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We propose and analyze a multi-functional setup consisting of high finesse optical cavities, beam
splitters, and phase shifters. The basic scheme projects arbitrary photonic two-mode input states
onto the subspace spanned by the product of Fock states |n〉|n〉 with n = 0, 1, 2, . . .. This protocol
does not only provide the possibility to conditionally generate highly entangled photon number
states as resource for quantum information protocols but also allows one to test and hence purify
this type of quantum states in a communication scenario, which is of great practical importance.
The scheme is especially attractive as a generalization to many modes allows for distribution and
purification of entanglement in networks. In an alternative working mode, the setup allows of non-
destructive number resolved photodetection and renders the extension of quantum non demolition
measurements of photon numbers from the microwave regime [S. Gleyzes et al, Nature 446, 297
(2007), D.I. Schuster et al, Nature 445, 515 (2007)] to the optical domain possible.

PACS numbers: 42.50.Dv, 42.50.Pq, 03.67.-a

I. INTRODUCTION

Light plays an essential role in quantum communica-
tion and is indispensable in most practical applications,
for example quantum cryptography. Photons are attrac-
tive carriers of quantum information because the interac-
tions of light with the surroundings are normally weak,
but for the same reason it is generally difficult to pre-
pare, manipulate, and measure quantum states of light
in a nondestructive way. Repeated interactions provide
a method to increase the effective coupling strength be-
tween light and matter, and the backreflection of light in
a cavity thus constitutes an interesting tool, in particu-
lar, because experiments are currently moving into the
strong coupling regime [1–4], where coherent dynamics
takes place on a faster time scale than dissipative dy-
namics.

In this paper we propose a versatile setup consisting of
an array of cavities and passive optical elements (beam
splitters and phase shifters), which allows for quantum
state engineering, quantum state purification, and non-
destructive number resolving photon detection. The
setup builds on two basic ingredients: The Hong-Ou-
Mandel interference effect [5] generalized to input pulses
containing an arbitrary number of photons and the pos-
sibility of projection onto the subspace of even or the
subspace of odd photon-number states by use of cavity
quantum electrodynamics in the strong coupling regime.

Regarding quantum state engineering, the basic setup
provides a possibility to conditionally generate photon-
number correlated states. More specifically, the setup
allows us to project an arbitrary photonic two-mode in-
put state onto the subspace spanned by the state vectors
|n〉|n〉 with n = 0, 1, 2, . . .. We denote this subspace by
S. The scheme is probabilistic as it is conditioned on a
specific measurement outcome. The success probability

equals the norm of the projection of the input state onto
S and is thus unity if the input state already lies in S.
In other words, the setup may be viewed as a filter [6],
which removes all undesired components of the quantum
state but leaves the desired components unchanged. We
may, for example, use two independent coherent states
as input and obtain a photon-number correlated state as
output.
Photon-number correlated states, for example

Einstein-Podolsky-Rosen (EPR) entangled states [7],
are an important resource for quantum teleportation
[8–12], entanglement swapping [13–15], quantum key
distribution [16, 17], and Bell tests [18, 19]. In practice,
however, the applicability of these states is hampered by
noise effects such as photon losses. Real-world applica-
tions require therefore entanglement purification. The
proposed setup is very attractive for detection of losses
and can in particular be used to purify photon-number
entangled states on site. If a photon-number correlated
state, for example an EPR state, is used as input, the
desired state passes the setup with a certificate, while
states which suffered from photon losses are detected
and can be rejected.
Photon losses are an especially serious problem in

quantum communication over long distances. It is not
only a very common source of decoherence which is hard
to avoid, but also typically hard to overcome. The on-
site purification protocol mentioned above can easily be
adopted to a communication scenario such that it allows
for the purification of a photon-number correlated state
after transmission to two distant parties.
Purification of two mode entangled states has been

shown experimentally for qubits [20, 21] and in the con-
tinuous variable (CV) regime [22, 23]. (CV-entanglement
purification is especially challenging [24–26] and several
proposals have been made to accomplish this task [27–
32].) A special advantage of our scheme lies in the fact
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that it does not only allow for detection of arbitrary pho-
ton losses, but is also applicable to many modes such
that entanglement can be distributed and purified in a
network.

With a small modification, the basic setup can be used
for number resolved photon detection. The ability to
detect photons in a number resolved fashion is highly
desirable in the fields of quantum computing and quan-
tum communication. For example, linear optics quantum
computation relies crucially on photon number resolving
detectors [33–35]. Moreover, the possibility to distin-
guish different photon-number states allows for condi-
tional state preparation of nonclassical quantum states
[36–38], and plays a role in Bell experiments [39] and
the security in quantum cryptographic schemes [40, 41].
Other applications include interferometry [42] and the
characterization of quantum light sources [43, 44].

Existing technologies for photon counting [45–58] such
as avalanche photodiodes, cryogenic devices, and quan-
tum dots typically have scalability problems and cannot
reliably distinguish high photon numbers, destroy the
quantum state of light in the detection process, or do
not work for optical photons. Here, we present a non-
destructive number resolving photo detection scheme in
the optical regime. This quantum-non-demolition mea-
surement of the photon number allows for subsequent use
of the measured quantum state of light. An advantage of
the counting device put forward in this work compared
to other theoretical proposals for QND measurements of
photon numbers [59–64] is the ability to detect arbitrar-
ily high photon numbers with arbitrary resolution. The
scheme is based on testing successively all possible prime
factors and powers of primes and the resources needed
therefore scale moderately with (width and mean of the)
photon number distribution. In particular, a very precise
photon number measurement can be made even for very
high photon numbers by testing only few factors if the
approximate photon number is known.

The paper is structured as follows. We start with a
brief overview of the main results in Sec. II. In Sec. III,
we explain how the conditional projection onto S can
be achieved and discuss some properties of the proposed
setup in the ideal limit, where the atom-cavity coupling is
infinitely strong and the input pulses are infinitely long.
In Sec. IV, we show that a modified version of the setup
can act as a non-destructive photon number resolving
detector, and in Sec. V, we investigate the possibility to
use the setup to detect, and thereby filter out, losses. In
Sec. VI, we consider the significance of finite input pulse
length and finite coupling strength, and we obtain a sim-
ple analytical expression for the optimal choice of input
mode function for coherent state input fields. Section VII
concludes the paper.

|↓〉 |↑〉

|e〉

g Γ

π

|↓〉

0

|↑〉

(a) (b) (c)

FIG. 1: (Color online) A single atom with level structure
as shown in (a) is placed in a cavity in the strong coupling
regime. The light field, which is on resonance with the cavity,
couples the ground state level |↑〉 resonantly to the excited
state |e〉, and the state |e〉 decays to the state |↑〉 through
spontaneous emission at a rate Γ. (b) If the atom is in the
state |↓〉, the incident field is not affected by the presence of
the atom, and for a sufficiently slowly varying input pulse,
the interaction with the resonant cavity changes the phase of
the light field by π. (c) If the atom is initially in the state
|↑〉, the possibility of spontaneous emission prevents the light
field from building up inside the cavity (provided the photon
flux of the input beam is not too high), and the incoming field
is reflected from the input mirror without acquiring a phase
shift. This transformation is insensitive to the precise values
of g, Γ, and the cavity decay rate as long as the system is in
the strong coupling and weak driving regime.

II. OVERVIEW AND MAIN RESULTS

The most important ingredient of the proposed setup
is the possibility to use the internal state of a single atom
to control whether the phase of a light field is changed by
π or not [65]. The basic mechanism is explained in Fig. 1
and has several interesting applications, including prepa-
ration of superpositions of coherent states [66], continu-
ous two-qubit parity measurements in a cavity quantum
electrodynamics network [67], and low energy switches
[68].

The generation of quantum superposition states can be
achieved as follows. The atom is initially prepared in the
state (|↑〉 + |↓〉)/

√
2, and the input field is chosen to be

a coherent state |α〉. After the interaction, the combined
state of the atom and the light field is proportional to
|α〉|↑〉 + | − α〉|↓〉 ∝ (|α〉 + | − α〉)(|↑〉 + |↓〉) + (|α〉 − | −
α〉)(|↑〉 − |↓〉), and a measurement of the atomic state in

the basis |±〉 = (|↑〉 ± |↓〉)/
√
2 projects the state of the

light field onto the even |α〉+ |−α〉 or the odd |α〉−|−α〉
superposition state. More generally, the input state
∑

n cn|n〉, where |n〉 is an n-photon Fock state, is trans-
formed into the output state

∑

n(1/2 ± (−1)n/2)cn|n〉,
i.e., the input state is conditionally projected onto either
the subspace spanned by all even photon-number states
or the subspace spanned by all odd photon-number states
without destroying the state.

With this tool at hand, we can project an arbi-
trary two-mode input state onto the subspace S =
span(|n〉|n〉), n = 0, 1, 2, . . .. If two modes interfere at a
50:50 beam splitter, a state of form |n〉|n〉 is transformed
into a superposition of products of even photon-number



3

states. If we apply a 50:50 beam splitter operation to the
input state, project both of the resulting modes condi-
tionally on the subspace of even photon-number states,
and apply a second 50:50 beam splitter operation, the
input state is thus unchanged if it already lies in S, but
most other states will not pass the measurement test.
To remove the final unwanted components, we apply op-
posite phase shifts to the two modes (which again leaves
|n〉|n〉 unchanged) and repeat the procedure (as shown in
Fig. 2). For an appropriate choice of phase shifts, the de-
sired state is obtained after infinitely many repetitions.
In practice, however, a quite small number is typically
sufficient. If, for instance, the input state is a product of
two coherent states |α〉|α〉 with |α|2 = 4, the fidelity of
the projection is 0.573 for one unit, 0.962 for two units,
and 0.999998 for three units. The scheme is easily gen-
eralized to an M mode input state. In this case, we first
project modes 1 and 2 on S, modes 3 and 4 on S, etc,
and then project modes 2 and 3 on S, modes 4 and 5 on
S, etc.

The setup can also be used as a device for photon num-
ber resolving measurements if the phases applied between
the light-cavity interactions are chosen according to the
new task. Each photon-number state |n〉 sent through the
array leads to a characteristic pattern of atomic states.
As explained in section IVA, one can determine the pho-
ton number of an unknown state by testing the prime
factors and powers of primes in the range of interest in
subsequent parts of the array. The scheme scales thereby
moderately in the resources. Three cavity pairs suffice
for example for detecting any state which is not a mul-
tiple of three with a probability of 93.75%. However, in
this basic version of the counting scheme, the tested pho-
ton state may leave each port of the last beam splitter
with equal probability. Deterministic emission of the un-
changed quantum state of light into a single spatial mode
is rendered possible if we allow atoms in different cavi-
ties to be entangled before the interaction with the field
(see section IVB). More generally, the proposed scheme
allows to determine the difference in photon numbers of
two input beams without changing the photonic state.

The correlations in photon number between the two
modes of states in S facilitate an interesting possibility
to detect photon losses. To this end the state is projected
onto S a second time. If photon loss has occurred, the
state is most likely orthogonal to S, in which case we
obtain a measurement outcome, which is not the one we
require in order to accept the projection as successful. On
the other hand, if photon loss has not occurred, we are
sure to get the desired measurement outcome. We note
that loss of a single photon can always be detected by this
method, and the state can thus be conditionally recov-
ered with almost perfect fidelity if the loss is sufficiently
small. We can improve the robustness even further, if
we use an M -mode state. It is then possible to detect
all losses of up to M − 1 photons, and even though it
is M times more likely to lose one photon, the probabil-
ity to lose one photon from each mode is approximately

(Mp)M , where p is the probability to lose one photon
from one mode and we assume Mp ≪ 1. In a situation
where many photon losses are to be expected, this pro-
cedure allows one to obtain photon-number correlated
states with high fidelity, although with small probability.
We can also distribute the modes of a photon-number

correlated state to distant parties, while still checking for
loss, provided we send at least two modes to each party.
As the proposed scheme can be used as a filter prior to the
actual protocol it has an important advantage compared
to postselective schemes. If the tested entangled state
is for example intended to be used for teleportation, the
state to be teleported is not destroyed in the course of
testing the photon-number correlated resource state.
The dynamics in Fig. 1 requires strong coupling, a suf-

ficiently slowly varying mode function of the input field,
and a sufficiently low flux of photons. To quantify these
requirements, we provide a full multi-mode description of
the interaction of the light with the cavity for the case of
a coherent state input field in the last part of the paper.
We find that the single atom cooperativity parameter
should be much larger than unity, the mode function of
the input field should be long compared to the inverse of
the decay rate of the cavity, and the flux of photons in
the input beam should not significantly exceed the rate
of spontaneous emission events from an atom having an
average probability of one half to be in the excited state.
We also derive the optimal shape of the mode function
of the input field (Eq. (27)), when the mode function is
only allowed to be nonzero in a finite time interval.

III. NONDESTRUCTIVE PROJECTION ONTO

PHOTON-NUMBER CORRELATED STATES

The proposed setup for projection of an arbitrary two-
mode input state onto S is sketched in Fig. 2. We denote
the field annihilation operators of the two input modes

by â and b̂, respectively. The total transformation corre-
sponding to one of the units consisting of a beam splitter,
a set of cavities, and a second beam splitter, conditioned
on both atoms being measured in the state |+〉 after the
interaction, is given by the operator U †PU , where

U = exp
[π

4

(

â†b̂− âb̂†
)]

(1)

and

P =

∞
∑

n=0

∞
∑

m=0

|2n〉〈2n| ⊗ |2m〉〈2m|. (2)

As explained above, the Hong-Ou-Mandel effect ensures
that U †PU |n〉|n〉 = |n〉|n〉, while most other possible
components of the input state are removed through the
conditioning, for instance all components |n〉|m〉 with
n + m odd. There are, however, a few exceptions,
since all states of the form U †|2n〉|2m〉, n = 0, 1, 2, . . .,
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FIG. 2: (Color online) The first three units of the proposed setup to conditionally project an arbitrary two-mode input state
onto the subspace spanned by the state vectors |n〉|n〉, n = 0, 1, 2, . . .. All atoms are prepared in the state (|↑〉+ |↓〉)/

√
2 before

the interaction with the field, and the desired projection occurs in the limit of infinitely many units conditioned on all atoms
being in the state (|↑〉 + |↓〉)/

√
2 after the interaction. As explained in the text, a small number of units will typically suffice

in practice. For later reference we label the beam splitters as BSi and the cavities as Ci.

m = 0, 1, 2, . . ., are accepted. The phase shifts between
the U †PU units are represented by the operator

Uφ = exp
[

iφ
(

â†â− b̂†b̂
)]

, (3)

which leaves states of the form |n〉|n〉 unchanged, while
states of the form |n〉|m〉 with n 6= m acquire a phase
shift.
For a setup containing N+1 units, the complete condi-

tional transformation is thus represented by the operator

ÔN = U †PUUφN
U †PU · · ·Uφ2

U †PUUφ1
U †PU (4)

= U †PU
N
∏

i=1

cos[φi(â
†â− b̂†b̂)], (5)

where U †PU in the last line commutes with the product
of cosines. For N → ∞, the product of cosines van-
ishes for all components of the input state with different
numbers of photons in the two modes if, for instance, all
the φi’s are chosen as an irrational number times π. We
note that even though we here apply the two-mode oper-
ators one after the other to the input state corresponding
to successive interactions of the light with the different
components of the setup, the result is exactly the same
if the input pulses are longer than the distance between
the components such that different parts of the pulses in-
teract with different components at the same time. The
only important point is that the state of the atoms is
not measured before the interaction with the light field
is completed.
A natural question is how one should optimally choose

the angles φi to approximately achieve the projection

with a small number of units. To this end we define
the fidelity of the projection

FN =
|〈ψN |ψ∞〉|2

〈ψN |ψN 〉〈ψ∞|ψ∞〉 =
〈ψ∞|ψ∞〉
〈ψN |ψN 〉 (6)

as the overlap between the unnormalized output state
|ψN 〉 = ÔN |ψin〉 after N + 1 units and the projection
|ψ∞〉 of the input state |ψin〉 onto the subspace S. The
last equality follows from the fact that |ψN 〉 = |ψ∞〉 +
|ψ⊥〉, where |ψ⊥〉 lies in the orthogonal complement of S.
Maximizing FN for a given |ψin〉 =

∑

n

∑

m cnm|n〉|m〉
thus corresponds to minimizing

〈ψN |ψN 〉 =
∞
∑

n=0

∞
∑

m=0

cnm

N
∏

i=1

cos2[φi(n−m)]

× 〈ψin|U †PU |n〉|m〉, (7)

i.e., we would like to find the optimal solution of

∂〈ψN |ψN 〉
∂φj

= −
∞
∑

n=0

∞
∑

m=0

cnm sin[2φj(n−m)](n−m)

×
N
∏

i=1
i6=j

cos2[φi(n−m)]〈ψin|U †PU |n〉|m〉 = 0. (8)

A set of solutions valid for any input state can be
obtained by requiring sin[2φj(n − m)]

∏

i6=j cos
2[φi(n −

m)] = 0 for all even values of n − m (note that
U †PU |n〉|m〉 = 0 for n + m odd). Within this set
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FIG. 3: (Color online) Fidelity (Eq. (6)) as a function of the
expectation value of the number of photons in one of the input
modes for |ψin〉 = |α〉|α〉 and setups with one, two, three,
and infinitely many units. The angles are chosen as φj =
2−j×π/4. The dotted line labeled P∞ is the probability in the
limit of infinitely many units to actually obtain the required
measurement outcome, i.e., all atoms in (|↑〉 + |↓〉)/

√
2 after

the interaction with the field.

the optimal solution is φj = 2−j × π/2. It is inter-
esting to note that choosing one of the angles to be
2−j × π/2, j ∈ {1, 2, . . . , N}, all terms with n − m =
2j × (±1,±3,±5, . . .) are removed from the input state
according to (5). When all angles are chosen according
to φj = 2−j × π/2, it follows that |ψN 〉 only contains

terms with n − m = q2(N+1), q = 0,±1,±2, . . ., which
may be a useful property in practical applications of the
scheme. Even though this is not necessarily optimal with
respect to maximizing F for a particular choice of input
state, we thus use the angles φj = 2−j × π/2 in the fol-
lowing, except for one important point: If the input state
satisfies the symmetry relations cnm = cmn, it turns out
that the operator U †PU by itself removes all terms with
n −m = ±2,±6,±10, . . ., i.e., we can choose the angles
as φj = 2−j × π/4, and |ψN 〉 only contains terms with

n − m = q2(N+2), q = 0,±1,±2, . . .. For N = 2, for
instance, only terms with n −m = 0,±16,±32, . . . con-
tribute.
In Fig. 3, we have chosen the input state to be a prod-

uct of two coherent states with amplitude α and plotted
the fidelity (6) as a function of |α|2 for different num-
bers of units of the setup. Even for |α|2 as large as 10,
the fidelity is still as high as 0.9961 for N = 2, and the
required number of units is thus quite small in practice.
The figure also shows the success probability

PN = 〈ψN |ψN 〉 (9)

for N → ∞. For |α|2 = 10, for instance, one should
repeat the experiment about 11 times on average before
the desired measurement outcome is observed.

IV. PHOTON NUMBER RESOLVING

MEASUREMENT

In this section, we show how a photon number mea-
surement can be implemented using a modified version
of the setup introduced in the previous section. The key
idea is explained in subsection IVA where we describe
the basic photo-counting scheme. In subsection IVB,
this protocol is extended to allow for a QND measure-
ment of photon numbers.

A. Number resolving detection scheme

In the following, we analyze the setup shown in Fig. 2
when the input is a product of an n-photon Fock state in
the lower input beam and a vacuum state in the upper
input beam. Since the setup contains a series of beam

splitters, it will be useful to define Â = (â†− b̂†)/
√
2 and

B̂ = (â† + b̂†)/
√
2, such that â†|0〉 → Â|0〉 and b̂†|0〉 →

B̂|0〉 at beam splitters BS1, BS3, BS5, . . ., and Â|0〉 →
â†|0〉 and B̂|0〉 → b̂†|0〉 at beam splitters BS2, BS4, BS6,
. . ..

As before, all atoms are initially prepared in the state
|+〉 and will after the interaction with the field be mea-
sured in the |±〉 basis. When we start with an n photon
state, there are only two possible outcomes of the mea-
surement of the atoms in the cavities labeled C1 and C2

in Fig. 2 dependent on whether n is even or odd. In the
even case, the two atoms can only be in |++〉 or | − −〉
and in the odd case | −+〉 or |+−〉. To handle the odd
and even case at the same time we denote |++〉, | −+〉
as |B+〉 and | − −〉, | + −〉 as |B−〉. A measurement of

|B+〉 indicates an even number of photons in the b̂-beam,

resp., |B−〉 an odd number of photons in the b̂-beam.

We start with the state |n〉|0〉 = 1√
n!
(â†)n|0〉|0〉 as in-

put. After the beam splitter BS1, the state has changed

into 1√
n!

(

â†−b̂†√
2

)n

|0〉|0〉 and interacts with the two atoms

in the cavities C1 and C2. By measuring the atoms
in the |±〉 basis, the state is projected into the sub-

space of an even or odd number of photons in the b̂
path. The photon state after the measurement can be

written as |b±〉 := 1√
2 n!

[(

â†−b̂†√
2

)n

±
(

â†+b̂†√
2

)n]

|0〉|0〉 =
1√
2 n!

(Ân ± B̂n)|0〉|0〉, where |b+〉(|b−〉) is the state with

an even (odd) number of b̂ photons and corresponds to
the measurement result |B+〉 (|B−〉). Note that this first
measurement result is completely random.

After BS2 the state simplifies to 1√
2 n!

[(â†)n ±
(b̂†)n]|0〉|0〉. Now due to the phase shifters the two modes
pick up a relative phase of 2φ1n so that the state is given

by 1√
2 n!

[eiφ1n(â†)n ± e−iφ1n(b̂†)n]|0〉|0〉. Finally, after

BS3 we have the state 1√
2 n!

(eiφ1nÂn ± e−iφ1nB̂n)|0〉|0〉,
which is equal to 1

2
√
2 n!

(eiφ1n±e−iφ1n)(Ân+ B̂n)|0〉|0〉+
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1
2
√
2 n!

(eiφ1n ∓ e−iφ1n)(Ân − B̂n)|0〉|0〉. This can also

be rewritten as (eiφ1n ± e−iφ1n)/2|b+〉 + (eiφ1n ∓
e−iφ1n)/2|b−〉. So the result of measuring the state
of the atoms in cavities C3 and C4 will be |B±〉 with
probability p+ = cos(φ1n)

2 and |B∓〉 with probability
p− = sin(φ1n)

2. Since the state is again projected into
one of the two states |b±〉 we can repeat exactly the same
calculations for all following steps.
Whereas the first measurement result was completely

random, all following measurement results depend on n
and the previous measurement outcome, i.e., with proba-
bility pi = cos(φin)

2 the (i+1)-th measurement result is
the same as the i-th result, and with probability sin(φin)

2

the measurement result changes and the state changes
from |b±〉 to |b∓〉. If the number of units is infinite (or
sufficiently large) and we have chosen all phases equal
as φ, then we can guess from the relative frequency with
which the measurement result has switched between |B+〉
and |B−〉 the number of photons with arbitrary precision
for all photon numbers n < π

φ . n ≈ arccos(
√
f)/φ, where

f = Nsame/(Nsame + Ndifferent) and Nsame (Ndifferent) is
the number of cases, where the measurement outcome is
the same (not the same) as the previous measurement
outcome.
Measuring this relative frequency with a fixed small

phase is not the optimal way to get the photon number.
We propose instead the following. Let us use a setup
with a total of N + 1 units and choose the phases to be
φi = 2i−1π/n0, i = 1, 2, . . . , N , for an arbitrarily chosen
value of n0 ∈ N and let us calculate the probability p(n)
that the measurement results are all the same,

p(n) =
N
∏

i=1

pi =
N−1
∏

i=0

cos

(

2iπ

n0
n

)2

. (10)

This probability is equal to one for all photon numbers
that are a multiple of n0 and goes to zero otherwise in
the limit of infinitely many units of the setup. This way
we can measure whether the photon number is a multiple
of n0.
For example, for n0 = 3 and N + 1 = 3 we detect any

state which is not a multiple of three with a probability
of at least q = 93.75%, resp., q = 99.61% for N + 1 = 5,
where

q := 1− max
n6=0,n0,2n0,...

p(n). (11)

For n0 = 4, already N + 1 = 3 is sufficient to achieve
q = 100%. For n0 = 5 and N + 1 = 3 we have q =
93.75%, which increases to q = 99.61% for N + 1 = 5.
In Fig. 4 and 5 we have shown p(n) for n0 = 20 and
n0 = 100. The number N needed to get a good result
typically scales logarithmical with n0, e.g. for n0 = 1000
already N + 1 = 11 is enough to reach q = 99.95%.
Given an unknown state we can test all possible prime

factors and powers of primes to identify the exact pho-
ton number. If, e.g., we have a state consisting of 0
to 10 photons the following factors have to be tested
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FIG. 4: (Color online) Probabilities p(n) (Eq. (10)) for n0 =
20 and N + 1 = 5 resulting in q = 94.49% (Eq. (11)). For
N + 1 = 7, q = 99.66%.
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FIG. 5: (Color online) Probabilities p(n) for n0 = 100 and
N + 1 = 8 resulting in q = 96.33%. For N + 1 = 10, q =
99.95%.

n0 = 2, 3, 4, 5, 7, 8, 9 (where 2 does not need to be checked
separately). 24 measurement results are sufficient to test
all factors with a probability over 99%.

If we require reliable photon number counting for n
ranging from 0 to nmax, for large nmax, all primes and
power of primes that are smaller than nmax need to be
tested. This number can be bounded from above by
nmax. All nmax tests are required to work with high
probability. To this end each single test needs to suc-
ceed with a probability better than q ≥ 1 − 1/nmax.
It can be checked numerically that this is the case if
N = 2 log(nmax), leading to a photon counting device
with reliable photon detection up to nmax using an array
consisting of less than 2nmax log(nmax) basic units.

Note that this setup does not destroy the photonic in-
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φi

−φi

BS3

C4

BS4

C3

BS1

C2

BS2

C1

|φ±〉

|φ±〉

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉 |ψ6〉 |ψ7〉 |ψ8〉

FIG. 6: (Color online) Basic building block of the non-
demolition photon number resolving detection scheme. The
dashed circles and the wavy lines indicate the entanglement
between the atoms in cavities C1 and C3 and between the
atoms in cavities C2 and C4. The gray box is either a cavity
or a mirror. (In the latter case, we may as well send the light
directly from the cavities C3 and C4 to the first two cavities
of the next block.)

put state but changes |n〉|0〉 randomly into 1√
2
[|n〉|0〉 ±

|0〉|n〉], i.e., the photons leave the setup in a superposition

of all photons taking either the â-beam or the b̂-beam.
This can not be changed back into |n〉|0〉 by means of
passive optical elements. The output state - a so-called
N00N state - is, however, a very valuable resource for
applications in quantum information protocols and quan-
tum metrology [69].

B. Non-destructive number resolving detection

scheme

For a non-demolition version of the photon number
measurement we use the basic building block depicted in
Fig. 6. The atoms in the two upper cavities are initially
prepared in an entangled state |φ+〉 = (|↑↑〉 + |↓↓〉)/

√
2,

and the atoms in the lower cavities are also prepared
in the state |φ+〉. This can, for instance, be achieved via
the parity measurement scheme suggested in [67]. During
the interaction the upper and the lower atoms will stay
in the subspace spanned by |φ±〉 = (|↑↑〉±|↓↓〉)/

√
2. The

state changes between |φ+〉 and |φ−〉 each time one of the
two entangled cavities interacts with an odd number of
photons. As in the previous subsection we define |B±〉 to
handle the even and the odd case at the same time. For
n even, |B+〉 = |φ+〉|φ+〉 and |B−〉 = |φ−〉|φ−〉, while
in the odd case we define |B+〉 = |φ−〉|φ+〉 and |B−〉 =
|φ+〉|φ−〉.
Using the same notation as before, the state is trans-

formed as follows, when we go through the setup from
left to right. The initial state is

|ψ1〉 =
1√
n!
(â†)n|0〉|0〉|φ+〉|φ+〉,

and after the first beam splitter we have the state

|ψ2〉 =
1√
n!
Ân|0〉|0〉|φ+〉|φ+〉 =

1√
2
(|b+〉+|b−〉)|φ+〉|φ+〉.

The interaction with the first two cavities leads to the
state

|ψ3〉 =
1√
2
|b+〉|B+〉+

1√
2
|b−〉|B−〉

=
1

2
√
n!
(Ân + B̂n)|0〉|0〉|B+〉

+
1

2
√
n!
(Ân − B̂n)|0〉|0〉|B−〉.

The second beam splitter transforms the state into

|ψ4〉 =
1

2
√
n!

{

[(â†)n + (b̂†)n]|0〉|0〉|B+〉

+ [(â†)n − (b̂†)n]|0〉|0〉|B−〉
}

.

The two modes pick up a relative phase shift of 2φin at
the phase shifters so that

|ψ5〉 =
1

2
√
n!

{

[eiφin(â†)n + e−iφin(b̂†)n]|0〉|0〉|B+〉

+ [eiφin(â†)n − e−iφin(b̂†)n]|0〉|0〉|B−〉
}

.

After the third beam splitter we get

|ψ6〉 =
1

2
√
n!

[

(eiφinÂn + e−iφinB̂n)|0〉|0〉|B+〉

+ (eiφinÂn − e−iφinB̂n)|0〉|0〉|B−〉
]

=
1√
2
cos(φin)|b+〉|B+〉+

i√
2
sin(φin)|b−〉|B+〉

+
i√
2
sin(φin)|b+〉|B−〉+

1√
2
cos(φin)|b−〉|B−〉.

Note now that independent of whether n is even or odd,
the interaction with the last two cavities turns the states
|b±〉|B±〉 into |b±〉|φ+〉|φ+〉 and the states |b±〉|B∓〉 into
|b±〉|φ−〉|φ−〉. The state is thus changed to

|ψ7〉 =
1√
2
cos(φin) (|b+〉+ |b−〉) |φ+〉|φ+〉

+
i√
2
sin(φin) (|b+〉+ |b−〉) |φ−〉|φ−〉

=
1√
n!
Ân|0〉|0〉 [cos(φin)|φ+〉|φ+〉+ i sin(φin)|φ−〉|φ−〉] ,

and after the last beam splitter we have

|ψ8〉 =
1√
n
(â†)n|0〉|0〉

⊗ [cos(φin)|φ+〉|φ+〉+ i sin(φin)|φ−〉|φ−〉] .
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Note that the photonic modes are now decoupled from
the state of the atoms. The photons will continue af-
ter the final beam splitter unchanged in |n〉|0〉 while the
atoms still contain some information about the photon
number.
Note that |φ+〉 = (|++〉+ |−−〉)/

√
2 and |φ−〉 = (|+

−〉+ |−+〉)/
√
2. By measuring all atoms in the |±〉 basis

we can easily distinguish between |φ±〉 by the parity of
the measurements. The probability to obtain |φ+〉|φ+〉 is
cos(φn)2, and the probability to get |φ−〉|φ−〉 is sin(φn)2.
After the measurement, all photons are found in the â
beam for both outcomes. The probability for measuring
|φ+〉|φ+〉 is the same as the changing probability in the
previous setup such that we can do the same with a chain
of the demolition free block. If we prefer also to get the
parity information in each step, we can add an additional
cavity at the end of each block as shown in Fig. 6.
More generally, the demolition free element leaves pho-

tonic input states |ψ〉 = 1√
n!q!

(â†)n(b̂†)q|0〉|0〉, where n
photons enter through the lower and q photons enter
through the upper port, unchanged. A calculation anal-
ogous to the previous one shows that one obtains the
atomic states |φ+〉|φ+〉 and |φ−〉|φ−〉 with probabilities
cos(φi(n−q))2 and sin(φi(n−q))2 respectively. This way,
we can test for photon number differences n − q in two
input states in the same fashion as for photon numbers
in a single input beam described above. Similarly, one
can project two coherent input states |α〉|α〉 onto gener-
alized photon-number correlated states

∑

n cn|n〉|n − d〉
with fixed photon number difference d = 0, 1, 2....
In a realistic scenario we may be faced with photon

losses. Both setups have a built-in possibility to detect
loss of one photon. In the first case we get the parity of
the total number of photons in every single measurement
of a pair of atoms. If this parity changes at some place
in the chain then we know that we lost at least one pho-
ton. In the demolition free setup the valid measurement
results are restricted to |φ+〉|φ+〉 and |φ−〉|φ−〉. If we
measure |φ−〉|φ+〉 or |φ+〉|φ−〉 we know that we lost a
photon in between the two pairs of cavities. In addition,
the optional cavity at the end of each block provides an
extra check for photon loss.

V. FILTERING OUT LOSSES

We next investigate the possibility to use a compari-
son of the number of photons in the two modes to de-
tect a loss. As in Sec. III, we start with the input state
|ψin〉 = |α〉|α〉 and use the proposed setup to project
it onto the subspace S. We then use two beam split-
ters with reflectivity R to model a fractional loss in both
modes. After tracing out the reflected field, we finally
use the proposed setup once more to project the state
onto S. In Fig. 7, we plot the fidelity between the state
obtained after the first projection onto S and the state
obtained after the second projection onto S, the proba-
bility that the second projection is successful given that

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R

F
id

el
it
y,

p
ro

b
ab

il
it
y,

a
n
d

p
u
ri
ty

 

 

Fidelity

Probability

Purity

|α|2 = 1, |α|2 = 4

|α|2 = 1

|α|2 = 4

|α|2 = 1

|α|2 = 4

FIG. 7: (Color online) Projecting the input state |ψin〉 =
|α〉|α〉 onto the subspace S followed by a fractional loss R in
both modes and a second projection onto S, the figure shows
the fidelity between the states obtained after the first and
the second projection onto S, the probability that the second
projection is successful given that the first is successful, and
the purity of the state after the second projection for two
different values of |α|2.

the first is successful, and the purity of the state after
the second projection. The second projection is seen to
recover the state obtained after the first projection with
a fidelity close to unity even for losses of a few percent.
This is the case because a loss of only one photon will
always lead to a failure of the second conditional projec-
tion. The main contribution to the fidelity decrease for
small R is thus a simultaneous loss of one photon from
both modes. It is also interesting to note that the final
state is actually pure for all values of R, which is a con-
sequence of the particular choice of input state. Finally,
we note that a single unit is sufficient to detect loss of a
single photon, and for small R we thus only need to use
one unit for the second projection in practice.

Let us also consider a four mode input state |ψin〉 =
|α〉|α〉|α〉|α〉. As before we use the setup to project this
state onto the subspace spanned by the state vectors
|n〉|n〉|n〉|n〉, n = 0, 1, 2, . . .. We then imagine a frac-
tional loss of R to take place in all modes. If two of
the modes are on their way to Alice and the two other
modes are on their way to Bob, we can only try to re-
cover the original projection by projecting the former two
modes onto S and the latter two modes onto S. The re-
sults are shown in Fig. 8, and again the curves showing
the fidelity and the purity are seen to be very flat and
close to unity for small losses. This scheme allows one to
distribute entanglement with high fidelity, but reduced
success probability.
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FIG. 8: (Color online) Projecting the input state |ψin〉 =
|α〉|α〉|α〉|α〉 onto the subspace spanned by the vectors
|n〉|n〉|n〉|n〉, n = 0, 1, 2, . . ., followed by a fractional loss R
in all four modes and a projection of modes 1 and 2 onto S
and of modes 3 and 4 onto S, the figure shows the fidelity
between the states obtained after the first and the second
set of projections, the probability that the projections onto S
are successful given that the first projection is successful, and
the purity of the state after the projections onto S for two
different values of |α|2.

VI. DEVIATIONS FROM IDEAL BEHAVIOR

So far we have considered the ideal limit of infinitely
long pulses and an infinitely strong coupling. In this sec-
tion, we use a more detailed model of the interaction of
the light field with an atom in a cavity to investigate
how long the input pulses need to be and how large the
single atom cooperativity parameter should be to approx-
imately achieve this limit.

A. Optimal input mode function

The backreflection of light in a cavity leads to a state
dependent distortion of the shape of the mode function
of the input field, and to study this effect in more detail
we concentrate on a single cavity as shown in Fig. 1 in
the following. For simplicity, we assume the input field
to be a continuous coherent state [70]

|{αin(t)}〉 = exp

[
∫

αin(t)â
†(t)dt−

∫

α∗
in(t)â(t)dt

]

|0〉
(12)

with mode function fin(t) = αin(t)/α, where |α|2 =
∫

|αin(t)|2dt is the expectation value of the total number
of photons in the input beam. The light-atom interaction
is governed by the Hamiltonian

H = ~g(ĉ†σ + σ†ĉ), σ := |↑〉〈e| (13)

and the decay term

Lρ =
Γ

2
(2σρσ† − σ†σρ− ρσ†σ), (14)

where g is the light-atom coupling strength, ĉ is the
annihilation operator of the cavity field, Γ is the de-
cay rate of the excited state of the atom due to spon-
taneous emission, and ρ is the density operator repre-
senting the state of the atom and the cavity field. For
g2Tr(ĉ†ĉ〈↑|ρ|↑〉) ≪ (Γ/2)2, where Tr denotes the trace,
the population in the excited state of the atom is very
small, and we may eliminate this state adiabatically. This
reduces the effective light-atom interaction dynamics to
a single decay term

2g2

Γ

(

2ĉ|↑〉〈↑|ρ|↑〉〈↑|ĉ† − ĉ†ĉ|↑〉〈↑|ρ− ρ|↑〉〈↑|ĉ†ĉ
)

, (15)

i.e., the atom is equivalent to a beam splitter which re-
flects photons out of the cavity at the rate 4g2/Γ if the
atom is in the state |↑〉 and does not affect the light field
if the atom is in the state |↓〉.
Assume the atom to be in the state |j〉, j ∈ {↓, ↑}.

Since the input mirror of the cavity may be regarded as
a beam splitter with high reflectivity, all components of
the setup transform field operators linearly. For a co-
herent state input field, the cavity field and the output
field are hence also coherent states. We may divide the
time axis into small segments of width τ and approximate
the integrals in (12) by sums. The input state is then a
direct product of single mode coherent states with am-
plitudes αin(tk)

√
τ and annihilation operators â(tk)

√
τ ,

where tk = kτ , k = 0,±1,±2, . . .. In the following, we
choose τ to be equal to the round trip time of light in
the cavity, which requires αin(t) to vary slowly on that
time scale. Denoting the coherent state amplitude of the
cavity field at time t by γj(t), we use the beam splitter
transformation

[

out

]

=

[

tc −rc
rc tc

][

in

]

(16)

for the input mirror of the cavity to derive

γj(t) = tc
√
ταin(t) + rctjγj(t− τ), (17)

√
τα

(j)
out(t) = rc

√
ταin(t)− tctjγj(t− τ), (18)

where r2c = 1 − t2c is the reflectivity of the input mirror
of the cavity, t2j is the transmissivity of the beam split-
ter, which models the loss due spontaneous emission, i.e.,

t2j = 1− 4g2τδj↑/Γ, and α
(j)
out(t) denotes the output field

from the cavity. We have here included an additional
phase shift of π per round trip in the cavity to ensure the
input field to be on resonance with the cavity, i.e., the
second element of the input vector in (16) is −tjγ(t− τ).
Taking the limit τ → 0 and t2c → 0 for fixed cavity decay
rate κ := t2c/τ , (17) and (18) reduce to

dγj(t)

dt
= − (1 + 2Cδj↑)

κ

2
γj(t) +

√
καin(t), (19)

α
(j)
out(t) = αin(t)−

√
κγj(t), (20)
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where C := 2g2/(κΓ) is the single atom cooperativity
parameter. According to the steady state solution of (19)

γj(t) =
1

1 + 2Cδj↑

2αin(t)√
κ

, (21)

we need C ≫ 1 to efficiently expel the light field from the
cavity for j = ↑. We should also remember the criterion
for the validity of the adiabatic elimination, which by use
of (21) takes the form

1 ≫ 4C

(1 + 2C)2
2|αin(t)|2

Γ
≈ κ|αin(t)|2

g2
, (22)

i.e., for C ≫ 1 the average flux of photons in the input
beam should not significantly exceed the average number
of photons emitted spontaneously per unit time from an
atom, which has an average probability of one half to be
in the excited state.
Solving (19),

γj(t) =
√
κ

∫ t

−∞
e−(1+2Cδj↑)κ(t−t′)/2αin(t

′)dt′, (23)

we obtain the output field α
(j)
out(t) = αf

(j)
out(t) with

f
(j)
out(t) = fin(t)− κ

∫ t

−∞
e−(1+2Cδj↑)κ(t−t′)/2fin(t

′)dt′.

(24)

Note that f
(j)
out(t) is not necessarily normalized due to the

possibility of spontaneous emission. The ideal situation

is f
(↑)
out(t) = fin(t) and f

(↓)
out(t) = −fin(t), and we would

thus like the norm of

Ej := 1 + (−1)δj↑
∫ ∞

−∞
f∗
in(t)f

(j)
out(t)dt (25)

to be as small as possible.
For j = ↑ and C ≫ 1, the exponential function in

(24) is practically zero unless κ(t− t′) ≪ 1, and as long
as fin(t) changes slowly on the time scale (Cκ)−1, we

may take fin(t) outside the integral to obtain f
(↑)
out(t) =

(1 − 2/(1 + 2C))fin(t) and E↑ = 2/(1 + 2C) ≈ C−1. As
this result is independent of fin(t), a natural criterion for
the optimal choice of input mode function is to minimize

|E↓| =
∣

∣

∣

∣

2− κ

∫ ∞

−∞

∫ t

−∞
e−κ(t−t′)/2f∗

in(t)fin(t
′)dt′dt

∣

∣

∣

∣

(26)
under the constraint

∫∞
−∞ f∗

in(t)fin(t)dt = 1. We also

restrict fin(t) to be zero everywhere outside the time in-
terval [−T/2, T/2]. Since we would like the double in-
tegral to be as close to 2 as possible, we should choose
f∗
in(t) = fin(t). A variational calculation then provides
the optimal solution

fin(t) =

{

A cos(ω0t) for t ∈ [−T/2, T/2]
0 otherwise

, (27)
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FIG. 9: Deviation Ej = 1 + (−1)δj↑
∫
f∗
in(t)f

(j)
out(t)dt of the

overlap between the output mode function and the input
mode function from the ideal value when the atom is in the
state |j〉. Note that f

(j)
out(t) is defined such that the norm is

less than unity if a loss occurs during the interaction. The sin-
gle atom cooperativity parameter is assumed to be C = 103.
Solid lines are for the optimal input mode function given in
(27), and dashed lines are for an input mode function, which
is constant in the interval t ∈ [−T/2, T/2] and zero otherwise.
The inset illustrates these functions for κT = 300. For j =↑,
the shape of the output mode function is almost the same as
the shape of the input mode function as long as κT ≫ C−1,
but the norm is slightly decreased due to spontaneous emis-
sion from the atom such that E↑ ≈ C−1. This result is inde-
pendent of the actual shape of the input mode function, and
the solid and dashed lines for E↑ are hence indistinguishable
in the figure. The results for E↓ are independent of C, be-
cause the light field does not interact with the atom in this
case. Nonzero values of E↓ only occur due to distortion of the
shape of the mode function. For κT ≫ 1, E↓ ≈ 8π2/(κT )2

for the optimal input mode function and E↓ ≈ 4/(κT ) for the
constant mode function.

where

A =

(

2

T + sin(ω0T )/ω0

)1/2

, (28)

2ω0

κ
tan

(

ω0T

2

)

= 1, (29)

and ω0T ∈ [0, π[.
This solution gives

E↓ =
2x2

1 + x2
= 2 cos2

(

ω0T

2

)

, x :=
2ω0

κ
. (30)

For fixed κ, ω0 is a decreasing function of T , and for
κT ≫ 2π, ω0 ≈ π/T and E↓ ≈ 8π2/(κT )2. Distortion of
the input mode function can thus be avoided by choosing
a sufficiently long input pulse. This may be understood
by considering the Fourier transform of the input mode



11

function. For a very short pulse the frequency distribu-
tion is very broad and only a small part of the field is ac-
tually on resonance with the cavity, i.e., most of the field
is reflected without entering into the cavity. For a very
long pulse, on the other hand, the frequency distribution
is very narrow and centered at the resonance frequency of
the cavity. Ej is plotted in Fig. 9 as a function of T both
for the optimal input mode function and an input mode
function, which is constant in the interval [−T/2, T/2].
The optimal input mode function is seen to provide a
significant improvement. In fact, for the constant input
mode function E↓ = 4[1− exp(−κT/2)]/(κT ), and hence
E↓ scales only as (κT )−1 for large κT . Finally, we note
that τ = t2c/κ < κ−1, and κT ≫ 1 thus also ensures
τ/T ≪ 1, which justifies the approximation in Eqs. 19
and 20.

B. Single atom cooperativity parameter

We would like to determine how a single unit of the
setup transforms the state of the field, when we use the
full multi-mode description. For this purpose it is simpler
to work in frequency space, and we thus use the definition
of the Fourier transform f(ω) =

∫

f(t) exp(−iωt)dt/
√
2π

on Eqs. (23) and (24) to obtain

γj(ω) =

√
κ

(1 + 2Cδj↑)κ/2 + iω
αin(ω), (31)

α
(j)
out(ω) = Kj(ω)αin(ω), (32)

where

Kj(ω) := − (1− 2Cδj↑)κ/2− iω

(1 + 2Cδj↑)κ/2 + iω
. (33)

Assume now that the density operator of the two-beam
input field to the unit may be written on the form

ρin =
∑

n

∑

m

cnm|{αn(ω)}〉〈{αm(ω)}|

⊗ |{βn(ω)}〉〈{βm(ω)}|, (34)

where n and m are summed over the same set of num-
bers and |{αn(ω)}〉 and |{βn(ω)}〉 are continuous coher-
ent states in frequency space, i.e.,

|{αn(ω)}〉 = exp

[
∫

αn(ω)â
†(ω)dω

−
∫

α∗
n(ω)â(ω)dω

]

|0〉 (35)

and similarly for |{βn(ω)}〉. Note that (35) and (12) are
consistent when αn(ω) and αn(t) as well as â(ω) and â(t)

are related through a Fourier transform [70]. After the
first 50:50 beam splitter, the input state is transformed
into

ρ′ =
∑

n

∑

m

cnm

∣

∣

∣

{

(αn(ω) + βn(ω))/
√
2
}〉

〈{

(αm(ω) + βm(ω))/
√
2
}
∣

∣

∣

⊗
∣

∣

∣

{

(βn(ω)− αn(ω))/
√
2
}〉

〈{

(βm(ω)− αm(ω))/
√
2
}
∣

∣

∣
, (36)

and this is the input state to the two cavities. The initial
state of the two atoms is

ρat =
1

4

∑

i∈{↓,↑}

∑

j∈{↓,↑}

∑

p∈{↓,↑}

∑

q∈{↓,↑}
|i〉〈p| ⊗ |j〉〈q|. (37)

We thus need to know how one of the cavities transforms
a term like |αin,n(ω)〉〈αin,m(ω)| ⊗ |i〉〈p|.
We saw in the last subsection that a cavity is equivalent

to an infinite number of beam splitter operations applied
to the cavity mode and the input field modes. To take
the possibility of spontaneous emission into account, we
also apply a beam splitter operation to the cavity mode
and a vacuum mode in each time step and subsequently
trace out the vacuum mode. As the beam splitters are
unitary operators acting from the left and the right on the
density operator, the field amplitudes are transformed
according to (32) as before, but when the ket and the bra
are different, the trace operations lead to a scalar factor.
Since the reflectivity of the beam splitter modeling the
loss is 2Cκτδj↑ for an atom in the state |j〉, this factor is

dip[αin,n(ω), αin,m(ω)]

=
∞
∏

k=−∞
〈
√
2Cκτγm,p(kτ)δp↑|

√
2Cκτγn,i(κτ)δi↑〉

= exp

{

−
∫ ∞

−∞

Cκ2

(1 + 2C)2(κ/2)2 + ω2

[

|αin,n(ω)|2δi↑

+ |αin,m(ω)|2δp↑ − 2αin,n(ω)α
∗
in,m(ω)δi↑δp↑

]

dω

}

, (38)

where γn,i(t) is the amplitude of the cavity field
corresponding to the input field αin,n(t) and the
atomic state |i〉 as given in Eq. (23). Altogether,
|αin,n(ω)〉〈αin,m(ω)| ⊗ |i〉〈p| is thus transformed into
dip[αin,n(ω), αin,m(ω)]|Ki(ω)αin,n(ω)〉〈Kp(ω)αin,m(ω)| ⊗
|i〉〈p|. Projecting both atoms onto (|↑〉+ |↓〉)/2 and tak-
ing the final 50:50 beam splitter into account, we obtain
the output state after one unit
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ρout =
∑

n

∑

m

∑

i∈{↓,↑}

∑

j∈{↓,↑}

∑

p∈{↓,↑}

∑

q∈{↓,↑}

1

16
cnmdip[(αn(ω) + βn(ω))/

√
2, (αm(ω) + βm(ω))/

√
2]

× djq [(βn(ω)− αn(ω))/
√
2, (βm(ω)− αm(ω))/

√
2]

×
∣

∣

∣

∣

{

1

2
(Ki +Kj)αn(ω) +

1

2
(Ki −Kj)βn(ω)

}〉〈{

1

2
(Kp +Kq)αm(ω) +

1

2
(Kp −Kq)βm(ω)

}∣

∣

∣

∣

⊗
∣

∣

∣

∣

{

1

2
(Ki +Kj)βn(ω) +

1

2
(Ki −Kj)αn(ω)

}〉〈{

1

2
(Kp +Kq)βm(ω) +

1

2
(Kp −Kq)αm(ω)

}
∣

∣

∣

∣

, (39)

where we have written Ki = Ki(ω) for brevity. A subse-
quent phase shifter is easily taken into account by multi-
plying the coherent state amplitudes by the appropriate
phase factors. We note that the result has the same form
as the input state (34) if we collect n, i, and j into one
index and m, p, and q into another index. We can thus
apply the transformation repeatedly to obtain the output
state after N + 1 units of the setup.
If we assume αn(ω) and βm(ω) to have the same shape

for all n and m, the output field simplifies to a two-mode
state for κT ≫ 1 as expected. This may be seen as
follows. When T is much larger than κ−1, the width
of the distribution αn(ω) in frequency space is much
smaller than κ. For the relevant frequencies we thus
have ω ≪ κ/2, and in this case the right hand side of
(33) reduces to −(1 − 2Cδj↑)/(1 + 2Cδj↑), i.e., Kj is
independent of frequency, and the amplitudes of all the
continuous coherent states of the output density operator
are proportional to αn(ω).
In Fig. 10, we have used (39) in the limit κT ≫ 1
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FIG. 10: (Color online) Fidelity as defined in (6) as a function
of the single atom cooperativity parameter C for different
values of the expectation value of the number of photons in
one of the input modes and different numbers of units of the
setup, assuming κT ≫ 1 and ρin = |α〉〈α| ⊗ |α〉〈α|. The
dotted lines are the asymptotes for C → ∞.

to compute the fidelity (6) as a function of the single
atom cooperativity parameter for ρin = |α〉〈α| ⊗ |α〉〈α|.
The ideal values for C → ∞ are also shown, and the
deviations are seen to be very small for C larger than
about 103. Current experiments have demonstrated sin-
gle atom cooperativity parameters on the order of 102

[1–3], and high fidelities can also be achieved for this
value. When C is finite, there is a relative photon loss

of 1 −
∫

|f (↑)
out(t)|2dt ≈ 2/C due to spontaneous emission

each time the field interacts with a cavity containing an
atom in the state |↑〉. We note, however, that the setup
is partially robust against such losses because the next
unit of the setup removes all components of the state for
which a single photon has been lost.

VII. CONCLUSION

The setup put forward and studied in this article acts
in many respects like a photon number filter and has
several attractive applications for quantum technologies.
Based on the ability to distinguish even and odd pho-
ton numbers using the interaction of the light field with
a high finesse optical cavity, photonic two mode input
states can be projected onto photon-number correlated
states. Naturally, this protocol is very well suited to de-
tect losses and can in particular be adapted to purify
photon-number entangled states in quantum communi-
cation. We studied deviations from ideal behavior such
as finite length of the input pulses and limited coupling to
estimate for which parameters the idealized description is
valid. The setup can be modified such that it is capable to
perform a quantum-non-demolition measurement of pho-
ton numbers in the optical regime. The non-destructive
photon counting device completes the versatile toolbox
provided by the proposed scheme.
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