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Passive scheme with a photon-number-resolving detector for decoy-state quantum key distribution
with an untrusted source
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A passive scheme with a photon-number-resolving (PNR) detector and a beam splitter which are used to
monitor the statistical characteristics of photon source,is proposed to verify the security of vacuum+weak
decoy-state quantum key distribution system with an untrusted source. The practical imperfection due to statis-
tical fluctuation and detection noise is considered in the passive-scheme analysis. The simulation results show
that the scheme can work efficiently when the data sizeN ≥ 108 and the dark-count rate of PNR detector is kept
below 0.5 counts per pulse, which are realizable by current techniques. We also give an experimental example
of PNR detector which is easily realized by a variable optical attenuator combined with a practical threshold
detector.

PACS numbers: 03.67.Dd, 03.67.Hk

I. INTRODUCTION

Quantum key distribution (QKD) provides a secure way
of establishing correlated random data between two parties
(Alice and Bob), while an eavesdropper (Eve) can not obtain
any information on the data [1, 2]. The first QKD protocol,
i.e., BB84 protocol [3], has been proven to be uncondition-
ally secure [4, 5], even when the imperfect devices are im-
plemented [6, 7]. Due to the channel loss and multi-photon
states of the source, Eve can perform the so-called photon-
number-splitting (PNS) attack [8], which limits the perfor-
mance of practical QKD system [2, 7, 9]. Fortunately, the
decoy state method was proposed to beat this attack and en-
hance the performance dramatically [10–12]. Note that the se-
curity analysis in [6, 7, 10–12] assumes a trusted QKD source
whose characteristics Eve can not control or change. How-
ever, this assumption is not always valid in all QKD systems,
such as commercial two-way “Plug & Play” system [13].
This QKD system demonstrates self-calibration and good op-
tical visibility which achieves the low quantum bit error rate
(QBER) [14]. In this setup, a bright laser source is sent from
Bob to Alice, and then attenuated, encoded and sent back to
Bob. In principle, Eve can change the source during the pro-
cess when it is sent from Bob to Alice, and send her wanted
source into Alice’s side. Thus, the QKD source is an untrusted
source whose photon statistics needs to be verified by Alice
and Bob.

The qualitative security analysis of untrusted source was
first given in [15]. Then rigorous security analysis for BB84
and decoy-state protocols was first given theoretically in [16],
where the photon statistics of untrusted source was monitored
with active scheme of a high speed optical random switch
and a perfect intensity monitor after passing through a single-
mode filter and a phase randomizer. Due to the impractical
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devices of active scheme, the passive scheme with a beam
splitter and inefficient detector was first proposed and tested
experimentally even though some practical issues, i.e., sta-
tistical fluctuation and detection noise, were not considered
[17]. Recently, some techniques have been developed to re-
solve these issues, which makes the passive scheme more ro-
bustly applicable [18, 19].

Intuitively, if the performance of untrusted source infinitely
approaches to that of trusted source, Alice needs quantum
nondemolition (QND) measurement [20] to verify the pho-
ton number distribution (PND) of QKD source. However, it
is hard to implement the QND measurement in practice. For-
tunately, recent results for the vacuum+weak decoy state pro-
tocol with an untrusted source have rigorously proved that it
is enough to monitor the lower and upper bounds of vacuum,
one photon, and two photon states from Alice’s side [21, 22].
In the following, a passive scheme with a beam splitter and a
photon-number-resolving (PNR) detector which can discrim-
inate vacuum, one photon, two photons and more than two
photons, is proposed to monitor the parameters needed in
[21, 22] with a confidence level. Some practical issues due
to finite data size and random detection noise are included in
the analysis. Especially, an experimental realization of PNR
detector is analyzed.

II. KEY PARAMETERS IN SECURITY ANALYSIS

Generally, the secure key rate of BB84 protocol is [6, 7]

R =
1
2

Q {∆1[1 − H2(e1)] − H2(E)} , (1)

whereQ and E are, respectively, the count rate and QBER
which are measured directly in QKD experiment,∆1 (e1) is
the fraction of counts (QBER) due to single photon state, and
H2(x) = −x log2 x − (1− x) log2(1− x) is the binary Shanon
entropy.

In the security analysis of BB84 protocol, all the losses and
errors are assumed from the single photon state [8], which
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gives

∆1 =
Q − Pmulti

Q
, e1 =

E
∆1
, (2)

where Pmulti is the probability for Alice to send out mul-
tiphoton states. The decoy-state method offers an effec-
tive way to estimate the lower (upper) bound of∆1 (e1)
compared to Eq. (2) [10–12]. In the vacuum+weak decoy-
state protocol [23, 24], Alice randomly sends three kinds of
sources: vacuum, decoy and signal, respectively. The quan-
tum state of decoy (signal) source isρd =

∑∞
n=0 an |n〉 〈n|

(ρs =
∑∞

n=0 a′n |n〉 〈n|). It has been proved that [21, 22]

∆s
1 ≥

a′1
L
(

a′2
LQd − aU

2 Qs − a′2
LaU

0 Q0 + aU
2 a′0

LQ0

)

Qs

(

aU
1 a′2

L − a′1
LaU

2

) , (3)

whereQ0, Qd, andQs are the count rate of vacuum, decoy and
signal source, respectively, and∆s

1 is the fraction of counts due
to single photon state of signal source. To calculate the lower
bound of∆s

1, one needs to estimate the value of{a′0
L, aU

0 , a′1
L,

aU
1 , a′2

L, aU
2 }, where the superscriptL(U) means lower (upper)

bound. The secure key rate of signal source is

Rs =
1
2

Qs{∆
s
1[1 − H2(es

1)] − H2(Es)}, (4)

whereEs is the QBER from the signal source andes
1 = Es/∆

s
1.

For a QKD system with an untrusted source, the parameters
{a′0

L, aU
0 , a′1

L, aU
1 , a′2

L, aU
2 } need to be verified in practice. In

the following, we present a general method to estimate these
parameters experimentally.

III. THEORY OF ESTIMATION WITH PASSIVE SCHEME

FIG. 1: The passive scheme for estimating the parameters{a′0
L, aU

0 ,
a′1

L, aU
1 , a′2

L, aU
2 }. The untrusted source prepared at P1 by Eve, where

Pi means positioni (i = 1, 2,3, 4), passes through a low-bandwidth
optical filter, a phase randomizer (PR), and an optical variable at-
tenuator (Att) with the attenuation coefficient ηs (ηd) for the signal
(decoy) source. Then, a beam splitter (BS) with transmittance ηBS

is used to separate it into two beams: one goes to a photon-number-
resolving (PNR) detector with efficiencyηD at P3, and the other is
encoded and sent out of Alice’s side at P4.

The experimental scheme for estimating the bounds{a′0
L,

aU
0 , a′1

L, aU
1 , a′2

L, aU
2 } is shown in Fig. 1, where a photon-

number-resolving (PNR) detector to discriminate the photon
number ofn = 0, n = 1, n = 2, n ≥ 3 is used. For simplicity,
one can calibrate the setup to satisfy

ηBSηD = 1− ηBS , (5)

whereηBS is the transmittance of the beam splitter andηD is
the detection efficiency of the PNR detector in Fig. 1. Clearly,
based on Eq. (5), the PND at P4 is the same to that at P3,
where Pi means positioni (i = 1, 2, 3, 4) in Fig. 1.

A. PNR detector without detection noise

In the following, the PNR detector is assumed to be noise-
less. SupposePs(d)(n4) denote the PND for signal (decoy)
source at P4, andDs(d)(m) denote the PND for signal (decoy)
source at P3. Clearly, one has

an = Pd(n4 = n) = Dd(m = n),

a′n = Ps(n4 = n) = Ds(m = n),
(6)

wheren = 0, 1, 2, · · · .
Suppose the total number of untrusted optical pulses isN,

while the number of signal (decoy) pulses isN s(d), corre-
spondingly. Letks(d)

m denote the number of detected signal
(decoy) pulses in the PNR detector which recordsm photo-
electrons (m = 0, 1, 2,≥ 3). Usingrandom sampling theory
[25], Ds(m) ∈ [ks

m/N
s − ε′, ks

m/N
s + ε′] with a confidence level

1− 2 exp(−N sε′2/2) for signal pulses, andDd(m) ∈ [kd
m/N

d −

ε, kd
m/N

d + ε] with a confidence level 1− 2 exp(−Ndε2/2) for
decoy pulses can be estimated. Then, from Eq. (6), one gets

a′Lm =
ks

m

N s
− ε′, a′Um =

ks
m

N s
+ ε′,

aL
m =

kd
m

Nd
− ε, aU

m =
kd

m

Nd
+ ε, (m = 0, 1, 2) (7)

with a confidence level 1− 2 exp(−N sε′2/2) for signal pulses
and 1− 2 exp(−Ndε2/2) for decoy pulses, respectively. Thus,
after obtainingks(d)

m by the PNR detector, one can estimate
the value of{a′0

L, aU
0 , a′1

L, aU
1 , a′2

L, aU
2 } with a quantitative

confidence level.

TABLE I: The simulation parameters for Figs. 2 and 3.

ηD ηBS ηBob α Y0 edet e0

0.15 0.87 0.045 0.21 1.7× 10−6 3.3% 0.5

For testing the effects of statistical fluctuation without con-
sidering the detection noise, we choose an untrusted sourceof
Poissonian statistics to perform simulations based on the vac-
uum+weak decoy state protocol. Fig. (2a) shows the numeri-
cal simulation results for trusted source, and untrusted source
with the passive scheme in Fig. 1, where a beam splitter and
a noiseless PNR detector are used to verify the parameters
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FIG. 2: (color online) Simulation result of the vacuum+weak decoy state protocol for trusted and untrusted source:(a) with finite data size
N = 109,108,107, respectively, based on the scheme in Fig. 1, where a beam splitter and a noiseless PNR detector which can discriminate
vacuum, one-photon and two-photon states are used to verifythe parameters{a′0

L, aU
0 , a′1

L, aU
1 , a′2

L, aU
2 } with a confidence level 1− 10−6;

(b) with finite data sizeN = 1016,1014,1012,1010,109, respectively, based on the passive scheme in [18], where a beam splitter and noiseless
PNA, are used to verify the lower bound of the probability of “untagged bits” with a confidence level 1− 10−6, after which one can calculate
the secure key rate by Eq. (A1) in Appendix A [16].

{a′0
L, aU

0 , a′1
L, aU

1 , a′2
L, aU

2 }. Here, the average photon num-
ber (APN) of Poissonian source at P1 is 7.66× 106. The at-
tenuationηs andηd are set to be 5× 10−7 and 1× 10−7, re-
spectively, so that the APN for signal (decoy) state at P4 is
µs = 0.5 (µd = 0.1). The photoelectron detection generated
by PNR detector is simulated using Monte Carlo method, and
N = 107, 108 and 109 of measurements are run. Other experi-
mental parameters are cited from the GYS experiment [26] as
shown in Table I, whereηBob is the efficiency of Bob’s detec-
tion, Y0 is dark count rate of Bob’s detector andedet (e0) is the
probability that a photon (dark count) hit the erroneous detec-
tor in Bob’s side. To compare the performance of the scheme
in Fig. 1 with the passive scheme proposed in [18], where a
beam splitter with transmittanceηBS and a noiseless photodi-
ode with efficiencyηD are used to verify the lower bound of
the probability of “untagged bits” (see Appendix A), Fig. (2b)
shows the numerical simulation results for trusted source,and
untrusted source with the scheme in [18]. All the experimental
parameters are chosen to be the same to that of Fig. (2a).

B. PNR detector with additive detection noise

Given a PNR detector with an independent additive detec-
tion noisey, the detected photoelectron numberm′, and the
photon numberm at P3 satisfy

m′ = m + y. (8)

One can calculate the lower and upper bound of photon num-
ber distributionD(m) (m = 0, 1, 2) at P3 based on the pho-
toelectron distribution ofP(m′) with a high confidence level,
given that the distribution of the detection noiseN(y) is known
by Alice.

The dark count is the main kind of detection noise for
the PNR detector such as time multiplexing detector (TMD)
[27, 28], transition-edge sensor (TES) [29], or a thresholdde-
tector together with a variable attenuator [30, 31]. In caseof
independent Poisson statistics noise (e.g. dark counts), the
probability of detectingm′ photoelectrons is

P(m′) =
m′
∑

d=0

e−λλm′−d

(m′ − d)!
D(d), (9)

whereN(y = d) = e−λλd/d! is the probability of thatd dark
counts occur in the PNR detector, andλ is the average dark-
count rate of noise. Based on Eq. (9), one easily calculate

D(m = 0)= P(m′ = 0)eλ,

D(m = 1)= P(m′ = 0)eλ(−λ) + P(m′ = 1)eλ,

D(m = 2)= P(m′ = 0)eλ
λ2

2
+ P(m′ = 1)eλ(−λ)

+P(m′ = 2)eλ. (10)

Let ks(d)
m′ denote the number of detected signal (decoy)

pulses by Alice at P3, given that PNR detector recordsm′

photoelectrons. Usingrandom sampling theory [25], one has
Ps(m′) ∈ [ks

m′/N
s − ε′, ks

m′/N
s + ε′] for signal source and

Pd(m′) ∈ [kd
m′/N

d − ε, kd
m′/N

d + ε] for decoy source with a
confidence level 1−2 exp(−N sε′2/2) and 1−2 exp(−Ndε2/2),
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FIG. 3: (color online) Simulation result of the vacuum+weak decoy state protocol for untrusted source based on the scheme in Fig. 1 in
two cases: (a) the data size isN = 108 and the APN of independent Poissonian detection noise of thePNR detector (efficiency: ηD) is
λ = 0, 10−6, 10−1,0.5, 0.65, 0.78, respectively; (b) the data size isN = 108 and the APN of independent Poissonian detection noise of the
PNR detector (efficiency: ηD) is λ = 0, 10−6, 10−1,1, 5,5.15, 5.16, respectively. The experimental parameters are the sameas Table I, and the
confidence level of both cases is 1− 10−6.

respectively. Combing Eqs. (6) and (10), one yields

a′0 ≥ eλ
(

ks
m′=0

N s
− ε′

)

= a′0
L
,

a′1 ≥ −λe
λ

(

ks
m′=0

N s
+ ε′

)

+ eλ
(

ks
m′=1

N s
− ε′

)

= a′1
L
,

a′2 ≥
λ2

2
eλ

(

ks
m′=0

N s
− ε′

)

− λeλ
(

ks
m′=1

N s
+ ε′

)

+ eλ
(

ks
m′=2

N s
− ε′

)

= a′2
L
,

a0 ≤ eλ












kd
m′=0

N s
+ ε













= aU
0 ,

a1 ≤ −λe
λ













kd
m′=0

N s
− ε













+ eλ












kd
m′=1

N s
+ ε













= aU
1 ,

a2 ≤
λ2

2
eλ













kd
m′=0

N s
+ ε













− λeλ












kd
m′=1

N s
− ε













+ eλ












kd
m′=2

N s
+ ε













= aU
2 . (11)

For testing the effects of detection noise, we choose an un-
trusted source of Poissonian statistics to perform simulations
based on the vacuum+weak decoy state protocol with the pas-
sive scheme in Fig. 1. The untrusted source is of Poissonian
statistics with APNµ = 7.66× 106 at P1, and the attenua-
tion ηs andηd are set to be 5×10−7 and 1×10−7, respectively.
The other experimental parameters are cited from Table I. The
photoelectron detection and additive Poissonian noise of the
PNR detector at P3 in Fig. 1 are simulated using Monte Carlo
method, andN = 108 and 109 of measurements are run for
Figs. (3a) and (3b), respectively.

More generally, when the random positive detection noise
y with the probabilityN(y) is known to Alice, one can still
estimate the parameters{a′0

L, aU
0 , a′1

L, aU
1 , a′2

L, aU
2 } as shown

in Appendix B.

IV. AN EXPERIMENTAL REALIZATION OF PNR
DETECTOR

FIG. 4: (a) A threshold detector (modeled by an attenuator with
transmittanceηD and an ideal threshold detector) combined with a
variable optical attenuator (transmittance:η) can realize a PNR de-
tector [31]. (b) An equivalent model to (a), which means the two
models will produce the same PND at the ideal detector if given the
same input sourceρin.

The PNR detector can be realized by a variable optical at-
tenuator (VOA) combined with a practical threshold detector
(such as single-photon detector) as shown in Fig. 4(a) [31],
which is equivalent to the model in Fig. 4(b). Suppose the
state of input source isρin =

∑∞
n=0 pn |n〉 〈n|. In Fig. 4(b), after
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passing through an attenuator with efficientηD, the state of the
source becomes

ρ′ =

∞
∑

n=0

p′n |n〉 〈n| ,

wherep′n =
∑∞

m=n pm

(

m
n

)

ηn
D(1−ηD)m−n. When Eq. (5) holds,

one has

p′n
s
= a′n, p′n

d
= an. (12)

Then the source passes through the VOA with efficiencyη,
and the probability that the detector dose not click can be cal-
culated asp(η) =

∑∞
n=0(1−η)n p′n [31]. When we take the dark

count of the threshold detector into account, it can be calcu-
lated as

p(η) = (1− ǫ)
∞
∑

n=0

(1− η)n p′n,

where theǫ is the dark count rate of the detector. If Alice
varies the transmittance of the VOAη = {η1, · · · , ηM}, she has
a set of linear equations

p(ηi) = (1− ǫ)
∞
∑

n=0

(1− ηi)n p′n, (i = 1, · · · ,M). (13)

When she employs an infinity number of possible transmit-
tanceη ∈ [0, 1], she can always estimate any finite number of
probabilitiesp′n with arbitrary precision by solving Eqs. (13).
However it is not necessary for our purpose where we mainly
concern the probability of vacuum, one photon and two pho-
ton states. In this case, only three different transmittances
η = {η0, η1, η2} are needed [31]. Then Alice has

p(η0) = (1− ǫ)
∞
∑

n=0

(1− η0)n p′n,

p(η1) = (1− ǫ)
∞
∑

n=0

(1− η1)n p′n, (14)

p(η2) = (1− ǫ)
∞
∑

n=0

(1− η2)n p′n.

One can chooseη0 = 1 so that

p(η0 = 1) = (1− ǫ)p′0. (15)

Then one has

p(η1)
1− ǫ

≥ p′0 + (1− η1)p′1,

p(η1)
1− ǫ

≤ p′0 + (1− η1)p′1 + (1− η′1)2(1− p′0 − p′1),

from which the upper and lower bounds forp′1 can be calcu-
lated as

p′1 ≤
p(η1) − p(η0)

(1− ǫ)(1− η1)
= p′1,

p′1 ≥
p(η1) − p(η0)[1 − (1− η1)2] − (1− ǫ)(1− η1)2

(1− ǫ)[1 − η1 − (1− η1)2]
= p′1. (16)

In a similar way, one has

p(η2)
1− ǫ

≥ p′0 + (1− η2)p′1 + (1− η2)2p′2

≥ p′0 + (1− η2)p′1 + (1− η2)2p′2
p(η1)
1− ǫ

≤ p′0 + (1− η2)p′1 + (1− η2)2p′2

+ (1− η2)3(p′3 + p′4 + p′5 + · · · )

≤ [1 − (1− η2)3]p′0 + [1 − η2 − (1− η2)3]p′1
+ [(1 − η2)2 − (1− η2)3]p′2 − (1− η2)3,

from which the upper and lower bounds forp′2 can be esti-
mated as

p′2 ≤
p(η2) − p(η0) − (1− ǫ)(1− η2)p′1

(1− ǫ)(1− η2)2
= p′2

p′2 ≥
p(η2) − [1 − (1− η2)3]p(η0) − (1− ε)[1 − η2 − (1− η2)3]p′1 − (1− ε)(1− η2)3

(1− ε)[(1 − η2)2 − (1− η2)3]
= p′2. (17)

In conclusion, based on the recorded data{p(η0), p(η1),
p(η2)}, Alice can estimated the parameters{a′0

L, aU
0 , a′1

L,
aU

1 , a′2
L, aU

2 } as in Eqs. (12) and (15-17). The scheme in
Fig. (4) can be easily realized with current technology. As
for the effect of statistical fluctuation, one can use theRan-
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dom Sampling Theory as before to consider the fluctuation of
the {p(η0), p(η1), p(η2)} with a confidence level so that we
still can bound{a′0

L, aU
0 , a′1

L, aU
1 , a′2

L, aU
2 }.

V. DISCUSSION AND CONCLUSION

The results in Fig. 2 show that: (i) the performance of QKD
system with untrusted source is very close to that of trusted
source, when the source is monitored efficiently and the data
size is large enough; (ii) finite data size has negative effect on
the secure key rate; (iii) the method in [18] is more sensitive
to statistical fluctuation and needs a larger data size than our
method.

In the passive scheme proposed in [18] (see Fig. 5 in Ap-
pendix A), Alice uses a threshold detection to monitor the fre-
quency of “untagged bits” in untrusted source, from which the
lower bound of the probability of “untagged bits” can be esti-
mated with a confidence level . When the confidence level is
set to be constant (e.g. 1− 10−6), the estimation resolutionε
for the probability of “untagged bits” is only decided by the
data sizeN (ignoring the effect of detection noise), where the
confidence level is 1− 2 exp(−Nε2/4) [18]. However, the se-
cure key rate in [18] is quite sensitive to the estimation resolu-
tion ε, and will reduce greatly whenε increases (see Fig. 6 in
Appendix A). When the data sizeN decrease, the resolutionε
has to increase to keep the constant confidence level, and thus
the key rate will reduce greatly.

While in the scheme shown in Fig. 1, Alice uses a PNR
detector to monitor the counts of vacuum, one-photon, and
two-photon states for signal and decoy source, respectively.
Because of the low intensity of the output pulses at P4 (e.g.
µs = 0.5, µd = 0.1), the vacuum, one-photon, and two-photon
pulses are dominant in pulses, and Alice can gain most of the
information about the statistics of the untrusted source atP4
based on the recorded data at P3. In our scheme, six param-
eters are monitored, and more information is gained than the
scheme in [18]. Mathematically, formulas shown by Eqs. 3-
(4) are not so sensitive to the estimation resolution of{a′0

L, aU
0 ,

a′1
L, aU

1 , a′2
L, aU

2 } compared to that in [18], so that it does not
require a very large data size to work efficiently as shown in
Fig. (2a). When the data sizeN ≥ 108, the performance of the
scheme is very close to that of trusted source. In asymptotic
case where Alice sends infinitely long bit sequence (N ∼ ∞),
the performance will be the same to that of trusted source as
shown in Appendix C, which means this passive method will
not reduce the efficiency of the system without eavesdropping.

The results in Fig. 3 show that: (i) given a PNR detector
with the same dark count rate, the performance of a system
with untrusted source will be better when the data size in-
crease; (ii) given the same data size, the performance of a
system with untrusted source will reduce when the dark count
rate increase. Performance of the scheme in Fig. 1 is quite sen-
sitive to the detection noise of the PNR detector. It is shown
that when the data sizeN ≥ 108 and dark count rate of the
PNR detectorλ ≤ 0.5 which are realizable by current tech-
niques [27–30], this scheme can still work efficiently.

In conclusion, we propose an experimental scheme to ver-

ify the key parameters needed in [21, 22] with a quantitative
confidence level. The practical issues due to detection noise
and finite data size fluctuation are concerned. The simulation
results show that our scheme can work efficiently.
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Appendix A: Passive scheme method in [18]

FIG. 5: (color online) The model of the passive scheme in [17–
19]. The untrusted source prepared by Eve passes through a low-
bandwidth optical filter, and a phase randomizer (PR). Then,a beam
splitter (BS) with transmittanceηBS is used to separate it into two
beams: one goes to a photon-number-analyzer (PNA) with efficiency
ηD, and the other is attenuated with an attenuator (Att) with efficiency
ηs(d) for signal (decoy) state and encoded before it is sent out of Al-
ice’s side.

The passive method in [18] is shown in Fig. 5, where a
beam splitter and a photon number analyzer (PNA) are used to
record the frequency of “untagged bits” experimentally. De-
fine the pulses with photon numberM ∈ [Mmin,Mmax] at po-
sition 3 in Fig. 4 as “untagged bits”. For simplicity, one can
setηBSηD = 1− ηBS .

Assume thatN pulses are sent from Alice to Bob. Alice
and Bob do not know which bits are untagged. LetNuntagged

denote the number of detected pulses by the PNA given that
the recorded photoelectron number at position 2 belongs to
[Mmin,Mmax], and∆ = Nuntagged/N. From the recorded data
in PNA, one can estimate that at least (1− ∆ − ε)N pulses are
“untagged bits” with a confidence 1− 2 exp(−Nε2/4) whereε
is a small positive parameter [18].

Alice can measure the overall gainQs(d) and QBEREs(d) for
signal (decoy) pulses, respectively, while she doesn’t known
the gain and QBER for “untagged bits”. The upper and
lower bounds of the gain of “untagged bits” for signal (decoy)
source can be estimated as

Qs(d) =
Qs(d)

1− ∆ − ε
, Qs(d) = max

{

0,
Qs(d) − ∆ − ε

1− ∆ − ε

}

.
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FIG. 6: (color online) Simulation result of the vacuum+weak decoy
state protocol for trusted and untrusted source with different estima-
tion resolutionε = 10−6, 10−5, 10−4, respectively. Based on the
passive shown in Fig. 4, a beam splitter and a noiseless PNA are
used to verify the lower bound of the probability of untaggedbits.
Experimental parameters are cited from Table I.

The upper and lower bound for the QBER of “untagged bits”
can be estimated as

QsEs =
QsEs

1− ∆ − ε
, QsEs = max

{

0,
QsEs − ∆ − ε

1− ∆ − ε

}

,

for signal states, and

QdEd =
QdEd

1− ∆ − ε
, QdEd = max

{

0,
QdEd − ∆ − ε

1− ∆ − ε

}

,

for decoy states. For untagged bits, one can show that the up-
per and lower bounds of the probability that the output photon
number at position 4 isn for signal (decoy) pulses are:

Ps(d)
n =































(1− ηs(d))Mmin n = 0,
(

Mmax

n

)

ηn
s(d)(1− ηs(d))Mmax−n 1 ≤ n ≤ Mmax,

0 n > Mmax,

Ps(d)
n =































(

1− ηs(d)
)Mmax n = 0,

(

Mmin

n

)

ηn
s(d)(1− ηs(d))Mmin−n 1 ≤ n ≤ Mmin,

0 n > Mmin,

under condition thatMmaxηs(d) < 1.
When the lower bounds of the probability of “untagged

bits” is known by Alice, the secure key rate for vacuum+weak
decoy state protocol with untrusted source is [16]

R =
1
2

{

−QsH2(Es) + (1− ∆ − ε)Qs
1[1 − H2(es

1)]
}

, (A1)

where

Qs
1 =

Ps
1

Pd
1Ps

2 − Ps
1Pd

2

×

{

QdPs
2 − QsPd

2 + Ps
0Pd

2Q0−

Pd
0Ps

2Q0 −

(Mmax− Mmin)(1− ηd)Mmax−Mmin−1Ps
2

[Mmin + 1]!



















,

and

es
1 =

EsQs − Ps
0E0Q0

Qs
1

,

under some condition.

For testing the effects ofε onto the secure key rate, we
choose an untrusted source of Poissonian statistics to perform
the simulations based on the vacuum+weak decoy state pro-
tocol.Suppose the untrusted source is of Poissonian with APN
7.66× 106 at position 1 of Fig. 4. Setηs = 5 × 10−7, and
ηd = 1× 10−7. The other experimental parameters are chosen
to be same as Table I. The values ofMmax andMmin are cho-
sen to be constant. The results in Fig. 5 show that the final key
rate is very sensitive to the value ofε.

Suppose Alice has a noiseless PNA, and the estimation con-
fidence level is set to be constant

1− 2 exp−Nε2/4 = 1− 10−6. (A2)

The estimation resolutionε for the probability of “untagged
bits” is only decided by the data sizeN. When the data sizeN
decrease, the resolutionε has to increase to keep the constant
confidence level, and thus the key rate will reduce greatly as
has been shown in Fig. 2(b).

Appendix B: General positive detection noise

Generally, when the random positive detection noisey with
the probabilityN(y) is known to Alice whereN(y < 0) = 0,
one has

P(m′ = 0)= N(y = 0)D(m = 0),

P(m′ = 1)= N(y = 0)D(m = 1)+ N(y = 1)D(m = 0),

P(m′ = 2)= N(y = 0)D(m = 2)+ N(y = 1)D(m = 1)

+ N(y = 2)D(m = 0). (B1)
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Thus, combine the results in Eqs. (6) and (B1), one has

a′0 ≥
ks

m′=0/N
s − ε′

N(y = 0)
,

a′1 ≥

(

ks
m′=1/N

s − ε′
)

N(y = 0)−
(

ks
m′=0/N

s + ε′
)

N(y = 1)

N2(y = 0)
,

a′2 ≥
ks

m′=2/N
s − ε′

N(y = 0)
−

ks
m′=1/N

s + ε′

N2(y = 0)
N(y = 1)

+
ks

m′=0/N
s − ε′

N3(y = 0)
N2(y = 1)−

ks
m′=0/N

s + ε′

N2(y = 0)
N(y = 2),

a0 ≤
kd

m′=0/N
d + ε

N(y = 0)
,

a1 ≤

(

kd
m′=1/N

d + ε
)

N(y = 0)−
(

kd
m′=0/N

d − ε
)

N(y = 1)

N2(y = 0)
,

a2 ≤
kd

m′=2/N
d + ε

N(y = 0)
−

kd
m′=1/N

d − ε

N2(y = 0)
N(y = 1)

+
kd

m′=0/N
d + ε

N3(y = 0)
N2(y = 1)−

kd
m′=0/N

d − ε

N2(y = 0)
N(y = 2). (B2)

Therefor, once the distribution of the noise is known, the se-
cure key rate can be estimated given the bounds of{a′0

L, aU
0 ,

a′1
L, aU

1 , a′2
L, aU

2 }.

Appendix C: Asymptotic case of method in [21]

In the asymptotic case, Alice sends infinitely long bit se-
quence (N ∼ ∞). Therefore we can considerε, ε′ ∼ 0 in
Eqs. (7), (11) or (B2) while still have confidence level to be
1. Suppose the untrusted source is Poissonian with APNµs(d)

for signal (decoy) pulses at P4, then one has

aU
0 = exp(−µd), aU

1 = µd exp(−µd), aU
2 = µ

2
d/2 exp(−µd),

a′0
U = exp(−µs), a′1

U
= µs exp(−µs), a′2

U
= µ2

s/2 exp(−µs).

Then one can estimate

Qs
1 = Qs∆

s
1 ≥

a′1
L
(

a′2
LQd − aU

2 Qs − a′2
LaU

0 Q0 + aU
2 a′0

LQ0

)

aU
1 a′2

L − a′1
LaU

2

=
µs

µ2
s − µsµd













Qde−µd − Qse
−µs
µ2

d

µ2
s
−
µ2

s − µ
2
d

µ2
s

Q0













,

which is exactly the same to the case of trusted source (see
Eq. (35) in [24]).
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