwee | + (5 + % + a(t) + <L
+“”+2n v = ) lodl® + (5 + 5 +a(t)
40 D 4 3y oy By g

or
() +00,(t) < [6% + G + oy +5772
—(n— %)(a—aoAQ ]val\
+[0%2 + on +57772 +5772
—(n— %)(a—aoAQ el
(5 + G Halt) + G+ EP 4 Gy -y — ) [l
G+ 5 +al®) + 5+ G+ =y = 58 el

For sufficiently small § > 0 we obtain:

L, (1) + 00, (1) < 0.

From (72) we have
@, (t) < @,(0)e™°"

Thus we obtain the required inequality (44).
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