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Abstract

We give a test that can distinguish efficiently between product states of n quantum systems
and states which are far from product. If applied to a state |ψ〉 whose maximum overlap with
a product state is 1− ǫ, the test passes with probability 1−Θ(ǫ), regardless of n or the local
dimensions of the individual systems. The test uses two copies of |ψ〉. We prove correctness
of this test as a special case of a more general result regarding stability of maximum output
purity of the depolarising channel.

One application of the test is to Quantum Merlin-Arthur games, where we show that a
witness from two unentangled provers can simulate a witness from arbitrarily many unentangled
provers, up to a constant loss of soundness. Our test can also be used to construct an efficient
test for determining whether a unitary operator is a tensor product.

1 Introduction

Entanglement of quantum states presents both an opportunity and a difficulty for quantum comput-
ing. To describe a pure state of n qudits (d-dimensional quantum systems) requires a comparable
number of parameters to a classical probability distribution on dn items. However, being a pure
state means that many tools available to handle probability distributions no longer work. For ex-
ample, due to interference, the probability of a test passing cannot be simply written as an average
over components of the state. Moreover, measuring one part of a state may induce entanglement
between other parts of the state that were not previously entangled with each other.

These counter-intuitive properties of entanglement account for many of the main outstanding
puzzles in quantum information. In quantum channel coding, the famous additivity violations of
[10, 15] reflect how entangled inputs can sometimes have advantages against even uncorrelated
noise. For quantum interactive proofs, the primary difficulty is in bounding the ability of provers to
cheat using entangled strategies [16]. Even for QMA(k) (the variant of QMA with k unentangled
Merlins [18, 2]), most important open questions could be resolved by finding a way to control
entanglement within each proof. Here, the recently discovered failure of parallel repetition for
entangled provers [17] is a sort of complexity-theoretic analogue of additivity violations.

The situation is different when we consider quantum states that are product across the n systems.
In this case, while individual systems of course behave quantumly, the lack of correlation between
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the systems means that classical tools such as Chernoff bounds can be used. For example, in channel
coding with product-state inputs, not only does the single-letter Holevo formula give the capacity,
so that there is no additivity problem, but so-called strong converse theorems are known proving
that attempting to communicate at a rate above the capacity results in an exponentially decreasing
probability of successfully transmitting a message [22, 26]. Naturally, many of the difficulties in
dealing with entangled proofs and quantum parallel repetition would also go away if quantum states
were constrained to be in product form.

In this paper, we present a quantum test to determine whether an n-partite state |ψ〉 is a
product state or far from any product state. We make no assumptions about the local dimensions
of |ψ〉; in fact, the local dimension can even be different for different systems. The test passes with
certainty if |ψ〉 is product, and fails with probability Θ(ǫ) if the overlap between |ψ〉 and the closest
product state is 1 − ǫ. An essential feature of our test (or any possible such test, as we will argue
in Section 3.3) is that it requires two copies of |ψ〉.

The parameters of our test resemble classical property testing algorithms [11]. In general, these
algorithms make a small number of queries to some object and accept with high probability if the
object has some property P (completeness), and with low probability if the object is “far” from
having property P (soundness). Crucially, the number of queries used and the success probability
should not depend on the size of the object. The main result of this paper is a test for a property
of a quantum state, in contrast to previous work on quantum generalisations of property testing,
which has considered quantum algorithms for testing properties of classical (e.g. [9, 4]) and quantum
[20] oracles (a.k.a. unitary operators, although see Section 3.2 for an application to this setting).
In this sense, our work is closer to a body of research on determining properties of quantum states
directly, without performing full tomography (e.g. the “pretty good tomography” of Aaronson [1]).
The direct detection of quantities relating to entanglement has received particular attention; see
[14] for an extensive review. However, previous work has generally focused on Bell inequalities and
entanglement witnesses, which are typically designed to distinguish a particular entangled state
from any separable state. By contrast, our product test is generic and will detect entanglement in
any entangled state |ψ〉.

The product test is defined in Definition 1 below, and illustrated schematically in Figure 1.
It uses as a subroutine the swap test for comparing quantum states [8]. This test, which can be
implemented efficiently, takes two (possibly mixed) states ρ, σ of equal dimension as input, and
returns “same” with probability 1

2 + 1
2 tr ρ σ, otherwise returning “different”.

Definition 1 (Product test).

The product test proceeds as follows.

1. Prepare two copies of |ψ〉 ∈ C
d1 ⊗ · · · ⊗ C

dn ; call these |ψ1〉, |ψ2〉.

2. Perform the swap test on each of the n pairs of corresponding subsystems
of |ψ1〉, |ψ2〉.

3. If all of the tests returned “same”, accept. Otherwise, reject.

In fact, the product test has appeared before in the literature. It was originally introduced in
[19] as one of a family of tests for generalisations of the concurrence entanglement measure, and
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Figure 1: Schematic of the product test applied to an n qudit state |ψ〉. The swap test (vertical
boxes) is applied to the n pairs of corresponding subsystems of two copies of |ψ〉 (horizontal boxes).

has been implemented experimentally as a means of detecting bipartite entanglement directly [24].
Further, the test was proposed in [20] as a means of determining whether a unitary operator is
product. Our contribution here is to prove the correctness of this test for all n. Indeed, we have
the following result.

Theorem 1. Given |ψ〉 ∈ C
d1 ⊗ · · · ⊗ C

dn , let

1 − ǫ = max{|〈ψ|φ1, . . . , φn〉|2 : |φi〉 ∈ C
di , i ≤ 1 ≤ n}.

Let Ptest(|ψ〉〈ψ|) be the probability that the product test passes when applied to |ψ〉. Then

1 − 2ǫ+ ǫ2 ≤ Ptest(|ψ〉〈ψ|) ≤ 1 − ǫ+ ǫ2 + ǫ3/2.

Furthermore, if ǫ ≥ 11/32 > 0.343, Ptest(|ψ〉〈ψ|) ≤ 501/512 < 0.979.

More concisely, Ptest(|ψ〉〈ψ|) = 1 − Θ(ǫ).

The proof is based on relating the probability of the test passing to the action of the qudit
depolarising channel. In fact, we prove a considerably more general result regarding this channel.
It is known [3] that the maximum output purity of this channel is achieved for product state inputs;
our result, informally, says that any state that is “close” to achieving maximum output purity must
in fact be “close” to a product state. This is a stability result for this channel.

Somewhat more formally, let Dδ be the d-dimensional qudit depolarising channel with noise rate
1 − δ, i.e.

Dδ(ρ) = (1 − δ)(tr ρ)
I

d
+ δ ρ (1)

for ρ a arbitrary mixed state of one d-dimensional system, and define the product state output
purity to be

Pprod(δ) = tr(D⊗n
δ |φ〉〈φ|)2,

where |φ〉 is an arbitrary product state. Then our main result, stated formally as Theorem 3 in
Section 2 below, is that for constant 0 < δ < 1, if

tr(D⊗n
δ |ψ〉〈ψ|)2 ≥ (1 − ǫ)Pprod(δ),

then there is a product state |φ1, . . . , φn〉 such that |〈ψ|φ1, . . . , φn〉|2 ≥ 1 −O(ǫ).

We give two applications of the product test. First, the test can be used to determine whether
a unitary operator is a tensor product. This can be seen [20] as one possible generalisation of the
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well-studied problem of testing whether a boolean function {0, 1}n → {0, 1} is linear [7]. This
application is described in Section 3.2.

Second, the product test can be used to relate QMA(k) to QMA(2), as we will discuss in
Section 4. The complexity class QMA(k) is defined to be the class of languages that can be
decided with bounded error by a poly-time quantum verifier that receives poly-size witnesses from
k unentangled provers [18, 2]. To put QMA(k) inside QMA(2) with constant loss of soundness,
we can have two provers simulate k provers by each submitting k unentangled proofs, whose lack
of entanglement can be verified with our product test. Indeed, this gives an alternate way to
understand our test as a way of using bipartite separability to certify k-partite separability. As a
result, we can improve upon the results of [1, 6] to obtain a protocol in QMA(2) that verifies 3-SAT
with constant soundness gap and O(

√
n poly log(n)) qubits (where n is the number of clauses).

These different applications of the product test reflect the many different interpretations of
Ptest(|ψ〉〈ψ|). It is related to

• The purity of |ψ〉 after it is subjected to independent depolarising noise (in Section 2).

• The maximum overlap of |ψ〉 with any product state (proved in Section 3). The logarithm
of this maximum overlap is known as the geometric measure of entanglement (see [25] and
references therein).

• The overlap of |ψ〉⊗2 with the tensor product of the symmetric subspaces of Cd1⊗C
d1 . . .Cdn⊗

C
dn (discussed in Section 3.3).

• The average overlap of |ψ〉 with a random product state (discussed in Section 5).

• The average purity of |ψ〉 across a random partition of [n] into two subsets (also discussed in
Section 5).

In the remainder of the paper, we deal with proving all these results, starting with the connection
to the depolarising channel.

2 The depolarising channel

Let Dδ be the qudit depolarising channel as defined in (1). We will be interested in applying the
n-fold product D⊗n

δ to states of n qudits, and in particular in the purity of the resulting states.
This has the following characterisation.

Lemma 2. We have

tr(D⊗n
δ ρ)2 =

(

1 − δ2

d

)n
∑

S⊆[n]

(

dδ2

1 − δ2

)|S|
tr(ρ2S),

and in particular

tr(D⊗n
1/

√
d+1

ρ)2 =
1

(d+ 1)n

∑

S⊆[n]

tr(ρ2S),

and for pure product states,

Pprod(δ) := tr(D⊗n
δ (|ψ1〉〈ψ1| ⊗ · · · ⊗ |ψn〉〈ψn|))2 =

(

d− 1

d
δ2 +

1

d

)n

.
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Proof. Consider some Hermitian operator basis for B(Cd) which contains the identity and is or-
thonormal with respect to the normalised Hilbert-Schmidt inner product 〈A,B〉 = 1

d trA†B, and
extend this basis to B((Cd)⊗n) by tensoring. Expand ρ in terms of the resulting basis as

ρ =
∑

t∈{0,...,d2−1}n

ρ̂tχt.

where ρ̂t ∈ R, χt represents an element of the tensor product basis corresponding to the string
t ∈ {0, . . . , d2 − 1}n, and the identity is indexed by 0 at each position. Then we have

tr(ρ2S) = d2n−|S|





∑

t, ti=0, ∀i∈S̄

ρ̂2
t



 ,

and hence, for any δ,

∑

S⊆[n]

δ|S| tr(ρ2S) = d2n
∑

S⊆[n]

(δ/d)|S|





∑

t, ti=0, ∀i∈S̄

ρ̂2
t



 = d2n
∑

t

ρ̂2
t









∑

S⊆[n],
ti=0, ∀i∈S̄

(δ/d)|S|









= d2n
∑

t

ρ̂2
t





n−|t|
∑

x=0

(

n− |t|
x

)

(δ/d)x+|t|





= d2n
∑

t

ρ̂2
t

(δ/d)|t|(1 + δ/d)n−|t|

= (d(d+ δ))n
∑

t

ρ̂2
t

(δ/(δ + d))|t|

= (d+ δ)n tr(D⊗n√
δ/(δ+d)

ρ)2.

Rearranging completes the proof; the two special cases in the statement of the lemma can be verified
directly.

Using the above lemma, it is easy to see that maximal output purity is obtained only for product
states. We will now prove our main result, which is a “stability” theorem for the depolarising
channel: if a state achieves close to maximal output purity, it must be close to a product state.

Theorem 3. Given |ψ〉 ∈ (Cd)⊗n, let

1 − ǫ = max{|〈ψ|φ1, . . . , φn〉|2 : |φ1〉, . . . , |φn〉 ∈ C
d}. (2)

Then

tr(D⊗n
δ |ψ〉〈ψ|)2 ≤ Pprod(δ)

(

1 − 4ǫ(1 − ǫ)
dδ2(1 − δ2)

(1 + (d− 1)δ2)2
+ 4ǫ3/2

(

(1 − δ2)2 + d2δ4

(1 + (d− 1)δ2)2

)2
)

.

In particular,

tr(D⊗n
1/

√
d+1

|ψ〉〈ψ|)2 ≤ Pprod(1/
√
d+ 1)

(

1 − ǫ+ ǫ2 + ǫ3/2
)

.
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Proof. Without loss of generality assume that one of the states achieving the maximum in Eq. (2)
is |0〉⊗n, which we will abbreviate simply as |0n〉, or |0〉 when there is no ambiguity. We thus have

|ψ〉 =
√

1 − ǫ|0〉 +
√
ǫ|φ〉

for some state |φ〉 such that 〈0|φ〉 = 0, and |φ〉 =
∑

x 6=0 αx|x〉 for some {αx}. We write down
explicitly

ψ := |ψ〉〈ψ| = (1 − ǫ)|0〉〈0| +
√

ǫ(1 − ǫ)(|0〉〈φ| + |φ〉〈0|) + ǫ|φ〉〈φ|.
By Lemma 2,

tr(D⊗n
δ ψ)2 =

(

1 − δ2

d

)n
∑

S⊆[n]

γ|S| trψ2
S ,

where we set γ = dδ2/(1 − δ2) for brevity. Now
∑

S⊆[n]

γ|S| trψ2
S =

∑

S⊆[n]

γ|S|
(

tr((1 − ǫ)|0〉〈0|S +
√

ǫ(1 − ǫ)(|0〉〈φ|S + |φ〉〈0|S) + ǫ|φ〉〈φ|S)2
)

,

and for any subset S,

trψ2
S = (1 − ǫ)2 tr |0〉〈0|2S + ǫ(1 − ǫ) tr(|0〉〈φ| + |φ〉〈0|)2S + ǫ2 tr |φ〉〈φ|2S

+ 2
√
ǫ(1 − ǫ)3/2 tr |0〉〈0|S(|0〉〈φ| + |φ〉〈0|)S + 2ǫ(1 − ǫ) tr |0〉〈0|S |φ〉〈φ|S

+ 2ǫ3/2
√

1 − ǫ tr |φ〉〈φ|S(|0〉〈φ| + |φ〉〈0|)S .
We now bound the sum over S (weighted by γ|S|) of each of these terms, in order. Note that we
repeatedly use the notation [E] for a term which evaluates to 1 if the expression E is true, and 0 if
E is false.

1. As |0〉 is product, clearly
∑

S⊆[n]

γ|S| tr |0〉〈0|2S =
∑

S⊆[n]

γ|S| = (1 + γ)n.

2. We have
tr(|0〉〈φ| + |φ〉〈0|)2S = tr |0〉〈φ|2S + tr |φ〉〈0|2S + 2 tr |0〉〈φ|S |φ〉〈0|S .

It is easy to see that the first two terms must be 0 for all S (as only the off-diagonal entries
of the first row of the matrix |0〉〈φ| can be non-zero). For the third, we explicitly calculate

|0〉〈φ|S |φ〉〈0|S =
∑

x 6=0

|αx|2[xi = 0, ∀i ∈ S̄]|0〉〈0|⊗k,

and hence
∑

S⊆[n]

γ|S| tr |0〉〈φ|S |φ〉〈0|S =
∑

x 6=0

|αx|2
∑

S⊆[n]

γ|S|[xi = 0, ∀i ∈ S̄]

=
∑

x 6=0

|αx|2
n
∑

k=|x|
γk
(

n− |x|
n− k

)

= (1 + γ)n
∑

x 6=0

|αx|2
(

γ

1 + γ

)|x|
.
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3. It clearly holds that tr |φ〉〈φ|2S ≤ 1, so as in part (1),

∑

S⊆[n]

γ|S| tr |φ〉〈φ|2S ≤ (1 + γ)n,

and this will be tight if and only if |φ〉 is product itself.

4. Using the same argument as in part (2), tr |0〉〈0|S |0〉〈φ|S = tr |0〉〈0|S |φ〉〈0|S = 0.

5. Write the state φ = |φ〉〈φ| as

φ =
∑

x,y

φx1,...,yn
|x1〉〈y1| ⊗ · · · ⊗ |xn〉〈yn|.

Then, for any S = {i1, . . . , ik},

φS =
∑

x,y

[xi = yi, ∀i ∈ S̄]φx1,...,yn
|xi1〉〈yi1 | ⊗ · · · ⊗ |xik〉〈yik |,

which implies

tr |0〉〈0|S |φ〉〈φ|S =
∑

x

[xi = 0, ∀i ∈ S]|αx|2,

and hence, similarly to part (2),

∑

S⊆[n]

γ|S| tr |0〉〈0|S |φ〉〈φ|S =

n−|x|
∑

k=0

γk
(

n− |x|
k

)

= (1 + γ)n
∑

x 6=0

|αx|2
(

1

1 + γ

)|x|
.

6. The last term can be trivially bounded using

| tr |φ〉〈φ|S(|0〉〈φ| + |φ〉〈0|)S | ≤ 2.

However, it is possible to get a better bound with a bit more work. We expand

∑

S⊆[n]

γ|S| tr |φ〉〈φ|S |0〉〈φ|S =

∑

S⊆[n]

γ|S|
∑

x,y,z

αxα
∗
yα

∗
z[zi = 0, i ∈ S̄][xi = yi, i ∈ S̄] tr |x1〉〈y1|0〉〈z1| ⊗ · · · ⊗ |xn〉〈yn|0〉〈zn|

=
∑

S⊆[n]

γ|S|
∑

x,y,z

αxα
∗
yα

∗
z[zi = 0, i ∈ S̄][xi = yi, i ∈ S̄][yi = 0, i ∈ S][xi = zi, i ∈ S]

=
∑

|y∧z|=0

αy∨zα
∗
yα

∗
z

∑

S⊆[n]

γ|S|[yi = 0, i ∈ S][zi = 0, i ∈ S̄]

=
∑

|y∧z|=0

αy∨zα
∗
yα

∗
zγ

|z|(1 + γ)n−|y|−|z|.
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This expression can be upper bounded as follows:

∑

|y∧z|=0

αy∨zα
∗
yα

∗
zγ

|z|(1 + γ)−(|y|+|z|) ≤
√

∑

|y∧z|=0

|αy|2|αz|2
√

√

√

√

∑

|y∧z|=0

γ2|z|

(1 + γ)2|y∨z| |αy∨z|2

≤





∑

x

(1 + γ)−2|x||αx|2




∑

|y∧z|=0

γ2|z|[y ∨ z = x]









1/2

=

(

∑

x

(

1 + γ2

(1 + γ)2

)|x|
|αx|2

)1/2

.

Combining these terms, we have

∑

S⊆[n]

γ|S| trψ2
S ≤ (1 + γ)n((1 − ǫ)2 + 2ǫ(1 − ǫ)

∑

x 6=0

|αx|2(1 + γ)−|x|(γ|x| + 1) + ǫ2+

4ǫ3/2
√

1 − ǫ

(

∑

x

(

1 + γ2

(1 + γ)2

)|x|
|αx|2

)1/2

).

Note that (1 + γ)−|x|(γ|x| + 1) decreases with |x| for all γ > 0, as does (1 + γ2)|x|(1 + γ)−2|x|. To
complete the proof, we will show that |φ〉 has no weight 1 components (i.e. αx = 0 for |x| < 2). In
the contribution from Eq. (3), this implies that only the |x| ≥ 4 terms contribute (since x = y ∨ z
and y ∧ z = ∅). Therefore, |φ〉 having no weight 1 components would imply that

∑

S⊆[n]

γ|S| trψ2
S ≤ (1 + γ)n

(

1 − 4ǫ

(1 + γ)2

(

γ(1 − ǫ) −
(

(1 + γ2)2

(1 + γ)2

)

ǫ1/2
))

,

which would imply the theorem. Now, for any θ, ϕ, we have 1 − ǫ ≥ |(cos θ〈0| + eiϕ sin θ〈1|) ⊗
〈0|⊗n−1|ψ〉|2. Picking θ such that

cos θ =
|〈0|ψ〉|

√

|〈0|ψ〉|2 + |〈10n−1|ψ〉|2
,

and ϕ such that eiϕ〈10n−1|ψ〉 > 0, it is easy to see that

1 − ǫ ≥ | cos θ〈0|ψ〉 + eiϕ sin θ〈10n−1|ψ〉|2 = |〈0|ψ〉|2 + |〈10n−1|ψ〉|2.
However, we have assumed that 1− ǫ = |〈0|ψ〉|2, so this implies that 〈10n−1|ψ〉 = 0. Repeating the
argument for the other n − 1 subsystems shows that |ψ〉 is indeed orthogonal to every state with
Hamming weight at most 1, so |φ〉 has no weight 1 components.

3 Correctness and applications of the product test

3.1 Proof of Theorem 1

In this section, we prove correctness of the product test (Theorem 1). Let the test be defined as in
Definition 1. The following lemma from [20] allows the probability of passing to be understood; we
include a proof for completeness.
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Lemma 4. Let Ptest(ρ, σ) denote the probability that the product test passes when applied to two
mixed states ρ, σ ∈ B(Cd1 ⊗ · · · ⊗ C

dn). Define Ptest(ρ) := Ptest(ρ, ρ). Then

Ptest(ρ, σ) =
1

2n

∑

S⊆[n]

tr ρSσS ,

and in particular

Ptest(ρ) =
1

2n

∑

S⊆[n]

tr ρ2S .

If d1 = d2 = · · · = dn = d, for some d, then

Ptest(ρ) =

(

d+ 1

2

)n

tr(D⊗n
1/

√
d+1

ρ)2.

Note that we can in fact assume that d1 = d2 = · · · = dn = d without loss of generality by
setting d = max(d1, . . . , dn), and embedding each of Cd1 , . . . ,Cdn into C

d in the natural way. This
padding operation neither affects the probability of the swap tests passing nor changes the distance
to the closest product state.

Proof. Let F denote the swap (or flip) operator that exchanges two quantum systems of equal but
arbitrary dimension, with FS denoting the operator that exchanges only the qudits in the set S.
Then we have

Ptest(ρ) = tr(ρ⊗ σ)

(

I + F
2

)⊗n

=
1

2n

∑

S⊆[n]

tr(ρ⊗ σ)FS =
1

2n

∑

S⊆[n]

tr ρSσS .

The second part then follows from Lemma 2.

We now analyse the probability of the product test passing for general n. We first note that,
in the special case where n = 2, it is possible to analyse the probability of passing quite tightly.
The proof of the following result, which is implicit in previous work of Wei and Goldbart [25], is
essentially immediate from Lemma 4.

Lemma 5. Let |ψ〉 ∈ C
d1 ⊗ C

d2 , where d1 ≤ d2, be a bipartite pure state with Schmidt coefficients√
λ1 ≥

√
λ2 ≥ · · · ≥

√

λd1
. Then

Ptest(|ψ〉〈ψ|) =
1

2

(

1 +
∑

i

λ2i

)

,

while
1 − ǫ := max

|φ1〉,|φ2〉
|〈ψ|φ1〉|φ2〉|2 = λ1.

In particular,

1 − ǫ+
d1

2(d1 − 1)
ǫ2 ≤ Ptest(|ψ〉〈ψ|) ≤ 1 − ǫ+ ǫ2.
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We are finally ready to prove Theorem 1. The proof is split into two parts, which we formalise
as separate theorems. The first part holds when ǫ is small, and depends on the results of Section 2.
The second part holds when ǫ is large, and is proved using the first part.

Theorem 6. Given |ψ〉 ∈ C
d1 ⊗ · · · ⊗ C

dn , let

1 − ǫ = max{|〈ψ|φ1, . . . , φn〉|2 : |φi〉 ∈ C
di , i ≤ 1 ≤ n}.

Then
1 − 2ǫ+ ǫ2 ≤ Ptest(|ψ〉〈ψ|) ≤ 1 − ǫ+ ǫ2 + ǫ3/2.

Proof. The lower bound holds by general arguments. It is immediate that, if applied to |φ1, . . . , φn〉,
the product test succeeds with probability 1. As the test acts on two copies of |ψ〉, which has overlap
1 − ǫ with |φ1, . . . , φn〉, it must succeed when applied to |ψ〉 with probability at least (1 − ǫ)2. The
upper bound follows from Lemma 4 and Theorem 3. The statement of Theorem 3 only explicitly
covers the case where the dimensions of all the subsystems are the same; however, as noted above,
we can assume this without loss of generality.

This result is close to optimal. At the low end, the state |ψ〉 =
√

1 − ǫ|0n〉 +
√
ǫ|1n〉 has

Ptest(|ψ〉〈ψ|) = 1− 2ǫ+ 2ǫ2 + o(1). At the high end, for |ψ〉 =
√

1 − ǫ|00〉+
√
ǫ|11〉, Ptest(|ψ〉〈ψ|) =

1 − ǫ+ ǫ2. We also note that this result does not extend to a test for separability of mixed states;
the maximally mixed state on n qudits is separable but it is easy to verify that Ptest(I/d

n) =
((d+ 1)/2d)n, which approaches zero for large n.

Theorem 6 only gives a non-trivial upper bound on the probability of passing when ǫ is small
(up to ǫ = 1

2 (3−
√

5) ≈ 0.38). We now show that the product test also works in the case where the
state under consideration is far from any product state. We will need two lemmas.

Lemma 7. Given |ψ〉 ∈ C
d1 ⊗· · ·⊗C

dn , let PP
test(|ψ〉〈ψ|) be the probability that the P -product test –

the test for being product across partition P – passes. Then, for all P , PP
test(|ψ〉〈ψ|) ≤ Ptest(|ψ〉〈ψ|).

Proof. The subspace corresponding to the usual product test passing is contained within the sub-
space corresponding to the P -product test passing.

Lemma 8. Let |ψ〉, |φ〉 be pure states such that |〈ψ|φ〉|2 = 1 − ǫ, and let P be a projector. Then
|〈ψ|P |ψ〉 − 〈φ|P |φ〉| ≤ √

ǫ.

Proof. We can directly calculate 1
2‖ |ψ〉〈ψ| − |φ〉〈φ| ‖1 =

√
ǫ. This then gives the claimed upper

bound on | trP (|ψ〉〈ψ| − |φ〉〈φ|)| (see [21, Chapter 9]).

Theorem 9. Given |ψ〉 ∈ C
d1 ⊗ · · · ⊗ C

dn , let

1 − ǫ = max{|〈ψ|φ1, . . . , φn〉|2 : |φi〉 ∈ C
di , 1 ≤ i ≤ n}.

Then, if ǫ ≥ 11/32 > 0.343, Ptest(|ψ〉〈ψ|) ≤ 501/512 < 0.979.

Proof. For simplicity, in the proof we will use a quadratic upper bound on Ptest(|ψ〉〈ψ|) that follows
by elementary methods from Theorem 1: Ptest(|ψ〉〈ψ|) ≤ 1− 3

4ǫ+ 2ǫ2. For a contradiction, assume
that Ptest(|ψ〉〈ψ|) > p := 501/512, while ǫ ≥ 11/32.
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For any partition P of [n] into 1 ≤ k ≤ n parts, let |φP 〉 be the product state (with respect to
P ) that maximises |〈ψ|φ〉|2 over all product states |φ〉 (with respect to P ). If

1 − h ≤ |〈ψ|φP 〉|2 ≤ 1 − ℓ,

where for readability we define ℓ := 1/32 and h := 11/32, then by the quadratic bound given
above the P -product test passes with probability PP

test(|ψ〉〈ψ|) ≤ p, implying by Lemma 7 that
Ptest(|ψ〉〈ψ|) ≤ p. Therefore, as we are assuming that |ψ〉 is a counterexample to the present
theorem, there exists a k such that |〈ψ|φ〉|2 > 1 − ℓ for some |φ〉 that is product across k parties,
and yet |〈ψ|φ〉|2 < 1 − h for all |φ〉 that are product across k + 1 parties.

So, for this k, let |φ1〉 · · · |φk〉 be the state that maximises |〈ψ|φ1, . . . , φk〉|2. Thus there is some
ǫ′ < ℓ such that we can write |ψ〉 as

|ψ〉 =
√

1 − ǫ′|φ1〉 · · · |φk〉 +
√
ǫ′|ξ〉,

and by the arguments at the end of Theorem 3, the ith marginal of |ξ〉 has support orthogonal to
|φi〉. Assume without loss of generality that |φ1〉 is a state of two or more qudits. Now we know
that

max
|φ′

1,1〉,|φ′

1,2〉
|〈φ1|φ′1,1〉|φ′1,2〉|2(1 − ǫ′) < 1 − h, (3)

or |φ′1,1〉|φ′1,2〉|φ2〉 · · · |φk〉 would be a (k + 1)-partite state with overlap at least 1 − h with |ψ〉.
(Here we have used the fact that |ξ〉 is orthogonal to |φ′1,1〉|φ′1,2〉|φ2〉 · · · |φk〉 for any choice of |φ′1,1〉,
|φ′1,2〉.) Let 1 − δ = max|φ′

1,1〉,|φ′

1,2〉 |〈φ1|φ′1,1〉|φ′1,2〉|2. Then Eq. (3) implies that

1 − δ <
1 − h

1 − ǫ′
<

1 − h

1 − ℓ
=

21

31
.

Using Lemma 5, we find that Ptest(|ψ1〉〈ψ1|) ≤ 1 − δ + δ2 < 751/961. Next we use Lemma 8 to
obtain

Ptest(|ψ〉〈ψ|) ≤ Ptest(|φ1〉〈φ1| ⊗ · · · ⊗ |φk〉〈φk|) +
√
ǫ′

< Ptest(|φ1〉〈φ1|) +
√
ℓ

<
751

961
+

√

1

32
< 0.96.

But we previously assumed that Ptest(|ψ〉〈ψ|) > p > 0.978. We have reached a contradiction, so
the proof is complete.

Combining Theorems 6 and 9, we obtain Theorem 1 and thus have proven correctness of the
product test. The constants in Theorem 9 have not been optimised as far as possible and could
probably be significantly improved.

3.2 Testing for product unitaries

As well as being useful for testing quantum states, the product test has applications to testing
properties of unitary operators. The results we obtain will be in terms of the normalised Hilbert-
Schmidt inner product, which is defined as

〈M,N〉 :=
1

d
trM†N

11



for M,N ∈M(d), where M(d) denotes the set of d×d matrices. Note that, with this normalisation,
|〈U, V 〉| ≤ 1 for unitary operators U , V . The following correspondence, which we formalise as a
lemma, underlies our ability to apply the product test to unitaries.

Lemma 10. Let |Φ〉 be a maximally entangled state of two d-dimensional qudits, written as
1√
d

∑d
i=1 |i, i〉 in terms of some basis B = (|1〉, . . . , |d〉). For any matrix M ∈ M(dn), define

|v(M)〉 := (M ⊗ I)|Φ〉⊗n. Then 〈j|〈k|v(M)〉 = 〈j|M |k〉√
dn

. In particular, for any matrices M,N ∈
M(dn), 〈M,N〉 = 〈v(M)|v(N)〉 = trM†N/dn.

Proof. This is just the well-known Choi-Jamio lkowski isomorphism. Written out explicitly, we have

〈j|〈k|(M ⊗ I)|Φ〉⊗n = 〈j|〈k|(M ⊗ I)

(

1√
d

d
∑

i=1

|i, i〉AB

)⊗n

=
1√
dn

d
∑

i1,...,in=1

〈j|M |i1, . . . , in〉〈k|i1, . . . , in〉 =
〈j|M |k〉√

dn
.

The second claim in the lemma follows immediately from the first.

We consider the problem of testing whether a unitary operator is a tensor product. That is,
we are given access to a unitary U on the space of n qudits (for simplicity, restricting to the
case where each of the qudits has the same dimension d), and we would like to decide whether
U = U1 ⊗ · · · ⊗ Un. This is one possible generalisation of the classical problem of testing linearity
of functions f : {0, 1}n → {0, 1} [7]; the classical special case is obtained by restricting U to be
diagonal in the computational basis and to have diagonal entries all equal to ±1.

In Definition 2 we give a test that solves this problem using the product test. The test always
accepts product unitaries, and rejects unitaries that are far from product, as measured by the
normalised Hilbert-Schmidt inner product.

Definition 2 (Product unitary test).

The product unitary test proceeds as follows.

1. Prepare two copies of the state |Φ〉⊗n, then in both cases apply U to the n
first halves of each pair of qudits to create two copies of the state |v(U)〉 ∈
(Cd2

)⊗n.

2. Return the result of applying the product test to the two copies of |v(U)〉,
with respect to the partition into n d2-dimensional subsystems.

In order to analyse this test, we will need the following lemma.

Lemma 11. Given U ∈ U(dn), let

1 − ǫ = max{|〈U,A1 ⊗ · · · ⊗An〉|2 : Ai ∈M(d), 〈Ai, Ai〉 = 1, 1 ≤ i ≤ n}.

Then, if ǫ ≤ 1/2, there exist V1, . . . , Vn ∈ U(d) such that |〈U, V1 ⊗ · · · ⊗ Vn〉|2 ≥ (1 − 2ǫ)2.

12



Proof. For all 1 ≤ i ≤ n, let the polar decomposition of Ai be |Ai|Ci, where |Ai| =
√

AiA
†
i and

Ci ∈ U(d). Set A =
⊗n

i=1Ai, C =
⊗n

i=1 Ci. Then

〈C,A〉 =
1

dn

n
∏

i=1

trC†
i |Ai|Ci =

1

dn

n
∏

i=1

tr |Ai| =
1

dn
max

V ∈U(dn)
| trV A| ≥

√
1 − ǫ.

This implies that we can expand

U =
√

1 − ǫA+D, C =
√

1 − ǫ′A+ E

for some ǫ′ ≤ ǫ and matrices D,E such that 〈D,D〉 = ǫ, 〈E,E〉 = ǫ′, 〈A,D〉 = 0, 〈A,E〉 = 0. So

|〈U,C〉| = |
√

1 − ǫ
√

1 − ǫ′ + 〈D,E〉| ≥ |
√

1 − ǫ
√

1 − ǫ′ −√
ǫ
√
ǫ′| ≥ 1 − 2ǫ,

for ǫ ≤ 1/2. This implies the lemma.

We are now ready to prove correctness of the product unitary test. Let the probability that
this test passes when applied to some unitary U be Ptest(U). Then we have the following theorem,
which proves a conjecture from [20].

Theorem 12. Given U ∈ U(dn), let

1 − ǫ = max{|〈U, V1 ⊗ · · · ⊗ Vn〉|2 : V1, . . . , Vn ∈ U(d)}.

Then, if ǫ = 0, Ptest(U) = 1. If ǫ . 0.106, then Ptest(U) ≤ 1− 1
4ǫ+ 1

16ǫ
2 + 1

8ǫ
3/2. If 0.106 . ǫ ≤ 1,

Ptest(U) ≤ 501/512.

Proof. By Lemma 10, there is a direct correspondence between operatorsM ∈M(d) with |〈M,M〉| =
1 and quantum states |v(M)〉. If we define

1 − ǫ′ := max{|〈U,A1 ⊗ · · · ⊗An〉|2 : Ai ∈M(d), 〈Ai, Ai〉 = 1, 1 ≤ i ≤ n},

then by Theorem 1, if ǫ′ . 0.0265, Ptest(U) ≤ 1 − ǫ′ + ǫ′2 + ǫ′3/2, and if ǫ′ & 0.0265, Ptest(U) ≤
501/512. If ǫ′ ≥ 1/2, then the result follows immediately. On the other hand, by Lemma 11,

if ǫ′ ≤ 1/2, there exist V1, . . . , Vn ∈ U(d) such that |〈U, V1 ⊗ · · · ⊗ Vn〉|2 ≥ (1 − 2ǫ′)2 ≥ 1 − 4ǫ′.
Thus we have 1

4ǫ ≤ ǫ′ ≤ ǫ. The theorem follows by combining the bound on ǫ and the bound on
Ptest(U).

Our test is sensitive to the Hilbert-Schmidt distance of a unitary from the set of product uni-
taries. One might hope to design a similar test that instead uses a notion of distance based on the
operator norm. However, this is not possible. For example, if we could detect a constant difference
in the operator norm between an arbitrary unitary U and the set of product unitaries then we could
find a single marked item in a set of size dn. By the optimality of Grover’s algorithm, this requires
Ω(dn/2) queries to U . More generally, any test that uses a constant number of queries to U can
only detect an Ω(1) difference in an Ω(1) fraction of the dn dimensions that U acts upon.
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3.3 Optimality of the product test

Our test has perfect completeness in the sense that if |ψ〉 is exactly a product state then it will
always pass the product test. It is hard to precisely define soundness, since no state is orthogonal
to all product states: however, we can say that our test has constant soundness in that if |ψ〉 has
overlap at most 1 − ǫ with any product state then it will pass the product test with probability at
most 1 − Θ(ǫ).

In fact, if we consider only product-state tests with perfect completeness, then we can show that
our test has optimal soundness: that is, it rejects as often as possible given the constraint of always
accepting product states. More generally, suppose that a product-state test T is given |ψ〉⊗k as
input. Since the outcome of the test is binary, we can say that T is an operator on the nk-qudit
Hilbert space with 0 ≤ T ≤ I and that the test accepts with probability trTψ⊗k.

Let S be the set of product states in C
d1 ⊗ · · · ⊗ C

dn , and define Sk to be the span of {|φ〉⊗k :
|φ〉 ∈ S}. For a single system C

d, the span of {|φ〉⊗k : |φ〉 ∈ C
d} is denoted Symk

C
d. This is the

symmetric subspace of (Cd)⊗k, meaning that it can be equivalently defined to be the set of vectors
in (Cd)⊗k that is invariant under permutation by the symmetric group Sk. This fact allows the
projector onto Symk

C
d, which we denote Πsym

d,k , to be implemented efficiently [5]. Also, it implies

that Sk = Symk
C

d1 ⊗· · ·⊗Symk
C

dn and the projector onto Sk, denoted ΠSk , is Πsym
d1,k

⊗· · ·⊗Πsym
dn,k

.

Now we return to our discussion of product-state tests. If trTφ⊗k = 1 for all φ ∈ S, then
T ≥ ΠSk . Thus, T will always accept at least as often as ΠSk will on any input, or equivalently,
taking T = ΠSk yields the test which rejects as often as possible given the constraint of accepting
every state in Sk.

To understand ΠSk , note that the projector onto Symk
C

d is given by 1
k!

∑

π∈Sk
P (π), where

P (π) =
∑

i1,...,ik∈[d]

|i1, . . . , ik〉〈iπ(1), . . . , iπ(k)|.

For k = 1, Sym1
C

d simply equals C
d, and ΠS1 is the identity operator on (Cd)⊗n. Thus, no

non-trivial product-state test is possible when given one copy of |ψ〉.
When k = 2, Sym2

C
d is the +1 eigenspace of (I + F)/2, which is the space that passes the

swap test. Thus, the product test (in Definition 1) performs the projection onto S2 and therefore
rejects non-product states as often as possible for a test on |ψ〉⊗2 that always accepts when |ψ〉 is a
product state. These arguments also imply that given |ψ〉⊗k, projecting onto Sk yields an optimal
k-copy product-state test of |ψ〉. The strength of these tests is strictly increasing with k, but we
leave the problem of analysing them carefully to future work.

Finally, this interpretation of the product test allows us to consider generalisations to testing
membership in other sets S. However, we will not explore these possibilities further in this paper.

4 QMA(2) vs. QMA(k)

In this section, we apply the product test to a problem in quantum complexity theory: whether
k unentangled provers are better than 2 unentangled provers. This question can be formalised as
whether the complexity classes QMA(k) and QMA(2) are equal [18, 2]. These classes are defined
as follows.
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Definition 3. A language L is in QMA(k)s,c if there exists a polynomial-time quantum algorithm
A such that, for all inputs x ∈ {0, 1}n:

1. Completeness: If x ∈ L, there exist k witnesses |ψ1〉, . . . , |ψk〉, each a state of poly(n)
qubits, such that A outputs “accept” with probability at least c on input |x〉|ψ1〉 . . . |ψk〉.

2. Soundness: If x /∈ L, then A outputs “accept” with probability at most s on input |x〉|ψ1〉 . . . |ψk〉,
for all states |ψ1〉, . . . , |ψk〉.

We use QMA(k) as shorthand for QMA(k)1/3,2/3, and QMA as shorthand for QMA(1). We
always assume 1 ≤ k ≤ poly(n).

It has been conjectured [18, 2] that in fact QMA(k)=QMA(2). We do not quite succeed in
proving this conjecture, but we do show that, using the product test, any QMA(k) protocol can be
simulated by a QMA(2) protocol, as long as one is willing to accept some loss of soundness.

Theorem 13. For any 0 < s < 1, there exists an s′ < 1 such that QMA(k)s,c ⊆ QMA(2)s′,c.

When s < 1
2 (3 −

√
5) ≈ 0.382, s′ can be taken to be s+

√

(3 −
√

5)/2 ≈ s+ 0.618.

To prove this theorem, we need to simulate a QMA(k) protocol achieving soundness s and
completeness c using two unentangled proofs. Suppose the proofs in the original protocol are
|ψ1〉, . . . , |ψk〉, each of which has dimension d, and Arthur’s original verification algorithm is A.
Then the QMA(2) protocol acts as specified in Definition 4.

Definition 4 (QMA(k) to QMA(2)).

The QMA(2) protocol proceeds as follows.

1. Each of the two Merlins sends |ψ〉 := |ψ1〉 ⊗ . . .⊗ |ψk〉 to Arthur.

2. Arthur runs the product test with the two states as input.

3. If the test fails, Arthur rejects. Otherwise, Arthur runs the algorithm A
on one of the two states, picked uniformly at random, and outputs the
result.

It is obvious that this protocol achieves completeness c: if the Merlins follow the protocol, the
product test passes with certainty, and hence Arthur accepts with the same probability that A
accepts, which is at least c. Showing soundness is somewhat more complicated.

We first show that we can assume that the two states Arthur receives are identical. Imagine
that this does not hold, and Arthur receives different states |φ〉, |ϕ〉. Then the probability that the
product test accepts is

1

dn

∑

S⊆[n]

trφSϕS ≤ 1

dn

∑

S⊆[n]

√

trφ2S

√

trϕ2
S

≤ 1

2 dn

∑

S⊆[n]

trφ2S + trϕ2
S

=
1

2
(Ptest(φ) + Ptest(ϕ)) ,
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where the first inequality is Cauchy-Schwarz and the second is the AM-GM inequality. As we run A
on a random choice of the two states in the second stage, the probability that the whole algorithm
accepts is also upper bounded by the average probability of it accepting when run on |φ〉 and |ϕ〉.
So, to achieve maximal probability of accepting, the two states might as well be identical.

To prove the remainder of the theorem, we will need the following “gentle measurement” lemma.

Lemma 14 (Gentle measurement lemma [26, 23]). Let ρ be a density operator, and let 0 ≤ X ≤ I
be a projector such that tr ρX ≥ 1 − δ. Then ‖ρ−XρX‖1 ≤ 2

√
δ.

Assume the product test accepts with probability 1− δ. By Lemma 14, the probability that A,
and hence Arthur, accepts is at most s+

√
δ. Further assume that the maximal overlap of |ψ〉 with

a product state is 1 − ǫ. Then, by Lemma 8, the probability that A accepts is also upper bounded
by s+

√
ǫ. For any choice of 0 ≤ ǫ ≤ 1, the overall soundness is therefore upper bounded by

s′(ǫ) := min{s+
√
δ, s+

√
ǫ, 1 − δ}

≤
{

min{s+ 1 − ǫ, s+
√
ǫ, 1 − ǫ+ ǫ2 + ǫ3/2} if ǫ ≤ 11/32

min{s+ 1 − ǫ, s+
√
ǫ, 501/512} if ǫ > 11/32,

where the inequality follows from Theorem 1. We now want to maximise this expression over ǫ.
First note that, whatever the value of ǫ, we have the upper bound s′(ǫ) ≤ min{s + 1 − ǫ, s +

√
ǫ},

which is easily seen to be at most s +
√

(3 −
√

5)/2 for all 0 ≤ ǫ ≤ 1. Second, note that for any

0 ≤ ǫ ≤ 1, and any s < 1, the upper bound on s′(ǫ) is always a constant strictly less than 1. This
completes the proof.

As a corollary, the k = O(
√
n poly log(n)) protocol for 3-SAT (where n is the number of clauses)

from Ref. [1] can be simulated by two provers. The result is a QMA(2) protocol for 3-SAT with
perfect completeness and constant soundness that uses O(

√
n poly log(n)) qubits.

5 Interpretation as an average over product states

We have seen (via Lemma 4) that the probability of the product test passing when applied to
some state |ψ〉 ∈ (Cd)⊗n is equal to the average purity, across all choices of subsystem S ⊆ [n], of
tr |ψ〉〈ψ|S . One interpretation of the proof of correctness of the product test is therefore that, if the
average entanglement of |ψ〉 across all bipartite partitions of [n] is low, as measured by the purity,
then |ψ〉 must in fact be close to a product state across all subsystems.

In this section, we discuss a similar interpretation of our results in terms of an average over
product states, via the following proposition.

Proposition 15. Given |ψ〉 ∈ (Cd)⊗n,

Ptest(|ψ〉〈ψ|) =

(

d(d+ 1)

2

)n

E|φ1〉,...,|φn〉
[

|〈ψ|φ1 . . . φn〉|4
]

.

Proof. Similarly to before, let the input to the product state be two copies ψA, ψB of a state
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ψ := |ψ〉〈ψ|, and let F denote the swap operator that exchanges systems A and B. Then

E|φ1〉,...,|φn〉
[

|〈ψ|φ1, . . . , φn〉|4
]

= E|φ1〉,...,|φn〉 [tr(ψA ⊗ ψB)((φ1 ⊗ · · · ⊗ φn)A ⊗ (φ1 ⊗ · · · ⊗ φn)B)]

= tr(ψA ⊗ ψB)
(

E|φ〉 [φA ⊗ φB ]
)⊗n

= tr(ψA ⊗ ψB)

(

I + F
d(d+ 1)

)⊗n

=

(

2

d(d+ 1)

)n

Ptest(|ψ〉〈ψ|).

We note that, in this interpretation, our main result is reminiscent of the so-called inverse
theorem for the second Gowers uniformity norm [12, 13], which we briefly outline. Let f : {0, 1}n →
R be some function such that 1

2n

∑

x f(x)2 = 1, and let the p-norms of f on the Fourier side be
defined as

‖f̂‖p =





∑

x∈{0,1}n

∣

∣

∣

∣

∣

∣

1

2n

∑

y∈{0,1}n

(−1)x·yf(y)

∣

∣

∣

∣

∣

∣

p



1/p

.

Then it is straightforward to show that

‖f̂‖4∞ ≤ ‖f̂‖44 ≤ ‖f̂‖2∞,

where the quantity in the middle is known as the (fourth power of) the second Gowers uniformity

norm of f . That is, ‖f̂‖2∞ (representing the largest overlap of f with a parity function) is well

approximated by ‖f̂‖44 (the average of the squared overlaps with parity functions). This simple
approximation has proven useful in arithmetic combinatorics [12].

Via the correspondence of Proposition 15, Theorem 1 shows that a similar result holds if we
replace the cube {0, 1}n with the space (Cd)⊗n: the largest overlap with a product state can be
well approximated by the average squared overlap with product states. Note that if one attempts
to use the classical proof technique for the Gowers uniformity norm to prove this result, one does
not obtain Theorem 1, but a considerably weaker result containing a term exponentially large in n.
Intuitively, this is because the set of overlaps with parity functions for some function f : {0, 1}n → R

is essentially arbitrary, whereas the set of overlaps of some state |ψ〉 with product states is highly
constrained.

6 Conclusion

Our main result can be seen as a “stability” theorem for the output purity of the depolarising
channel. It is an interesting problem to determine whether a similar result holds for all output
Rényi entropies for the depolarising channel, or even for all channels where additivity holds. As a
more modest open question, can Theorem 3 be tightened further, perhaps by improving the constant
in the ǫ3/2 term? It would also be interesting to improve the constants in Theorem 1 in the regime
of large ǫ, as at present they are extremely pessimistic. The regime of large ǫ is generally somewhat
mysterious: for example, we do not know the minimum value of Ptest, or the largest distance from
any product state that can be achieved by a state of n qudits. Finally, we hope that a suitably
strengthened version of our result can be used to prove the amplification conjecture for QMA(2),
which states that QMA(2) protocols can be amplified to have exponentially small error probability.
This would require a tight analysis of the case when ǫ is very close to 1.
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