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Abstract

We consider an optical cavity with a light vibrating end-mirror and containing a Bose-Einstein conden-

sate (BEC). The mediation of the cavity field induces a non-trivial interplay between the mirror and the

collective oscillations of the intra-cavity atomic density. We explore the thermodynamical implications of

this dynamics and highlight the possibilities for indirectdiagnostic. The effects we discuss can be observed

in a set-up that is well within reach of current experimentalcapabilities and is central in the quest for

mesoscopic quantumness.
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Achieving quantum control over a system endowed with macroscopic degrees of freedom is a

long-sought goal of modern physics. The accomplishment of such a task will help us shifting the

domain of applicability and exploitation of quantum technology from the context of microscopic

systems fulfilling stringent criteria for quantumness to the mesoscopic world [1–3]. Important

fundamental and technological progresses have been performed, recently, along these directions:

the gap separating current experimental possibilities from the observation of genuine quantum

mechanical effects at the meso-scale is now only a fewquantawide [4]. In such a quest, a few

physical systems have emerged as well-suited for the observation of interesting quantum effects

at a magnified scale: mechanical devices in optical and microwave resonators [5, 6], collective

excitations of ultracold atomic ensembles [7] and arrays ofsuperconducting devices [8].

In this paper, we demonstrate mutual back-action dynamics of two macroscopic degrees of

freedom embodied by physical systems of different nature. We consider the interplay between a

BEC and the vibrating end-mirror of an optical cavity. We show a non-trivial intertwined dynamics

between collective atomic modes, coupled to the cavity field, and the mechanical one, which

experiences radiation-pressure forces. By focusing on noise properties, important signatures of

one subsystem in the dynamics of the other can be revealed by looking at experimentally accessible

quantities. We characterize the atom-induced back-actionthat modifies the cooling capabilities of

the opto-mechanical system and show that our predictions can be tested with current state of the

art. The movable end-mirror of the optical cavity of lengthL is assumed to perform harmonic

oscillations at frequencyωm along the cavity axis. The mirror is in contact with a background of

phononic modes in equilibrium at temperatureT. The cavity is pumped through its (steady) input

mirror by a laser of tunable frequency. The BEC is confined in alarge-volume trap within the

cavity [7, 10] [cfr. Fig. 1]. Alternatively, the BEC could besitting in a 1D optical-lattice generated

by a trapping mode sustained by a bimodal cavity [11]. The atom-cavity interaction is insensitive

to the details of the trapping and our study holds in both cases. In the weakly interacting regime [9],

the atomic field operator can be split into a classical part (the condensate wave function) and a

quantum one (the fluctuations) conveniently expressed in terms of Bogoliubov modes. Recent

experiments coupling a BEC to an optical resonator [10] suggest that the only Bogoliubov modes

that interact significantly with the cavity field are those with momentum±2kc (kc is the cavity-

mode momentum) while the condensate can be considered to be initially at zero temperature.

While the cavity end-mirror experiences radiation pressure, optical forces excite superpositions of

atomic momentum modes. Interference between momentum-excited atoms and condensate creates

2



FIG. 1: A laser pump is split by an unbalanced beam splitter. The transmitted part is sent to an electro-optic

modulator (EOM) for phase modulation and then enters an opto-mechanical cavity coupled to a Bose-

Einstein condensate (BEC). The (weak) reflected part of the pump laser is used as a probe for the BEC. The

output light from the cavity and the output signal from the BEC are directed to a detection stage consisting

of a switch, a photodiode and a spectrum analyzer (SA). The switch is used in order to select which output

should be analyzed.

a periodic density grating that is sensed via the cavity.

We write the Hamiltonian of the system made out of the cavity field, the movable mirror

and the BEC asĤ=∑ j=M,C,A Ĥ j+ĤAC+ĤMC where the mirror, cavity and BEC Hamiltonians are

ĤM = mω2
mq̂2/2+ p̂2/(2m), ĤC=~(ωC−ωL)â†â−i~η(â− â†) andĤA=~ω̃ĉ†ĉ, respectively. Here ˆq

(p̂) is the mirror displacement (momentum),m is its effective mass,ωC (ωL) is the cavity (pump

laser) frequency and ˆa (â†) is the corresponding annihilation (creation) operator. Finally, ω̃ andĉ

(ĉ†) are the frequency and the bosonic annihilation (creation)operator of the Bogoliubov mode.

We have incorporated adisplacingterm−i~η(â− â†) in the cavity Hamiltonian. This arises from

the pump-cavity coupling, which shifts the cavity field in phase space (and, in turn, the equilib-

rium position of the vibrating end-mirror) proportionallyto the coupling parameterη=
√

2κR/~ωL

(R is the laser power andκ is the cavity decay rate). For small mirror displacements and large

cavity free spectral range with respect toωm (so that scattering of photons into other mechanical

modes is neglected), the mirror-cavity interaction Hamiltonian can be put in the linearized form

ĤMC= − ~χq̂â†â with χ=ωC/L. On the other hand, the atoms-cavity interaction reads

ĤAC = (~g2N0)/(2∆a)â
†â+ ~

√
2ζQ̂â†â, (1)

which contains two contributions: one is from the condensate only while the second is related
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to the position-like operator̂Q=(ĉ + ĉ†)/
√

2 of the Bogoliubov mode (we have assumed that the

condensate wave function is not affected by the coupling to the cavity field). In Eq. (1),g is the

vacuum Rabi frequency for the dipole-like transition connecting the atomic ground and excited

states,N0 is the number of condensed atoms,∆a is the detuning of the atomic transition from

the cavity frequency and the coupling rateζ∝
√

N0g2/∆a. As discussed in Appendix, a rigorous

calculation shows thatζ also depends on the Bogoliubov mode-function and can be conveniently

tuned. While the first term in Eq. (1) embodies a cavity-frequency pull, the second is formally

analogous toĤMC and shows that, under the mentioned working conditions, theBEC dynamics

mimics that of a mechanical mode undergoing radiation-pressure effects. A similar result, for a

BEC coupled to a static cavity, has been found in [10] and can be extended to include higher-order

momentum modes in the expansion above.

In general, the dynamics encompassed byĤ is made difficult by the non-linearity inherent in

ĤMC and Eq. (1). However, for an intense pump laser, the problem can be linearized by intro-

ducing quantum fluctuations aŝO→Os+δÔ with Ô any of the operators enterinĝH , Os its mean

value andδÔ the associated first-order quantum fluctuation [15]. We define the cavity quadra-

turesx̂=â+â† andŷ=i(â†−â) and the operator̂P=i(ĉ†−ĉ)/
√

2 that is canonically conjugated to the

position-like atomic operator̂Q. The dynamical equations of the coupled three-mode system can

then be cast into a compact form. Any realistic description of the problem at hand should in-

clude the most relevant sources of noise affecting the overall device, i.e. energy leakage from the

cavity and thermal Brownian motion at temperatureT undergone by the cavity end-mirror. We

thus consider the Langevin equation∂tφ̂=Kφ̂+N̂ , where we have introduced the vector of fluc-

tuationsφ̂T=(δx̂ δŷ δq̂ δp̂ δQ̂ δP̂), the noise vector̂NT=(
√
κ(δâ†in+âin) i

√
κδ(â†in−âin) 0 ξ̂ 0 0) and

the dynamical coupling matrixK , which is easily found. The evolution of the system depends

on a few crucial parameters, including the total detuning∆=ωC−ωL−χqs+
√

2ζQs+g2N0/2∆a be-

tween the cavity and the pump laser. This consists of the steady pull-off term in Eq. (1) as well

as both the opto-mechanical contributions proportional tothe displaced equilibrium positions of

the mechanical and Bogoliubov modes. These are respectively given by the stationary values

qs=~χα
2
s/mω

2
m andQs= −

√
2ζα2

s/ω̃, which are in turn determined by the mean intra-cavity field

amplitudeαs=η/
√
∆2 + κ2. The interlaced nature of such stationary parameters (notice the depen-

dence ofαs on the detuning) is at the origin of bistability and chaotic effects [10–12]. As for the

noisy part of the dynamics, we have introducedδâin andδâ†in as zero-average [〈ain(t)〉=〈a†in(t)〉=0],

delta-correlated [〈ain(t)a†in(t′)〉=δ(t−t′)] operators describing white noise entering the cavity from
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the leaky mirror. Dissipation of the mechanical mirror energy is, on the other hand, associated

with the decay rateγ and the corresponding zero-mean Langevin-force operatorξ̂(t) having non-

Markovian correlations (βB=~/2kBT) [13] 〈ξ̂(t)ξ̂(t′)〉=(~γm/2π)
∫

ωe−iω(t−t′)[coth(βBω)+1]dω. Al-

though the non-Markovianity of the mechanical Brownian motion could be retained in our ap-

proach, for large mechanical quality factors (γ→0), a condition that is met in current experiments

on micro-mechanical systems [6], one can take〈ξ̂(t)ξ̂(t′)〉≃[~γm/βB+i∂t]δ(t−t′) [13]. As our anal-

ysis relies on symmetrized two-time correlators, the antisymmetric part in the above expression,

proportional to∂tδ(t−t′), is ineffective, thus making our description fully Markovian. Here we

show that the model above results in an interesting back-action dynamics where the state of the

mechanical mode is strongly intertwined with the BEC. The physical properties of the mirror

are altered by the cavity-BEC coupling. Clear signatures ofsuch interaction are found in the

noise properties of the mechanical mode, strong enough to inhibit the cooling capabilities of the

radiation-pressure mechanism under scrutiny.

We start considering the modification in the mirror dynamicsdue to the coupling to the cavity

and indirectly to the BEC. The Langevin equations are conveniently solved in the frequency do-

main, where we should ensure stability of the solutions. This implies negativity of the real part

of the eigenvalues ofK . Numerically, we have fount that stability is given for∆>0 and weak

coupling of the mirror and the BEC to the cavity, i.e. for{χ
√
~/mωm, ζ}≪κ, which are conditions

fulfilled throughout this work. We find the mirror displacement

δq̂(ω)=[AM(ω)δŷin(ω) + BM(ω)δx̂in(ω) + CM(ω)ξ̂(ω)], (2)

withAM(ω)=B(ω)∆/(κ−iω)= −~χαs

√
2κ∆/dM(ω),CM(ω)= −{(ω2−ω̃2)[(κ−iω)2+∆2]+4ω̃∆α2

sζ
2}/dM(ω)

anddM(ω) that is related to the effective susceptibility function of the mechanical mode [16]. We

now compute the density noise spectrum (DNS) ofδq̂(ω). For a generic operator̂O(ω) in the

frequency domain, the DNS is defined asSO(ω)= (1/4π)
∫

dΩe−i(ω+Ω)t〈Ô(ω)Ô(Ω)+Ô(Ω)Ô(ω)〉.
Using the correlation properties of the input and Brownian noise operators, after a little algebra

one gets

Sq(ω)=
∑

J=A,B
|JM(ω)|2 + ~γm[1+coth(βω)

] |CM(ω)|2. (3)

Some interesting features emerge from the study ofSq(ω). In Fig. 2 we compare the case of an

empty opto-mechanical cavity [panel(a)] and one where a weak coupling with the atomic Bogoli-

ubov mode of frequency ˜ω=ωm is included [panel(b)]. For an empty cavity, the mechanical-mode
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(a) (b)

FIG. 2: (a) A laser is split by an umbalanced beam splitter. The transmitted part is phase-modulated by

an electro-optic modulator (EOM) and enters an opto-mechanical cavity coupled to a BEC. The (weak)

reflected part of the pump laser probes the BEC. The signals from the cavity and the BEC go to a detec-

tion stage consisting of a switch (selecting the signal to analyze), a photodiode and a spectrum analyzer

(SA). (b) DNS of the mirror displacement for an empty cavity against∆ andω for L=2.5cm, m=15ng,

ωm/2π=275Hz,γ=ωm/Q with Q=105 andT=300K andκ≃5MHz. The pumping light athas wavelength

1064nm and input power 4mW. The DNS is rescaled to its value atω=ωm and∆=0. (c) We include the

effects of the atomic coupling by taking ˜ω=ωm andζ≃0.7χ
√
~/(mωm).

spectrum is obviously identical to what has been found in Ref. [14] (the use of that case as a mile-

stone in our quantitative study motivates the choice of the parameters used throughout this work).

Both the optical spring effect in a detuned optical cavity and a cooling/heating mechanism are ev-

ident: height, width and peak-frequency ofSq(ω) change with the detuning∆. At ∆ ≃ κ/2 optimal

cooling is achieved with a considerable shrink in the heightof the spectrum. However, as soon as

the Bogoliubov mode enters the dynamics, major modifications appear. The optical spring effect

is magnified (the red-shift of the peak frequency ofSq(ω) is larger than atζ=0) and a secondary

structure appears in the spectrum, unaffected by any change of∆. Such a structure is a second

Lorentzian peak centered inω=ωm and is a signature of the back-action induced by the atoms, an

effect that comes from a three-mode coupling and, as discussed later, isdeterminedby ω̃ andζ.

In fact, by studying the dependence ofSq(ω) on the frequency of the Bogoliubov mode, we see

that the secondary peak identified above is always centered exactly atω̃. Forζ ≪ χ
√
~/(mωm), i.e.

for weak back-action from the atomic mode onto the mechanical one, the signature of the former in
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the spectrum of the latter is very small, as shown by a tiny structure subjected to rather negligible

detuning-induced modifications. The picture changes for ˜ω close to the mechanical frequency. In

this case, as seen in Fig. 2(b), the influence of the atomic medium is considerable and present at

any value of∆. While the mechanical mode experiences enhanced optical spring effect (an effect

easily seen by looking at the effective susceptibility of the mechanical mode [16]), the secondary

structure persists even at∆∼κ/2, the working point here optimizing the mechanical cooling.

A better understanding is provided by studyingSq(ω,∆) against the atomic opto-mechanical

rateζ [cfr. Fig. 3 (a)]. At the optimal detuning and for ˜ω≃ωm, both the effects highlighted above

are clearly seen: thecontributionof the secondary structure centered at ˜ω grows withζ due to

the increasing atomic back-action while a large red-shift and shrinking of the mechanical-mode

contribution to the DNS shows the enhanced spring effect. An intuitive explanation for all this

comes from taking a normal-mode description, where the diagonalization ofĤ passes through the

introduction of new modes that are linear combinations of the mechanical and Bogoliubov one.

The weight of the latter increases withζ, thus determining a strong influence of the atomic part of

the system over the noise properties of the mechanical mode.

The consequences of the atomic back-action are not restricted to the effects highlighted above.

Strikingly, the coupling between the atomic medium and the cavity field acts as aswitchfor the

cooling experienced by the mechanical mode in an empty cavity [cfr. Fig. 3 (b)]. That is, the

(a) (b) (c)

FIG. 3: (a) DNS of the mechanical mode againstω andζ for ω̃≃ωm and∆=κ/2. The structure centered at

ωm and with amplitude growing withζ is due to atomic back-action. Inset: same plot for ˜ω=0.8ωm. Similar

but less important features are found away from the resonance betwen mechanical and atomic mode.(b)

Effective temperature of the mechanical mode against∆/κ. Solid (Dashed) lines are for ˜ω=0.1ωm (ω̃≃ωm).

(c) SQ(ω,∆) for ω̃≃ωm andζ=50Hz.
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coupling to the collective oscillations of the atomic density is crucial in determining the number of

thermal excitations in the state of the mechanical mode, regulating the mean energy of the cavity

end-mirror. A way to clearly see it is to consider the effective temperatureTeff=〈U〉/kB, where

〈U〉=mω2
m〈δq̂2〉/2+〈δp̂2〉/(2m) is the mean energy of the mechanical mode.〈U〉 is experimen-

tally easily determined by measuring just the area underneath Sq(ω,∆), as acquired by a spec-

trum analyzer. In fact, we have〈δr̂2〉=
∫

dωSr(ω,∆) (r=q, p) with Sp(ω,∆)=m2ω2
mSq(ω,∆). Such

temperature-regulating mechanism is explained in terms ofa simple thermodynamic argument.

The exchange of excitations behind passive mechanical cooling [5, 14] occurs at the optical side-

band centered atωm. When the frequency of the Bogoliubov mode does not match this sideband,

mirror and cavity field interact with only minimum disturbance from the BEC. Thus, mechanical

cooling occurs as in an empty cavity: even for relatively large values ofζ the cooling capabilities

of the detuned opto-mechanical process are, for all practical purposes, unaffected [see Fig. 3(b)].

However, by tuning ˜ω on resonance with the relevant optical sideband, we introduce awell-source

mechanismfor the recycling of phonons extracted from the mechanical mode and transferred to

the cavity field. The BEC can now absorb some excitations taken from the mirror by the field, thus

acting as aphononic welland release them into the field at a frequency matched withωm. The

mirror can take the excitations back, as in the presence of aphononic source: thermodynamical

equilibrium is established at a temperature set byζ. For strong atomic back-action, the mirror does

not experience any cooling [Fig. 3(b)].

Analogously, one finds the atomic DNS associated with the position-like operator of

the Bogoliubov mode, which readsδQ̂(ω) = [AA(ω)δŷin + BA(ω)δx̂in + CA(ω)ξ̂(ω)] with

AA(ω)=∆B(ω)/[ω̃(κ−iω)]=2iαsζ∆
√
κω(iγω+ω2−ω2

m)/dA, CA(ω) = −2
√

2iα2
s∆ζχωω̃/mdA and

dA having a rather lengthy expression. The spectrumSQ(ω,∆) is then easily determined using

the appropriate input-noise correlation functions and sketched in Fig. 4. Clearly, in light of the

formal equivalence of Eq. (1) with a radiation pressure mechanism, by setting up the proper work-

ing point, the BEC should undergo a cooling dynamics similarto the one experienced by the

mirror. The starting temperature of the Bogoliubov mode depends on the values taken by ˜ω andζ.

At ζ=0, regardless of the atomic-mode frequency, its effective temperature is very low, as it should

be. For a set value ofζ, the temperature arises as ˜ω→ωm. The conditions of our investigations are

such that weak coupling between the BEC and the cavity field are kept, in a way so as to make

the Bogoliubov expansion valid and rigorous. The mutually-induced back-action at the center of

our discussion is clearly visible in Figs. 3(c) and 4, where features similar to those present in
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(a) (b) (c)

FIG. 4: Panels(a) to (c): SQ(ω, κ/2) againstω and ζ for χ=kωC/2L (k=0, 1, 2). The splitting between

atomic and mechanical part of the spectrum is clear (the latter is not shifted asζ grows).

the mechanical DNS appear. Forχ=0, the atomics DNS at ˜ω=ωm starts from zero (atζ=0) and

experiences red shifts and shrinking as the effective opto-mechanical coupling rate grows. Having

switched off the coupling between the mechanical mode and the field, the spectrum is single-

peaked. This is not the case forχ,0 where a secondary structure appears, similar to the one in the

mechanical DNS. The splitting between mechanical and atomic contributions toSQ(ω, κ/2) grows

with χ, a clear sign of the mechanically-enhanced optical spring effect experienced by the atomic

mode.

We have demonstrated an intriguing dynamical back-action within an experimentally viable

set-up. The indirect mutual cross-talking between mechanical and atomic mode determines a sub-

stantial modification of the respective dynamics and leavesa signature of the reciprocal influence

in experimentally handy quantities. This opens up the way tonovel diagnostic strategies where

the relevant interaction parameters are determined by measuring the noise properties of only one

subsystem and fitting it with the analytical expressions forthe relevant spectra provided here. The

BEC spectrum could be probed by homodyning a weak forward-scattered field, transversally fed

into the cavity and coupled to the atoms, as done in similar contexts [7] [cfr. Fig. 1]. The procedure

for reconstructing the intra-cavity dynamics from measurements on the extra-cavity field described

in [14] could be adopted too. We are currently studying how the mutual influence between atomic

and mechanical parties could be used towrite specific features onto one of the two subsystems, so

as to implement quantum state-engineering.
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[6] S. Gröblacher, K. Hammerer, M. Vanner, and M. Aspelmeyer, Nature(London)460, 724 (2009); J. D.
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