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A passive scheme with a photon-number-resolving (PNR)ctlteind a beam splitter which are used to
monitor the statistical characteristics of photon sourseyroposed to verify the security of vacusmeak
decoy-state quantum key distribution system with an utdédisource. The practical imperfection due to statis-
tical fluctuation and detection noise is considered in ttesipa-scheme analysis. The simulation results show
that the scheme can workhigiently when the data siZ¢ > 10° and the dark-count rate of PNR detector is kept
below 0.5 counts per pulse, which are realizable by curesftrtiques. We also give an experimental example
of PNR detector which is easily realized by a variable optteenuator combined with a practical threshold
detector.

PACS numbers: 03.67.Dd, 03.67.Hk

I. INTRODUCTION devices of active scheme, the passive scheme with a beam
splitter and infficient detector was first proposed and tested

C . experimentally even though some practical issues, i.a:, st
Quantum key distribution (QKD) provides a secure WaYtistical fluctuation and detection noise, were not consider

of establishing correlated random data between two partie"h‘]' Recently, some techniques have been developed to re-

(Alice and Bob), while an eavesdropper (Eve) can not obtai : : . )
any information on the data |[1, 2]. The first QKD protocol, bﬁlsvttleytgszﬁclzzreea E\;N?'g]h makes the passive scheme more ro

i.e., BB84 protocoll[3], has been proven to be uncondition- o : P
ally secure [4[J5], even when the imperfect devices are im- Intuitively, if the performance of untrusted source infimyt

. approaches to that of trusted source, Alice needs quantum
gtIZtﬂgn;??h[gsZ)trcDeueEt/oet(r:]chgz?fg?rlch;zz asg?cg]:gg'gugttg%_ondemolition (QND) measurement [20] to verify the pho-
number-splitting (PNS) attackl[8], which limits the pefor on number distribution (PND) of QKD source. However, it

mance of practical QKD systent | [2, 7, 9]. Fortunately, the!S hard to implement the QND measurement in practice. For-

. tunately, recent results for the vacusmeak decoy state pro-
decoy state method was proposed to beat this attack and en- 4 y P

. col with an untrusted source have rigorously proved that i
hance the pe_rfqrmanfedrgmatlcally [10-12]. Note thatéhe s is enough to monitor the lower and upper bounds of vacuum,
curity analysis in [[6,/7, 10-12] assumes a trusted QKD sourc

whose characteristics Eve can not control or change. HowSne photon, and two photon states from Alice’s side [21, 22].

ever, this assumption is not always valid in all QKD s StemsIn the following, a passive scheme with a beam splitter and a
' P « Y " y photon-number-resolving (PNR) detector which can diserim
such as commercial two-way “Plug & Play” system_1[13].

) o inate vacuum, one photon, two photons and more than two
This QKD system demonstrates self-calibration and good Oprhotons, is proposed to monitor the parameters needed in

tical visibility which achieves the low quantum bit errotea 21,[22] with a confidence level. Some practical issues due
é%%fs)m.l:e] ;T}éﬂﬁ;ﬁgga?;;?ggt leisceor dseo du;cne dlssesr?tné;rgdo finite data size and random detection noise are included in
' ' fe analysis. Especially, an experimental realization/dRP

Bob. In principle, Eve can change the source during the pro- -
cess whl?en it iz sent from Bob tcg)J Alice, and send hgr Waﬁtegetector is analyzed.
source into Alice’s side. Thus, the QKD source is an untdiste
source whose photon statistics needs to be verified by Alice |
and Bob.

The qualitative security analysis of untrusted source was Generally, the secure key rate of BB84 protocol i$ [6, 7]
first given in [15]. Then rigorous security analysis for BB84

and decoy-state protocols was first given theoreticallylii] [ 1

where the photon statistics of untrusted source was mauitor R= EQ{Al[l — Ha(ey)] - Ha(B)} @)
with active scheme of a high speed optical random switch )

and a perfect intensity monitor after passing through alsing WhereQ andE are, respectively, the count rate and QBER

mode filter and a phase randomizer. Due to the impracticahich are measured directly in QKD experimen, (&1) is
the fraction of counts (QBER) due to single photon state, and

H2(X) = —xlog, x — (1 = X)10g,(1 — X) is the binary Shanon
entropy.
*Correspondence author: Xiangpeng@pku_edu_cn. In the SeCUI‘Ity ana|ySIS Of 8584 pI’OtOCOL a” the |OSSGS and
fCorrespondence author: hongguo@pku.edu.cn. errors are assumed from the single photon state [8], which
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gives The experimental scheme for estimating the bowaq's
a¥, b, &Y, &, aY} is shown in Fig[dl, where a photon-
Ay = Q— Prui Pm”'“, e = E ) number-resolving (PNR) detector to discriminate the photo
Q Ay numberofn =0,n=1,n=2,n > 3is used. For simplicity,

. . . one can calibrate the setup to satisf
where Pyt is the probability for Alice to send out mul- P y

tiphoton states. The decoy-state methdters an &ec- nesip = 1 - nas, (5)

tive way to estimate the lower (upper) bound &f (e;)

compared to Eq[{2) [10-12]. In the vacuumeak decoy- wherengs is the transmittance of the beam splitter apgdis
state protocol [23, 24], Alice randomly sends three kinds ofthe detection #iciency of the PNR detector in Figl. 1. Clearly,
sources: vacuum, decoy and signal, respectively. The quatrased on Eql{5), the PND at P4 is the same to that at P3,
tum state of decoy (signal) sourcegg = Y ,a,Iny{n|  where Pmeans position(i = 1,2,3,4)in Fig.[1.

(0s = Yneo @ INY(nl). It has been proved that [21,/122]

a/lL (a'zLQd _ aLZJQS _ a’z"ag Qo+ atzJaE)LQO) - A. PNR detector without detection noise

UqyL _ oLou ’

Qs (a1 a - az) In the following, the PNR detector is assumed to be noise-
less. Suppos®%9(n,) denote the PND for signal (decoy)

whereQo, Qq, andQs are the count rate of vacuum, decoy andggjrce at P4, anB¥9(m) denote the PND for signal (decoy)

signal source, respectively, andis the fraction of counts due  gqjrce at P3. Clearly, one has

to single photon state of signal source. To calculate thetow

bound ofA?, one needs to estimate the value{aﬁ-, ag a’l", a, = PY(ns = n) = DY(m=n),

af, az'-, ag}, where the superscrih{U) means lower (upper) a, = P%(n, = n) = D(m = n), (6)

bound. The secure key rate of signal source is

S
AS >

L wheren=0, 1, 2,---.
RS = ZQ4AJ[1 — Ha(€5)] — Ha(EQ)L, 4 Suppose the total number of untrusted optical pulsés is
ZQS{ il 2(e)] - Ha(Es)) @ while the number of signal (decoy) pulsesN§@, corre-

, . s spondingly. Letkﬁd) denote the number of detected signal
whereEs is the QBER from the signal source agfi= Es/A;. decoy) pulses in the PNR detector which recamdphoto-
For a QKD system with an untrusted source, the paramete . :

LT LU L U e . electronsih = 0,1,2,> 3). Usingrandom sampling theory
{ay a5, , a7, &, a;} need to be verified in practice. In s S NS s NS s :

1 . 25], D3(m) € [kg]/N —¢&’, ks /N®+ ] with a confidence level

the following, we present a general method to estimate the s for sianal oul - d
arameters experimentally — 2expN & /2) or signal puises, an (m) € [kn/N° -

P ' &, k3 /N9 + £] with a confidence level & 2 exp(-N%s?/2) for

decoy pulses can be estimated. Then, from[Eq. (6), one gets

I1l. THEORY OF ESTIMATION WITH PASSIVE SCHEME Lok Kk,
ap=—-¢&, ap=—+¢,
Ns NS
Ky Ky
ab = NG P al = NG e (m=0,1,2) (7)
Eve
with a confidence level 4 2 exp-N3s&'2/2) for signal pulses
i and 1- 2 exp-NY?/2) for decoy pulses, respectively. Thus,
Filter PR Att BS L. s(d) .
after obtainingky’ by the PNR detector, one can estimate
Untrusted | 1 2 /L

|1 | o 4 /L U /L U
Somrer — — <-> Encoding Bob the yalue offag-, a5, &, a;, &,
L | L confidence level.

PNR 3
Detector '

, @} with a quantitative

Alice

TABLE I: The simulation parameters for Figs. 2 ddd 3.

7D 7Bs 7Bob a Yo €det €
0.15 0.87 0.045 0.21 TIx10° 3.3% 0.5

FIG. 1: The passive scheme for estimating the parammg‘rsag,

it ay, at, &Y'}, The untrusted source prepared at P1 by Eve, where . - _ .
;4 maelanas? p(?éiiiorh { i 1u2 3,4) ;asseps tErough a Iow-{aa:dw\?:jth For testing the fects of statistical fluctuation without con-

optical filter, a phase randomizer (PR), and an optical siat- ~ Sidering the detection noise, we choose an untrusted sotirce
tenuator (Att) with the attenuation ceient ;s (1q) for the signal  Poissonian statistics to perform simulations based onabe v
(decoy) source. Then, a beam splitter (BS) with transnitags uum+weak decoy state protocol. Figl (2a) shows the numeri-
is used to separate it into two beams: one goes to a photoberum cal simulation results for trusted source, and untrustedcso
resolving (PNR) detector withfiéeciencynp at P3, and the other is  with the passive scheme in F[g. 1, where a beam splitter and
encoded and sent out of Alice’s side at P4. a noiseless PNR detector are used to verify the parameters
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FIG. 2: (color online) Simulation result of the vacustmieak decoy state protocol for trusted and untrusted soajewith finite data size

N = 10°,1C%, 10, respectively, based on the scheme in Fig. 1, where a beatteisphd a noiseless PNR detector which can discriminate
vacuum, one-photon and two-photon states are used to \ltaEifparametersagL, ag a/lL, a‘lJ a’zL, ag} with a confidence level + 10°5;

(b) with finite data sizeN = 10, 10*, 10, 10'°, 1(°, respectively, based on the passive scheme in [18], wheeam Isplitter and noiseless
PNA, are used to verify the lower bound of the probability ohtagged bits” with a confidence leve110°8, after which one can calculate
the secure key rate by Eq. (A1) in Appendix/Al[16].

{agh, &Y, a;t, &Y, a,t, aY}. Here, the average photon num-  The dark count is the main kind of detection noise for
ber (APN) of Poissonian source at P1 i§@x 10°. The at- the PNR detector such as time multiplexing detector (TMD)
tenuationns andnqg are set to be % 107 and 1x 1077, re-  [27,/28], transition-edge sensor (TES)/[29], or a threslaald
spectively, so that the APN for signal (decoy) state at P4 igector together with a variable attenuator [3C, 31]. In cafse
us = 0.5 (ug = 0.1). The photoelectron detection generatedindependent Poisson statistics noise (e.g. dark coutis), t
by PNR detector is simulated using Monte Carlo method, angProbability of detectingn’ photoelectrons is

N = 107, 1% and 16 of measurements are run. Other experi-

mental parameters are cited from the GYS experiment [26] as

shown in Tablé€ll, whereg is the dficiency of Bob's detec- e ym—d

tion, Yy is dark count rate of Bob’s detector aag; (&) is the P(n) = Z WD(d), 9)
probability that a photon (dark count) hit the erroneougdet d=0 '

tor in Bob’s side. To compare the performance of the scheme

in Fig.[d with the passive scheme proposed_ in [18], where a _ . o
beam splitter with transmittanegs and a noiseless photodi- whereN(y = d_) = e'a%/d!is the probablhty of thad dark
ode with dficiencynp are used to verify the lower bound of counts occur m_the PNR detector, ands the average dark-
the probability of “untagged bits” (see Appendix A), Fighj2 count rate of noise. Based on Eg|. (9), one easily calculate
shows the numerical simulation results for trusted sowmad,
untrusted source with the scheme in[18]. All the experiraknt
parameters are chosen to be the same to that of[Frig. (2a). D(m = 0)=P(n = 0)¢’,

D(m = 1)= P(m' = 0)e'(-1) + P(n' = 1),

/12
B. PNR detector with additive detection noise D(m=2)=P(m' = O)eﬂf +P( = 1)e'(-2)
. . ) . +P(m = 2)e. (10)
Given a PNR detector with an independent additive detec-
tion noisey, the detected photoelectron numbpetr and the
photon numbem at P3 satisfy

m =m+y. (8) Let k%9 denote the number of detected signal (decoy)
One can calculate the lower and upper bound of photon nunfulses by Alice at P3, given that PNR detector recards
ber distributionD(m) (m = 0,1,2) at P3 based on the pho- Photoelectrons. Usingandom sampling theory [25], one has
toelectron distribution oP(m') with a high confidence level, P°(m) € [kg /N® — &, k5, /N® + &'] for signal source and
given that the distribution of the detection nolé@) is known ~ PA(n7) € [k3,/N® — &, k3, /N + £] for decoy source with a
by Alice. confidence level 1 2 exp-N3e'?/2) and 1- 2 exp(-N92/2),
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FIG. 3: (color online) Simulation result of the vacusmeak decoy state protocol for untrusted source based onctier® in Fig. 1 in
two cases: (a) the data sizeNs = 10° and the APN of independent Poissonian detection noise oPMR detector (ciency: ip) is

1 =0,10°,10" 05,0.65,0.78, respectively; (b) the data sizeNs= 10® and the APN of independent Poissonian detection noise of the
PNR detector (&ciency: np) isA = 0,107,101, 1, 5,5.15,5.16, respectively. The experimental parameters are the aarfiable I, and the
confidence level of both cases is-110°6.

respectively. Combing Eq$.1(6) aid{10), one yields More generally, when the random positive detection noise
. y with the probabilityN(y) is known to Alice, one can still
s el K=o _ o) = at estimate the parametefa", aY, ", &, a,", ay} as shown
%= Ns ~%> in Appendix B.
’ K?‘(=0 ’ KSYY: ’ /L
alz—/le’l( NE +&|+¢€ Nsl—s =a;,
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a,> ?eﬂ ( NZO - 8') - 2¢e! ( Nzl + 8') DETECTOR
S
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FIG. 4: (a) A threshold detector (modeled by an attenuatdh wi

For testing the ects of detection noise, we choose an un-transmittance;p and an ideal threshold detector) combined with a
trusted source of Poissonian statistics to perform sirimriat ~ Variable optical attenuator (transmittaneg:can realize a PNR de-
based on the vacuumveak decoy state protocol with the pas- tector [31]. (b) An equivalent model to (a), which means the t
sive scheme in Figl1. The untrusted source is of Poissonialj@d€!s will produce the same PND at the ideal detector ifrgtve
statistics with APNu = 7.66 x 1(P at P1, and the attenua- Same input Source.
tion s andny are set to be & 10" and 1x 1077, respectively.
The other experimental parameters are cited from Tabled. Th  The PNR detector can be realized by a variable optical at-
photoelectron detection and additive Poissonian noiséef t tenuator (VOA) combined with a practical threshold detecto
PNR detector at P3 in Fig. 1 are simulated using Monte Carlgsuch as single-photon detector) as shown in [Hig. 4(a) [31],
method, andN = 10° and 10 of measurements are run for which is equivalent to the model in Figl 4(b). Suppose the
Figs. [3a) and{3b), respectively. state of input source j&n = X.;7o PnINY (Nl. In Fig.[4(b), after



passing through an attenuator witffigientrp, the state of the
source becomes

P = p iy,
n=0

wherep, = 5 P 1 | 5(1-10)" " When Eq.5) holds,
one has

P = & Py’ = an. (12)
Then the source passes through the VOA wifficencyn,
and the probability that the detector dose not click can be ca

culated a(n) = X7 o(1-1)"p; [31]. When we take the dark

One can choosg) = 1 so that

piro =1) = (1- R (15)

Then one has

POm)
1-€
p(1) <
1-¢€

Py + (1= n1) P},

Po+ (L —n0)p; + (L - 7)1 - py— pY),

count of the threshold detector into account, it can be ealcu

lated as
pr) = (1- ) Y (1 -n)"ph
n=0

where thee is the dark count rate of the detector. If Alice
varies the transmittance of the VOA= {51, - - - , nm}, she has
a set of linear equations

poR) = (L-&) > (A=m)"Py (=1 ,M).  (13)
n=0

from which the upper and lower bounds figy can be calcu-
lated as

P(171) — P(n0) e

l-9@-m)

(1) = POo)[1 = (1 = )] = (1 = (1 — m)?
(1-9l-m-1-m)

/
Py =

Pp=
=p_’1. (16)
In a similar way, one has

When she employs an infinity number of possible transmit-

tancen € [0, 1], she can always estimate any finite number of

probabilitiesp;, with arbitrary precision by solving Eq$.(13).

However it is not necessary for our purpose where we mainly

concern the probability of vacuum, one photon and two pho
ton states. In this case, only thredfdient transmittances
n = {no, m, 12} are needed [31]. Then Alice has

P(10) = (1 - €) > (1= 10)"Pfy
n=0

Pom) = (L—€) > (1= m)"pp (14)
n=0

pOr2) = (1 - €) > (1 - 12)"P}
n=0

p(172) — p(r70) — (1 —€)(1 - 772)&/1 =
(- 9-m)? e

/
p>=

/

_ Plr) -1 -(1- 12)°1p(110) — (1 - )[1 -

PUR) b+ (1= mo) i + (1 o)

> o+ (1-12)py + (1= 12)° P,

P < b+ (= mo)p + (1 o)

+(L-m2) (P + Py+P5+-+)
<[1-@-n)3lpp+[1-n2- (1-12)%p;
+[(L - m2)* = (1-n2)°1p5 — (L - m2)°,

from which the upper and lower bounds fpj can be esti-
mated as

? (1-&)[(L - 12)?

In conclusion, based on the recorded dépéno), p(n1),
p(n2)}, Alice can estimated the parametdeg", ay, a;",

n2—(1- 772)3]P_'1 -(1-9)(1- 772)3 _p
~(1-12)% z
[

(17)

a‘l’, at, &} as in Egs.[(I2) and(A517). The scheme in
Fig. (4) can be easily realized with current technology. As
for the dfect of statistical fluctuation, one can use tRan-



dom Sampling Theory as before to consider the fluctuation of ify the key parameters needed in|[21] 22] with a quantitative

the {p(no), p(n1), p(72)} with a confidence level so that we confidence level. The practical issues due to detectiorenois

still can bounda-, ag a’l'-, a‘lJ aé", ag}. and finite data size fluctuation are concerned. The simulatio
results show that our scheme can woffkogently.

V. DISCUSSION AND CONCLUSION
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the secure key rate; (iii) the method in [18] is more sensitiv
to statistical fluctuation and needs a larger data size than o
method. Appendix A: Passive scheme method in [1€]

In the passive scheme proposed.in [18] (see[Hig. 5 in Ap-
pendix A), Alice uses a threshold detection to monitor tiee fr
guency of “untagged bits” in untrusted source, from whidah th
lower bound of the probability of “untagged bits” can be esti Eve
mated with a confidence level . When the confidence level it \

set to be constant (e.g.-1107°), the estimation resolution = B de

for the probability of “untagged bits” is only decided by the Il

data sizeN (ignoring the &ect of detection noise), where the Ugﬁi“;t:d L — 2 Encoding Bob
confidence level is + 2 exp(-Ne?/4) [18]. However, the se- .

cure key rate in[18] is quite sensitive to the estimatioohes PNAL T3

tion &, and will reduce greatly whesnincreases (see Figl 6 in e Alice

Appendix A). When the data si2¢ decrease, the resolutien
has to increase to keep the constant confidence level, aad thu
the key rate will reduce greatly.

While in the scheme shown in Fifg] 1, Alice uses a PNRFIG. 5: (color online) The model of the passive schemelin [17—
detector to monitor the counts of vacuum, one-photon, and9]. The untrusted source prepared by Eve passes through-a lo
two-photon states for signal and decoy source, respegtivel bandwidth optical filter, and a phase randomizer (PR). Thérgam
Because of the low intensity of the output pulses at P4 (e. splitter (BS) with transmittancess is used to separate it mto two
sts = 0.5, ug = 0.1), the vacuum, one-photon, and two-photon eams: one goes to a photon-nu_mber-analyzer (PNA) \mmmcy
pulses are dominant in pulses, and Alice can gain most of thé> and the other is attenuated with an attenuator (Att) wiilsiency
information about the statistics of the untrusted sourdedat < or Signal (decoy) state and encoded before it is sent outiof A

) ice’s side.
based on the recorded data at P3. In our scheme, six param-
eters are monitored, and more information is gained than the
scheme in[[18]. Mathematically, formulas shown by Hqs. 3-b

e i : U
(@) are not so sensitive to the estimation resolutiofagf, a3, record the frequency of “untagged bits” experimentally.- De

a", aij a', a/} compared to that in [18], so that it does not fine the pulses with photon numMbkY € [Mumin, Mmax at po-

require a very large data size to workieiently as shown in  sjtion 3 in Fig. 4 as “untagged bits”. For simplicity, one can

Fig. (2a). When the data si2é¢> 10P, the performance of the setnesip = 1 - nss.

scheme is very close to that of trusted source. In asymptotic pAgsyme thaiN pulses are sent from Alice to Bob. Alice

case where Alice sends infinitely long bit sequeride( ), 314 Bob do not know which bits are untagged. Naiagged

the performance will be the same to that of trusted source agenote the number of detected pulses by the PNA given that

shown in Appendix C, which means this passive method willihe recorded photoelectron number at position 2 belongs to

not reduce theféiciency of the system without eavesdropplng.[Mmm, Mmad, @ndA = Nynaggea/N. From the recorded data
The results in Figl13 show that: (i) given a PNR detectoriy pNA, one can estimate that at least(A — &)N pulses are

with the same dark count rate, the performance of a systemyntagged bits” with a confidence-12 exp-Ne?/4) wheres

with untrusted source will be better when the data size injg 3 small positive parametér [18].

crease; (ii) given the same data size, the performance of a ajice can measure the overéllg@yd) and QBERE(q) for

system with untrusted source will reduce when the dark coundignal (decoy) pulses, respectively, while she doesn’tmo

rate increase. Performance of the scheme irLFFig. 1 is quite sehe gain and QBER for “untagged bits”. The upper and

that when the data siZd > 10% and dark count rate of the gqyrce can be estimated as

PNR detectorl < 0.5 which are realizable by current tech-
niques|[27=30], this scheme can still woriieiently. Oua = ) Oya = max{ 0 Qsa) —A—¢
In conclusion, we propose an experimental scheme to ver- SO T T A g XS T "T1-A-e [

The passive method in_[18] is shown in Fig. 5, where a
eam splitter and a photon number analyzer (PNA) are used to
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FIG. 6: (color online) Simulation result of the vacustmeak decoy .
state protocol for trusted and untrusted source witfecint estima-  Under some condition.

. . _ 6 5 4 i .
tion resolutions = 107, 107, 107, respectively. Based onthe £, yoqting the ects ofe onto the secure key rate, we
passive shown in Fig. 4, a beam splitter and a noiseless PHA ar

used to verify the lower bound of the probability of untaggts. choo_se an gntrusted source of Poissonian statistics torperf
Experimental parameters are cited from T4ble I. the simulations based on the vacutweak decoy state pro-

tocol.Suppose the untrusted source is of Poissonian witth AP
7.66 x 10° at position 1 of Fig. 4. Seps = 5x 1077, and

.4 = 1 x 1077, The other experimental parameters are chosen
to be same as Table I. The valueshdf,ax and M are cho-

sen to be constant. The results in Fig. 5 show that the final key

The upper and lower bound for the QBER of “untagged bits
can be estimated as

E E«— A — rate is very sensitive to the value af
QsEs = &, QsEs = maX{O, M} s . . . .
1-A-e — 1-A-¢ Suppose Alice has a noiseless PNA, and the estimation con-
) fidence level is set to be constant
for signal states, and
QuEq = _QuBa QqEg = max{0 QuEa-A-¢ 1-2exp™*=1-10°. (A2)
1-A-¢ T 1-A-¢ |’

for decoy states. For untagged bits, one can show that the uphe estimation resolutioa for the probability of “untagged
per and lower bounds of the probability that the output photo bits” is only decided by the data sidé When the data sizd

number at position 4 is for signal (decoy) pulses are: decrease, the resolutiearhas to increase to keep the constant
confidence level, and thus the key rate will reduce greatly as
(1 = ngay)Mmn n=0, has been shown in Fig. 2(b).
d M _
P = p]an)ng(d)(l — ()" 1<n < Mmax
0 N> Mmax

Appendix B: General positive detection noise

(1= 7)™ n=0,
Ps(d) - Mmin n 1 _ Mmin—n 1 <n< M .
> ( n )Tse( =) S Generally, when the random positive detection ngisédth
0 N> Mmin, the probabilityN(y) is known to Alice whereN(y < 0) = 0,

one has
under condition thaMmaxsd) < 1.

When the lower bounds of the probability of “untagged
bits” is known by Alice, the secure key rate for vacutmeak P(m' = 0)=N(y = 0)D(m = 0),
decoy state protocol with untrusted source is [16] P(n = 1)= N(y = 0)D(m = 1) + N(y = 1)D(m = 0),
1 . P(m =2)=N(y=0)D(m=2)+ N(y=1)D(m=1)
R= 5 {-QsHa(E9) + (1 - A~ £)QH[L - HE}. (A +N(y = 2)D(m= 0). (B1)



Thus, combine the results in Egs. (6) and (B1), one has
’ krSYY:O/NS_S/
o=TRNy=0)
. (ks,_1 /NS = &) N(y = 0) — (KS, _o/N*+ &) N(y = 1)
ne NZ(y = 0) ’
,_ K ,/INS—& K /NS+& B
2 Ny=0)  Ney=0) V=Y
kS _o/N°—¢& on K> _o/N°+¢& B
WN (y=1)- WNW_ 2),
K?Y:O/Nd +&
PETNy=0)
3 (ke _y /N + £)N(y = 0) - (K¢, _o/N% - &) N(y = 1)
" NZ(y = 0) ’
Kl _p/NY+e KI_ /NT—s
%=TNy=0  Ng=g VY
Kl _o/NY+e , Kl _o/N'—&
WN y=1)- WN(Y— 2). (B2)

rL QU oL
e

85}

Appendix C: Asymptotic case of method in [21]

In the asymptotic case, Alice sends infinitely long bit se-
guence N ~ o). Therefore we can consider & ~ 0 in
Eqgs. [T), [11L) or[{(BR) while still have confidence level to be
1. Suppose the untrusted source is Poissonian with ARN
for signal (decoy) pulses at P4, then one has

ay = exp(-ua), &) = pa Xp(pa), 85 = /2 explpa),
a(/)U = explpus), a&U = usexplpus), a'QU =/1§/2 exptus).

Then one can estimate

a;" (a,"Qu — 8y Qs — &,"a Qo + ayay" Qo)

S __ S
o=z e~ agay
2 2 2
= (Qde"‘d -~ Qewety Kl Qo],
Mg — HsMd Ms Hs

Therefor, once the distribution of the noise is known, the se which is exactly the same to the case of trusted source (see

cure key rate can be estimated given the bounolagbf ag

Eq. (35) in [24]).
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