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Noise resilient quantum interface based on QND interaction
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We propose a quantum interface protocol based on two quantum-non-demolition interactions
(QND) arranged either in sequence or in parallel. Since the QND coupling arises naturally in
interactions between light and a macroscopic ensemble of atoms, or between light and a micro-
mechanical oscillator, the proposed interface is capable of transferring a state of light onto these
matter systems. The transfer itself is perfect and deterministic for any quantum state, for arbitrarily
small interaction strengths, and for arbitrarily large noise of the target system. It requires an all-
optical pre-processing, requiring a coupling stronger than that between the light and the matter,
and a displacement feed-forward correction of the matter system. We also suggest a probabilistic
version of the interface, which eliminates the need for the feed-forward correction at a cost of reduced
success rate. An application of the interface can be found in construction of a quantum memory, or
in the state preparation for quantum sensing.

PACS numbers:

I. INTRODUCTION

Light is a natural carrier of information and since the
advent of quantum information and metrology it solidi-
fied as a practical tool for quantum communication and
quantum sensing. However, light is not sufficient on its
own. For example, in a long distance quantum commu-
nication it has to be supplemented by quantum repeaters
[2] based on, for example, atomic memory [1]. For the
quantum sensing of magnetic fields, a cloud of atoms is
used as a sensor, which is prepared and probed by the
light beam [3]. Light is also used as an efficient probe
and resource for the preparation and monitoring of quan-
tum vibrations of a mechanical oscillator [4]. It is there-
fore apparent that important elements of the quantum
toolbox should be interface protocols, which allow for a
flawless transfer from one physical system (light) to an-
other (matter) [5]. One feature, this protocols should
keep in regard, is the often limited capability of these
matter systems to interact with light, be measured, and
be controlled. The interfaces should therefore rely nei-
ther on pre-processing, nor on extensive post-processing
of the matter system. Furthermore, the perfect interface
should be achievable even for a weak coupling between
the two physical systems and for a very noisy input state
of the matter system.

Previous study of this problematic revealed that
for almost any Gaussian coupling, with Hamiltonian
quadratic in quadrature operators x and p, a suitable pre-
processing of the well-controllable system, measurement,
and feed-forward can be used to implement a perfect
state transfer without any regards for the initial state of
the target system [6]. This approach unfortunately does
not work for the asymmetrical quantum-non-demolition
(QND) coupling used to couple light to the macroscopic
ensemble of atoms [7], or between light and macroscopic
vibrations of the mechanical oscillator [4]. At its core,

the QND interaction allows to transmit only a single
quadrature from light to the matter system. A method of
working around this limiting factor and implementing a
state transfer through a single QND interaction has been
studied in Ref. [8], but it was shown impossible for weak
coupling strengths. Hence we will focus on the problem
of building, in principle, a perfect interface for this kind
of weak-strength QND coupling, for a moment neglecting
other technical details of the light-matter interaction.
In this paper, we propose a deterministic universal

quantum interface based on two sequential weak QND
couplings between two light beams and a noisy matter
system. The interface is based on all-optical (finite gain)
pre-processing, a homodyne detection of light beams, and
a conditional feed-forward correction displacing the mat-
ter system. By a construction we prove that the interface
can perfectly transfer any (even unknown) quantum state
to the initially noisy matter system, with no regards to
strength of the QND couplings and the initial noise of the
matter system. This interface method is then extended
to a parallel QND coupling, represented by a sum of two
QND couplings jointly probing the matter system.
We also present a probabilistic version of the inter-

face, which is also able to transfer any state under the
same conditions. In this scenario, there is no need for the
feed-forward operation, a simplification, which is paid
for by a reduced probability of success. We analyze
the probabilistic scenario with regards to transfer of a
single-photon state and demonstrate that weak coupling
strengths and high initial noise can be compensated by
a more severe post-selection.

II. DETERMINISTIC INTERFACE

The class of QND couplings between two harmonic os-
cillators is characterized by interaction Hamiltonian pro-
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portional to a product of two quadratures, one corre-
sponding to a continuous-variable of light and the other
to a continuous variable of matter. All the QND cou-
plings (of the same strength) are theoretically equivalent,
differing just by a simple local unitary transformation
(phase-space rotation) of the relevant light and matter
modes. Therefore, all the results presented below can be
easily adapted for any kind of QND coupling. A single
particular QND coupling can be characterized by the in-
teraction Hamiltonian of the form H = χxApL, where
χ stands for the interaction strength, x and p denote
the quadrature operators with [x., p.] = i, and the sub-
scripts L and A mark the participating light mode and
the matter mode (atomic ensemble mode or mechanical
oscillator mode), respectively. In Heisenberg picture, the
quadrature operators transform as

xoutL = xinL + κxinA , p
out
L = pinL ,

xoutA = xinA , p
out
A = pinA − κpinL . (1)

The interaction transfers information about quadratures
xA and pL to quadratures xL and pA, while leaving the
original quadratures undisturbed. This behavior is where
the quantum-non-demolition coupling got its name. In
following, we shall employ parameter κ = χT (where T
is the effective lenght of the interaction) as the gain of
the QND interaction. This simple unitary model ignores
all the decoherence effects typical for the matter system,
therefore it can only describe a coupling, which is very
fast, faster than any relevant decoherence time. As a
natural consequence, the range of values of κ is very lim-
ited, typically corresponding to a weak coupling regime
(κ < 1).
As was mentioned previously, it is possible to conceive

a noise free transfer using a single QND coupling, mea-
surement and feed-forward, and a suitable squeezing of
the initial state of light [8]. However, there are several
drawbacks to approach. The transfer can be noiseless,
but it is still affected by loss and squeezing. The amount
of loss depends on the strength of the coupling, with
transmission parameter η = κ2/(1 + κ2), so unless the
coupling gain is quite large, (κ≫ 1), the loss will reduce
the quality of the transfer. The squeezing can be compen-
sated by another QND interaction with ancillary mode
of light followed by a measurement and a feed-forward,
but this incurs further loss and the overall transmission
ends up only η′ = κ2/(1+ κ2)2. All in all, there is no set
of finite parameters for which lossless transfer is possible.
Furthermore, the transfer is noiseless only when the mode
of the matter system is prepaired in the ground state,
which, despite the significant progress done by vacuum
state preparation of the atomic ensemble or the mechan-
ical oscillator, can still be a problematic task on its own.
The need for the second QND coupling with an an-

cillary mode of light to compensate for the squeezing
may be seen as an indication that a different scheme,
which employs two sequential couplings with indepen-
dent modes of light, may achieve better results. Clearly,
these two couplings have to address both the complemen-

FIG. 1: (color online) Setup for the universal quantum in-
terface based on the sequential QND couplings: L, M stands
for the light modes and A denotes the matter mode. QNDi

- QND interaction with gain κi, HDq, q = X,P - balanced
homodyne detection measuring a quadrature q, γq - gain in
the feed-forward loop for quadrature q; D - displacement op-
eration; S - optional squeezing operation.

tary matter variables xA and pA. Since the matter state
is typically encoded up to a slowly rotating frame in the
phase space, it is just a question of precise timing to cor-
rectly implement a sequence of the two couplings. Let
us consider a system with two modes of light, L and M
and one matter mode A. After the interaction mediated
by the two sequential QND couplings characterized by
interaction Hamiltonians H1 = χ1xApM , H2 = χ2xLpA
and gains κ1, κ2, the quadrature operators of the partic-
ipating modes are transformed to

x′M = xM + κ1xA,

p′M = pM ,

x′L = xL,

p′L = pL − κ2pA + κ1κ2pM ,

x′A = xA + κ2xL,

p′A = pA − κ1pM . (2)

To complete the transfer we need to employ a pair of
balanced homodyne detectors to measure values of the
operators x′M and p′L. This differs from the method of
Ref. [6], as there are no collective measurements required
here, due to the specific nature of the QND interaction.
The measured data are used in the feed-forward loop to
drive the displacement of the mode A, xoutA = x′A+γxx

′

M

and poutA = p′A + γpp
′

L, where γx and γp are the ad-
justable electronic gains. If these gains are chosen so
γx = −1/κ1 and γp = 1/κ2, the influence of the initial
state of the matter mode completely vanishes and its final
state quadratures read

xoutA = κ2xL − 1

κ1
xM ,

poutA =
1

κ2
pL. (3)

As in [6], this dependance on collective quadratures of
the initial modes of light can be removed by a suitable
pre-processing. Namely, a squeezing of the mode L with
gain g = κ2, followed by a QND coupling with interac-
tion hamiltonian H3 = χ3xMpL and gain κ3 = 1/(κ1κ2),
will achieve realization of a perfect transfer xoutA = xinL
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and poutA = pinL . Such the pre-processing can be built
using an interferometric scheme based on either in-line
squeezers or a measurement-induced QND (with the off-
line squeezing), both of which are experimentally avail-
able [9, 10]. However, as of yet, the quality and possible
gains of the pre-processing are limited by strengths of the
in-line interactions or the available off-line squeezing.
A very interesting aspect of this protocol, a full de-

piction of which can be found in Fig. 1, is that it can
principally achieve a perfect transfer for an arbitrarily
weak coupling between the light and the matter modes.
Furthermore, although the demand on resources during
the pre-processing phase can be substantial, as the gain
κ3 increases rapidly as κ1 and κ2 are getting smaller, the
gains of both the QND transformation and the squeezing
are always finite. Furthermore, the strength of inter-
action between light and matter is compensated for by
a stronger all-optical coupling. Consequently, improve-
ment in our ability to produce a more intensive coupling
between optical modes would allow for a construction of
better quantum interfaces between light and matter.
A possible inconvenience of the presented method lies

in its sequential nature. The light modes L and M are
supposed to interact with the non-light mode A one at
the time and therefore the second one needs to be delayed
while the first one interacts. This can be problematic
if the light modes are defined over a substantially long
time, which is a typical situation in experiments, where
it allows to effectively increase the interaction strength.
A possible remedy lies in using a joint same-time QND
interaction of the three modes, M , L and A. A sim-
ilar strategy was already proposed for a readout from
the atomic memory [11]. This coupling, consisting of the
simultaneous addressing of the matter system by both
the light systems and having the interaction Hamilto-
nian H = χ(xApL + pAxM ), transforms the quadrature
operators as:

x′M = xM ,

p′M = pM − κpA +
κ2

2
pL,

x′L = xL + κxA +
κ2

2
xM ,

p′L = pL,

x′A = xA + κxM ,

p′A = pA − κpL, (4)

where κ is the gain of the joint QND coupling. After
homodyne measurement of quadratures x′L and xM , the
state of the mode A can be suitably displaced, xoutA =
x′A + γxx

′

M and poutA = p′A + γpx
′

L, and if the gains are
tuned properly, γx = −γp = −1/κ, the output state op-
erators are

xoutA =
κ

2
xM − 1

κ
xL,

poutA =
1

κ
pM − κ

2
pL. (5)

FIG. 2: (color online) Setup for the perfect state transfer. L,
M and A denote the participating modes. HDq - balanced ho-
modyne detection measuring a quadrature q, γq - gain in the
feed-forward loop for quadrature q; S - squeezing operation;
PS - phase shift operation, BS balanced beam splitter.

After a suitable pre-processing, which is depicted in
Fig. 2, and which consists of a balanced beam splitter
and a pair of squeezing operations with gain g =

√
2/κ,

xM =
1

κ
(xinM + xinL ),

pM =
κ

2
(pinM + pinL ),

xL =
κ

2
(xinM − xinL ),

pL =
1

κ
(pinM − pinL ), (6)

the quadratures of the input mode L are perfectly tran-
scribed onto the output mode A, xoutA = xinL , poutA = pinL .

III. PROBABILISTIC INTERFACE

The both already mentioned sequences of interactions,
measurements, and conditional operations are capable of
a deterministic transfer of an unknown quantum state
from one physical system to another. However, for the
state preparation it is often enough if the known quan-
tum state can be transferred probabilistically, using a
post-selection instead of the feed-forward. Specifically,
instead of using the measured values of the operators x′M
and p′L (or x′L and p′M for the simultaneous interaction)
to drive the correcting displacement, we post-select the
state of the target system if the detected values are zero
and discard the state otherwise. To accurately describe
the projection nature of the measurement procedure we
need to abandon the Heisenberg picture employed so far
and look at the evolution of the actual physical states.
Since the two scenarios are very similar, we shall focus
only on the sequential QND interface illustrated in Fig. 1.
First, let us check whether the probabilistic inter-

face can be implemented in the limiting case of per-
fect transfer and pure states. These states can be de-
scribed in coordinate representation by their wave func-
tions, |ψ〉 =

∫

ψ(x)|x〉dx, and any unitary evolution can
be characterized by its action on the basis states. In
our scenario, the global basis state is composed of three
states |xL〉L|xM 〉M |xA〉A and our aim is to transform it
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to |xL〉A. In this representation, the separate parts of
the evolution illustrated in Fig. 1 act as follows:

squeezing : |x〉L → |x/g〉,
QND

1
: |y〉M |z〉A → |y + κ1z〉M |z〉A,

QND
2
: |x〉L|z〉A → |x〉L|z + κ2x〉A,

QND
3
: |x〉L|y〉M → |x+ κ3y〉L|y〉M . (7)

After the squeezing S, an all-optical coupling QND3, and
sequential QND1 and QND2 interactions with the atomic
system A, the states |xL〉L|xM 〉M |xA〉A are transformed
to

|xL/g+κ3〉L|xM+κ1xA〉M |xA+κ2(xL/g+κ3xM )〉A. (8)

After the projective measurements, which are repre-
sented by L〈p = 0|M 〈y = 0|, where |p = 0〉L ∝
∫

∞

−∞
|x〉Ldx, are applied to the optical modes L and M ,

the resulting state is proportional (up to a normalization)
to

∫

∞

−∞

δ(x−xL/g−κ3xM )dx|− (κ−1

1
−κ2κ3)xM +κ2xL/g〉A.

(9)
Now, the integral is equal to unity, and if we have chosen
a suitable preprocessing with g = κ2 and κ3 = (κ1κ2)

−1

the final basis state is simply |xL〉A. As a result we have
an atomic system corresponding perfectly to a wave func-
tion of the initial light system. The state of the opti-
cal mode L has been perfectly transferred to the atomic
mode A without any regards for the initial state of any
of the three participating modes.

The projective measurements can be approached by
homodyne detectors followed by a post-selection if the
measured values fell into a narrow interval around the
desired values pL = 0 and xM = 0. However, the ideal
situation, when the width of the interval approaches zero,
also leads to a zero probability of success for the scheme.
To realistically analyze the influence of the non-zero post-
selection interval on the performance of the method and
the probability of success, we will employ the formalism
of Wigner functions [12]. Wigner function of a single
mode state is a real function of a pair of real variables
x and p, which directly correspond to the quadrature
operators used before. The complete state of the three
initial systems is represented by a joint Wigner function

Win(ξ) =WL(xL, pL)WM (xM , pM )WA(xA, pA), (10)

where the ξ is a shorthand notation of the vector of the
variables, ξ = (xL, pL, xM , pM , xA, pA)

T . The subscripts
L,M, and A again denote the three participating sys-
tems. The unitary evolution of the complete system can
be expressed by a symplectic matrix U , which transforms
the variables as ξ′ = Uξ. Note that the same matrix can
be used to implement the evolution for a vector of quadra-
ture operators. The sequence of interactions depicted in

Fig. 1 with κ3 = −1/κ1κ2 is represented by matrix

U =

















0 0 κ−1

1
0 −1 0

0 −κ−1

2
0 0 0 −1

κ1κ2 0 1 0 −κ1 0
0 (κ1κ2)

−1 0 1 0 κ−1

1

−κ2 0 0 0 1 0
0 0 0 κ1 0 1

















. (11)

After the transformation, the projective measurements
are implemented as integration of the measured variables
over interval [−Q,Q], leading to Wigner function

Wout(xA, pA) =
1

PS

∫

∞

−∞

dpM

∫

∞

−∞

dxL

∫ Q

−Q

dxM

∫ Q

−Q

dpLWin(Uξ),

(12)
where PS is a normalization factor which also stands
for the probability of success. A general evaluation of
the integral is not an easy task. Fortunately, under a
realistic assumption that the modesM and A are initially
in thermal states with Wigner functions

WM (x, p) =
exp(−(x2 + p2)/2VM )

2πVM

WA(x, p) =
exp(−(x2 + p2)/2VA)

2πVA
, (13)

the limit Q → 0 is indeed Wout(xA, pA) = WL(xA, pA),
as predicted by the simple method.
To discuss the convergence of the method with regards

to the post-selection interval Q we need to consider a
particular quantum state. The chosen state should be
quite vulnerable to loss and noise, so we can clearly see
their influence. This translates to a nonclassical non-
Gaussian state, a clear specimen of which is the single-
photon state with its trademark negativity in the Wigner
function. The Wigner function itself is

WL(x, p) =
exp(−x2 − p2)

π
(2x2 + 2p2 − 1), (14)

and, under the assumption (13), the final state can be
analytically obtained from (12). To evaluate the quality
of the transfer we can calculate fidelity

F = 2π

∫

∞

−∞

dx

∫

∞

−∞

dpWout(x, p)WL(x, p), (15)

to gain a measurable overlap between the ideal and the
existing state. We can also explicitly try to look at trans-
fer of the non-classical property – the highly negative
value of the Wigner function at the point of origin. For
our purpose, we can define the negativity of the Wigner
function as N = min[W (x, p)].
These indicators, together with the probability of suc-

cess, are shown in Fig. 3 relative to the logarithm of the
threshold value Q. By comparing the three panels we
see that for a success probability of PS ≈ 0.01 we can
achieve fidelity F ≈ 0.9 for both considered values of the
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FIG. 3: (Color online) The fidelity (a), the negativity of
the Wigner function (b), and the probability of success
(c) for a transferred single-photon state as functions of the
post-selection interval half-width Q. The parameters were
κ1 = 0.3, κ2 = 0.3, VM = 0.5, VA = 5 for the blue solid line
and κ1 = 0.5, κ2 = 0.5, VM = 0.5, VA = 5 for the red dashed
line.
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FIG. 4: (Color online) Values of the fidelity and the negativity
of the Wigner function of a transferred single-photon state
relative to the coupling parameter κ = κ1 = κ2. The three
curves correspond to different probabilities of succes. Blue
solid line: PS = 10−2, green dashed line: PS = 10−3, red
dotted line: PS = 10−4. Other parameters were: VM = 0.5,
VA = 5.
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FIG. 5: (Color online) Values of the fidelity and the negativ-
ity of the Wigner function a transferred single photon state
relative to the level of initial noise in the atomic system as
characterized by VA. The three curves correspond to differ-
ent probabilities of succes. Blue solid line: PS = 10−2, green
dashed line: PS = 10−3, red dotted line: PS = 10−4. Other
parameters were: VM = 0.5, κ1 = κ2 = 0.5.

coupling parameters. This may not seem much, but ob-
serve that the transferred state is still highly nonclassical,
as witnessed by the negativity N ≈ −0.3, which is only
slightly worse than the ideal negativity of N = −1/π.
Further analysis revealed that the initial states of the M
and A modes, as well as the QND coupling constants
κ1 and κ2, are only relevant as far as the probability of
success is concerned. Fixing the success rate, the fidelity
and the negativity are depicted in Figs. 4,5 as functions
of coupling strength κ = κ1 = κ2 and the initial noise of
the matter system VA. Both the characteristics are ro-
bust against low coupling and large noise, if the success
probability is sufficiently low. This clearly demostrates a
basic feasibility of the probabilistic transfer for the state
preparation of highly non-classical states of atomic en-
sembles or micro-mechanical oscillators.

IV. CONCLUSION

We have proposed a quantum interface capable of
transferring a quantum state from one quantum sys-
tem to another, for example, from light to a continuous-
variable matter system, such as a collective spin mode of
an atomic cloud or a vibrational mode of a mechanical
oscillator. The main building blocks of the interface are
QND interactions, which naturally arise as a coupling
between modes of light and the aforementioned matter
systems. The main benefit of the proposed scheme lies
in its deterministic nature and its flawless performance
- unit fidelity of transfer can be, in principle, achieved
for arbitrary states of all participating modes and for ar-
bitrarily small values of the QND coupling parameters.
Furthermore, the resources required for the perfect trans-
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fer are always finite.
The interface can be also implemented probabilisti-

cally, thus eliminating the necessity of the feed-forward
correction performed on the matter system. This is espe-
cially interesting for the state preparation of non-classical
states of atoms or mechanical oscillators, where non-
classical states of light are used as a resource. For a
comparison, a single QND interaction, employed by cite-
filip08, allows to transmit a single-photon state perfectly,
but a superposition of coherent states is transmitted with
a reduction of the amplitude proportional to the strength
of the QND coupling. The presently proposed method
does not suffer from this – the state of light is perfectly
transferred to the atomic or mechanical system, without

any feed-forward correction required.

Finally, this paper demonstrates a principal theoretical
capability of constructing a perfect interface with help
of QND couplings. Actual experimental considerations
strongly depend on the employed physical system and
will be addressed in a separate publication.

Acknowledgments This research has been supported
by projects MSM 6198959213, LC06007 and Czech-Japan
Project ME10156 (MIQIP) of the Czech Ministry of Ed-
ucation. We also acknowledge grant 202/08/0224 and
P205/10/P319 of GA CR and and EU grant FP7 212008
- COMPAS.

[1] B. Julsgaard et al., Nature (London) 432, 482 (2004).
[2] H. J. Briegel et al. H. J. Briegel, W. Dur, J. I. Cirac, and

P. Zoller, Phys. Rev. Lett. 81, 5932 (1998); L. M. Duan
et al., Nature (London) 414, 413 (2001).

[3] D. Budker and M. Romalis, Nat. Phys. 3, 227 (2007); J.
Esteve et al., Nature 455, 1216 (2008).

[4] S. Groeblacher et al., Nature 460, 724-727 (2009); T. J.
Kippenberg and K. J. Vahala, Science 29, 1172 (2008).

[5] S. Lloyd, A. J. Landahl, and J.-J. E. Slotine, Phys. Rev.
A 69 012305 (2004); H. J. Kimble, Nature (London) 453,
1023 (2008).

[6] R. Filip, Phys. Rev. A 80, 022304 (2009).
[7] A. E. Kozhekin, K. Mølmer, and E. Polzik, Phys. Rev.

A 62, 033809 (2000); C. Schori, B. Julsgaard, J. L.
Sørensen, and E. S. Polzik, Phys. Rev. Lett 89, 057903
(2002).

[8] R. Filip, Phys. Rev. A 78, 012329 (2008).
[9] S.F. Pereira, Z.Y. Ou and H.J. Kimble, Phys. Rev. Lett.

72, 214 (1994); K. Bencheikh, J.A. Levenson, P. Grang-
ier and O. Lopez, Phys. Rev. Lett. 75, 3422 (1995). K.
Bencheikh, C. Simonneau and J.A. Levenson, Phys. Rev.
Lett. 78, 34 (1997)

[10] J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A.
Huck, U. L. Andersen, and A. Furusawa, Phys. Rev. A
76, 060301(R) (2007). J. Yoshikawa, Y. Miwa, A. Huck,
U. L. Andersen, P. van Loock, and A. Furusawa, Phys.
Rev. Lett. 101, 250501 (2008).
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