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Abstract

We extend the matrix decomposition method(MDM) in classifying the 2×N×N

truly entangled states to 2×M ×N system under the condition of stochastic local
operations and classical communication(SLOCC). It is found that the MDM is quite
practical and convenient in operation for the asymmetrical tripartite states, and an
explicit example of the classification of 2× 6× 7 quantum system is presented.

1 Introduction

Entanglement is an essential feature of quantum theory, describing a quantum cor-

relation that exhibits nonlocal properties. In the seminal work [1], Einstein, Podolsky,

and Rosen (EPR) demonstrated through a Gedanken experiment that the quantum me-

chanics (QM) can not provide a complete description of the “physical reality” for two

spatially separated but quantum mechanically correlated particles state which is now

known as entangled state. The subsequent Bell theorem manifest the nonlocal character

of the quantum correlation in the violation of Bell’s inequalities [2]. As the quantum

information science develops, the impact of entanglement goes far beyond the testing of

the conceptual foundations of QM. Entanglement is now of central importance in the

∗corresponding author

1

http://arxiv.org/abs/1001.0078v1


quantum information theory (QIT) and is thought as the key physical resource to real-

ize quantum information tasks, such as quantum cryptography [3, 4], superdense coding

[5, 6], and quantum computation [7], etc. This necessitates the qualitative and quanti-

tative description of the entanglement [8]. However due to the lack of suitable tools for

characterizing the entanglement, very limited quantum state space was explored in the

quantum information theory.

In quantum information processing (QIP), two states are suited to implement the

same task if they can be mutually converted by Stochastic Local Operations and Classi-

cal Communication (SLOCC) [9], and therefore they are said to be in the same equivalent

class. For three qubits, known result is that there are two kinds of true tripartite en-

tanglement classes for pure state, namely, GHZ and W states [9]. As the dimensions of

each party increases nontrivial aspect shows up, i.e., non-local parameters may resides

in the entangled states of 2 × N × N system when N ≥ 4 [10, 11]. Many investigations

concerned the classifications of 2 ×M × N states has been done in [10, 12, 13]. In the

Refs.[10, 12], an iterated method was introduced to determine all the inequivalent classes

of the entangled states of 2 ×M × N system based on the “range criterion”, where the

entanglement classification of the low dimension system is a prerequisite for the high di-

mensions ones. Practical classifications of dimensions up to 2 × 4 × 4 and the related

systems of 2× (M + 4)× (2M + 4) were given in [10]. With the increasing of dimensions,

the complexity of the method grows dramatically because of the iterated nature of their

inequivalent proof of the entanglement classes. In a recent work [11] a novel method of

classifying the pure state of 2 ×N ×N systems was introduced in which all the inequiv-

alent true tripartite entanglement classes can be determined directly by using merely the

elementary operations on the cubic grid form of the state.

The present work deals with the more general case: quantum state of 2 × M × N

systems (pure state if not specified). We show that the method we introduced in [11]

can be generalized to the classification of true entangled states of 2 ×M × N systems.

And therefore all the inequivalent classes can be generated directly and no followed-up

inequivalence proof of these classes is needed. The content goes as follows, in section 2,

by representing the 2×M ×N state in the form of matrix pairs, the 2×M ×N states are
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Figure 1: The cubic form for 2× 3× 4 state.

divide into inequivalent sets under SLOCC. The detailed classification procedures with

these inequivalent sets are presented in section 3 and a concrete example of classification

of 2 × 6 × 7 system is given. Finally, in section 4 we give some concluding remarks.

2 Matrix pair representation of 2×M ×N state

Adopt the conventions of [11], an arbitrary state of 2 ×M ×N can be written as

|Ψ2×M×N〉 = Tr[Γ{i,j,k} ψ2 ⊗ ψT1 ⊗ ψT0 ] , (1)

where, ψ0 represents the first qubit, ψ1 and ψ2 has the dimension of M and N separately;

Γ{1,j,k} and Γ{2,j,k} are M × N complex matrices (we assume M ≤ N without loss of

generalities). Then the state can be written in the following compact form

|Ψ2×M×N〉 =


 Γ1

Γ2


 . (2)

Clearly, to every state of 2×M ×N , there is a form of Eq.(2) that corresponds to it, and

a pictorial description of the state is straightforward, see Fig.(1).

The reduced density matrix of state Ψ2×M×N is defined as ρα = Trβγ|Ψ〉〈Ψ|, where

α, β, γ can be ψ0, ψ1, ψ2. For three-partite systems, ture (genuine [9]) entanglement means

that the determinant of the reduced density matrix of each partite is nonzero. For the

2×M ×N systems, this is equivalent to r(ρψ0) = 2, r(ρψ1) = M, r(ρψ2) = N . The density
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matrix in the form of the matrix pairs can be expressed as

ρψ0,ψ1,ψ2 = (Γi)jk(Γi′)
∗
j′k′ , (3)

where i, i′ = 1, 2; j, j′ = 1, 2, · · · ,M ; k, k′ = 1, 2, · · · , N . Then the reduced density matrix

(take ψ2 as an example) is

ρψ2 = Trψ0,ψ1(ρψ0,ψ1,ψ2)

=
∑

ij

(Γi)
∗
jk′(Γi)jk

=
∑

i

Γ†
iΓi . (4)

We can infer that if r(ρψ2) < N (det(ρψ2) = 0), there will be ILOs that transform ρψ2 to

ρ′ψ2
who has at least one column or one row of zeros. Without loss of generalities suppose

the kth column of ρ′ψ2
are zeros, for the element (k, k) of ρ′ψ2

we would get

(ρ′ψ2
)kk =

∑

ij

|(Γ′
i)jk|

2

= 0 , (5)

which indicates that (Γ′
i)jk = 0 for all i and j. In the pictorial description of the 2×M×N

state, this corresponds to the case that the cubic grid has a whole plane of zero coefficients.

Clearly in this condition the entanglement of 2 ×M × N system reduces to the case of

2 ×M ′ ×N ′ with M ′ < M or/and N ′ < N which should in principle be considered as an

entanglement system of 2 ×M ′ ×N ′.

3 Classification of 2×M ×N State

Two 2×M×N states Ψ̃ and Ψ are said to be SLOCC equivalent if they are connected

via invertible local operator (ILO). That is Ψ̃ is SLOCC equivalent to Ψ if

|Ψ̃2×M×N〉 = T ⊗ P ⊗Q |Ψ2×M×N〉 , (6)

where T, P,Q are invertible complex matrices of dimension 2×2, M×M , and N×N which

act on ψ0, ψ1, ψ2, respectively. Neglecting the extra factor of the determinant of matrices,
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T , P , and Q correspond to the special linear groups of SL(2,C), SL(M,C), SL(N,C) [9].

Take |Ψ2×M×N〉 in the form of Eq.(2), the ILO operators T , P , Q in Eq.(6) can be written

as

|Ψ̃2×M×N〉 =


 t11 t12

t21 t22





 PΓ1Q

PΓ2Q


 . (7)

From Eq.(2) and Eq.(7) we can see that the SLOCC equivalence of the quantum state turns

to the connectivity of the matrix pairs (Γ1,Γ2) under the special linear transformations

T, P,Q. Define the set that contains all the matrices pair (Γ1,Γ2) as C. The whole space

of C can be partitioned into numbers of inequivalent sets with different n, l

Cn, l = {(Γ1,Γ2)| rmax(α1Γ1 + β1Γ2) = n, rmin(α2Γ1 + β2Γ2) = l} , (8)

where rmax and rmin represent the the maximum and minimum rank of the matrices

respectively, and we let r denote the rank of matrix hereafter; αi, βi ∈ C and |αi|+|βi| 6= 0;

l ∈ [0, n], n ∈ [0,M ].

3.1 Classification on sets Cn,l with n = M

We start our classification of Cn, l in 2×M×N system from the case n = M . Our aim

is to construct the subsets cM,l which: (i), it includes representative elements of all the

inequivalent entanglement classes; (ii), each inequivalent class has only one representative

element in cM,l.

∀ (Γ1,Γ2) ∈ CM, l there always exists an ILO operator T that

T


 Γ1

Γ2


 =


 t11 t12

t21 t22





 Γ1

Γ2


 , (9)

where r(t11Γ1 + t12Γ2) = M , r(t21Γ1 + t22Γ2) = l. So we just assume r(Γ1) = M and

r(Γ2) = l without loss of generality. Two specific ILOs P and Q can transform (Γ1,Γ2)

into the following form
(

Γ1

Γ2

)
P,Q
−−→

( (
EM×M 0M×(N−M)

)
(
AM×M BM×(N−M)

)
)
. (10)

where E is an unitary submatrix, 0 hereafter represents zero submatrix, A and B have

the same dimensions as E, 0 separately, and all of them have the subscripts as their
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dimensions. If (N −M) > M , even if its submatrix B has the maximum rank of M , the

right hand of Eq.(10) can still be further transformed by ILOs into

(
Γ1

Γ2

)
P,Q
−−→

( (
EM×M 0M×(N−2M) 0M×M

)
(
0M×M 0M×(N−2M) EM×M

)
)
, (11)

In the form of the cubic grid (Fig.(1)), this corresponds to that (N−2M) vertical planes in

the middle of the cube are zero planes, which is actually an entangled states of 2×M×2M

according to the statement below Eq.(5). Thus here we only consider the case M ≥ N/2.

For arbitrary matrix pair with the form of the right hand of Eq.(10), we can implement

the following transformation by ILOs

( (
Em×m 0m×(n−m)

)
(
Am×m Bm×(n−m)

)
)

step i
−−−→




(
E1A′ 01B′ 01a

01b E1′ 01E′

)

(
A′ B′ 02a

02b 02c E ′

)


 , (12)

where r(E ′) = r(B) and E ′ is submatrix with typical form of (0r(E′)×((n−m)−r(E′)), Er(E′)×r(E′)),

A′, E1A′ are also square submatrices with the dimensions (m − r(E ′)) × (m − r(E ′));

the rest of the matrices are partitioned accordingly, i.e., 01B′ , B′ have the dimension

(m− r(E ′)) × r(E ′), 01a, 02a have the dimension of (m− r(E ′)) × (n−m), 01b, 02b have

the dimension r(E ′) × (m− r(E ′)), E1′ , 02c have the dimension r(E ′) × r(E ′). After this

transformation Γ1 = (EM×N , 0M×(N−M)) is unchanged, Γ2 becomes a quasidiagonal matrix

and we named this procedure step i.

Next we repartitioned the matrices on the left hand side of Eq.(12) as follows




(
E1A′ 01B′ 01a

01b E1′ 01E′

)

(
A′ B′ 02a

02b 02c E ′

)




step ii
−−−→




(
E1A′ 01a 01b

01c E1′ 01d

)

(
A′ B′ 02a

02b 02c E ′

)


 . (13)

This is named as step ii. Consider the submatrix B′, if it is not identically zero we can

perform the transformation of step i on the left top submatrices of Eq.(13)

( (
E1A′ 01a

)
(
A′ B′

)
)

step i
−−−→




(
E1A′′ 01B′′ 01a′

01b′ E1′′ 01E′′

)

(
A′′ B′′ 02a

02b′ 02c′ E ′′

)


 . (14)
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This procedure can be done repeatedly (suppose repeat n times), until the B(n) is iden-

tically zero or has zero dimension. We can get that the matrix pair (Γ1,Γ2) can be

transformed into the following form

Γ1 →




E1A(n) 0 0 · · · 0 0

0 E
1(n−1) 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 0

0 0 0 · · · E1′ 0




≡

(
E 0

0 E1

)
, (15)

Γ2 →




A(n) B(n) = 0 0 · · · 0 0

0 0 E(n−1) · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · E ′′ 0

0 0 0 · · · 0 E ′




≡

(
SJS−1 0

0 E2

)
, (16)

where the transformed Γ1 is just (EM×M , 0M×(N−M)), and E1,2 are defined according to

the partition lines.

As a concrete example here we show how this whole procedure is proceeded on the

sets of C4,l of 2 × 4 × 6 state. The transformation of Eq.(12) is start with

( (
E4×4 04×2

)
(
A4×4 B4×2

)
)

step i
−−−→




(
E1A′ 01B′ 01a

01b E1′ 01c

)

(
A′ B′ 02a

02b 02c E ′

)


 , (17)

where




(
E1A′ 01B′ 01a

01b E1′ 01c

)

(
A′ B′ 02a

02b 02c E ′

)


 =







1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0







× × + + 0 0
× × + + 0 0
0 0 0 0 1 0
0 0 0 0 0 1







, (18)

Here the rank of B4×2 must be 2 due to the argument below Eq.(11). The step ii goes as

follows 


(
E1A′ 01B′ 01a

01b E1′ 01c

)

(
A′ B′ 02a

02b 02c E ′

)




step ii
−−−→




(
E1A′ 01B′ 01a

01b E1′ 01c

)

(
A′ B′ 02a

02b 02c E ′

)


 . (19)

7



Next we repeat the step i to the up-left submatrices of the right hand side of Eq.(19).

This iteration of step i depends on the rank of B′.

(1), r(B′) = 0. In this case the matrix pair (Γ1,Γ2) become

(
Γ1

Γ2

)
T,P,Q
−−−→







1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0







× × 0 0 0 0
× × 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1







. (20)

And there are three different forms, i.e.,

(1.1)




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 , (1.2)




λ 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 , (1.3)




0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 ,(21)

correspond to two Jordan canonical forms of A′, J =

[
λ 0
0 0

]
J =

[
0 1
0 0

]
, and a zero

matrix A′ =

[
0 0
0 0

]
.

(2), r(B′) = 1. In this case

(
A′ B′ 0

0 0 E ′

)
step i
−−−→




× × 0 0 0

0 0 0 1 0

0 0 0 0 E ′


 . (22)




× × 0 0 0

0 0 0 1 0

0 0 0 0 E ′


 step ii

−−−→




A′′ B′′ 0 0

0 0 E ′′ 0

0 0 0 E ′


 , (23)

where A′′, B′′ are matrices of 1 × 1 and E ′′ = (0, 1). Again apply step i on (A′′ B′′) we

have

(2.1), r(B′′) = 0



A′′ B′′ 0 0

0 0 E ′′ 0

0 0 0 E ′


 step i

−−−→




× 0 0 0

0 0 E ′′ 0

0 0 0 E ′


 . (24)
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(2.2) r(B′′) = 1



A′′ B′′ 0 0

0 0 E ′′ 0

0 0 0 E ′


 step i

−−−→




0 1 0 0

0 0 E ′′ 0

0 0 0 E ′


 . (25)

For Eq.(24), A′′ is equivalent to the case of A′′ = 0 according to theorem 1 of [11]. For

Eq.(25), in the next step of step ii, B(3) will be a matrix of dimension zero, and satisfies

r(B(3)) = 0, thus the procedure is stopped. We get two inequivalent forms of Γ2




0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 ,




0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 . (26)

(3). r(B′) = 2. In this case

(
A′ B′ 0

0 0 E ′

)
step i
−−−→




0 0 1 0 0

0 0 0 1 0

0 0 0 0 E ′


 . (27)

Thus here is only one class, where Γ2 has just the form of Eq.(27). In the following, we

shall see that these six cases correspond to the six inequivalent entanglement classes in

2 × 4 × 6 systems, which agrees with the result of Ref.[12].

In all, for every (Γ1,Γ2) ∈ CM, l, there exists an ILO transformation that make

 Γ′

1

Γ′
2


 = T ⊗ P ⊗Q


 Γ1

Γ2


 . (28)

Here Γ′
1 has the form of Eq.(15), and Γ′

2 =

(
J 0
0 E2

)
has the form of Eq.(16). Eq.(28)

maps CM, l to cM, l, where cM, l ⊆ CM, l and

cM, l = {(Γ1,Γ2)|Γ1 =

(
E 0

0 E1

)
,Γ2 =

(
J 0

0 E2

)
; (Γ1,Γ2) ∈ CM, l} . (29)

Thus we have separated the classification of CM,l into two procedures: 1, the construction

of E2 matrix; 2, classification of J . And for the second procedure, we have already

complete the classification in [11]. We have the following theorem

Theorem 1 ∀ (Γ1,Γ2) ∈ cM, l, the set cM, l is of the classification of CM, l. (i) if two

states are SLOCC equivalent then they can be transformed into the same matrix vector
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(Γ1,Γ2); (ii) this matrix vector is unique in cM, l, that is if (Γ1,Γ
′
2) is SLOCC equivalent

with (Γ1,Γ2), then (Γ1,Γ
′
2) = (Γ1,Γ2), (Γ′

2 = Γ2 means that E2 = E ′
2 and their Jordan forms

of J are equivalent under the condition of theorem 1 Ref.[11] )

Proof:

(i) The proof of this statement is straightforward, since in every step of transformation

only invertible operators take part in.

(ii) Suppose
(

Γ1

Γ′
2

)
= T ′ ⊗ P ′ ⊗Q′

(
Γ1

Γ2

)
. (30)

First we show that the T ′ transformations can always be replaced by ILO operators

P−1
0 , Q−1

0 , i.e.,

 t′11 t′12

t′21 t′22




(
Γ1

Γ2

)
=

(
P−1
0 Γ1Q

−1
0

P−1
0 Γ2Q

−1
0

)
. (31)

Because Γ2 in (Γ1,Γ2) ∈ cM, l has a form of direct sum of J and E2 as shown in the

definition (29). Thus when the dimension of J does not equal zero, there are no zeroes in

pivot of T ′ and the left hand side of Eq.(31) can be separated into two parts

 1 0

λ 1





 α β

0 γ




(
E
J

)
, (32)


 1 0

λ 1





 α β

0 γ




(
E1

E2

)
, (33)

where


 1 0

λ 1





 α β

0 γ


 is the LU decomposition of T ′ [14]; E1 has the same dimen-

sion as E2.

For the J sub-matrix we have proved [11] there exists PJ , QJ which make
(

1 0
λ 1

)(
α β
0 γ

)(
PJEQJ

PJJQJ

)
=

(
E
J

)
, (34)

For the E1,2 parts, there exist operators that

Py

(
E1 + λ′E2

E2

)
Qy =

(
E1

E2

)
,

Px

(
E1

E2 + λE1

)
Qx =

(
E1

E2

)
, (35)
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where λ′ = β

α
. It is simple to verify that such kind of Px,y, Qx,y satisfying the equations does

exist (see Appendixes of [11] for detailed derivations). Thus PC = PxPy and QC = QyQx

will make
(

1 0
λ 1

)(
α β
0 γ

)(
PCE1QC

PCE2QC

)
=

(
E1

E2

)
. (36)

Combine Eq.(34) and Eq.(36) we can get such P0 = PJ ⊕ PC , Q0 = QJ ⊕QC that satisfy

the following equation

 1 0

λ 1





 α β

0 γ




(
P0Γ1Q0

P0Γ2Q0

)
=

(
Γ1

Γ2

)
, (37)

which is just Eq.(31).

In one word, Eq.(30) can always be written as

(
Γ1

Γ′
2

)
= P ′P−1

0

(
Γ1

Γ2

)
Q−1

0 Q′

= P ′′

(
Γ1

Γ2

)
Q′′ (38)

The effective transformation P ′′, Q′′ that keep Γ1 invariant must be of the form

P ′′ = P ′′ ;Q′′ =

(
P ′′−1 0

X Y

)
, (39)

where Det(Y ) 6= 0. The transformation of Γ2 reads

P ′′Γ2Q
′′ = P ′′(A,B)Q′′ = (P ′′AP ′′−1 + P ′′BX,P ′′BY ) , (40)

where A is the M ×M submatrix, and B is the M × (N −M) submatrix. Since P ′′ and

Y both are ILO operators, the rank of submatrix B, is unchanged and it can be further

transformed to form of Eq.(12)

(
A′ B′ 0

0 0 E ′

)
. (41)

We get that if two states are SLOCC equivalent then E ′ block of Γ′
2 and Γ2 must be

identical. In Eq.(41) we see that E ′ block is diagonalized in Γ2 which guarantee that we

can proceed our proof to E ′′ ( E(3), E(4) and so on) by leaving the E ′ block unchanged.

The rest steps of this proof are just like argument after Eq.(40), and finally we can get
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that if (Γ1,Γ
′
2) is SLOCC equivalent with (Γ1,Γ2) then Γ′

2 and Γ2 have the same canonical

form in the set of Eq.(29). (However there exists the special case that the dimension of J

equals zero, in this case there can be zero elements in the pivot of the nonsingular square

matrix T ′. T ′ can then be decomposed as decomposed as [14]


 t′11 t′12

t′21 t′22


 = PT ′ ·


 1 0

λ 1


 ·


 α β

0 γ


 , (42)

where α, β, γ, λ ∈ C, PT ′ =

[
0 1
1 0

]
and both matrices on the righthand side of above

equation are nonsingular. It can be show that PT ′ can be compensated by some operators

Pz, Qz which act on Γ1 and Γ2, i.e.,

(
E1

E2

)
= PT

(
PzE1Qz

PzE2Qz

)
, (43)

see Appendixes of [11]) Q.E.D.

3.2 Classification on sets Cn,l with n = M − 1

For the set of cM−1, l ∈ CM−1, l, the construction of cM−1, l is essentially the same as

that cN−1,l of 2 × N × N systems in [11]. Here for the sake of convenience we only take

a 2 × 7 × 8 state as a demonstration, i.e., CM−1, l = C6,l. The matrix pair (Γ1,Γ2) can be

transformed into the following form

(
Γ1

Γ2

)
T, P,Q
−−−−→







1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0







× × × 0 c04 c05 0 0
× × × 0 c14 c15 0 0
× × × 0 c24 c25 0 0
r30 r31 r32 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0







, (44)
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where Γ2 can then be expressed as

Γ′
2 =




A 0 c 0

r 0 0 0

0 0 0 E
0 1 0 0


 ≡

(
A c
r B

)
. (45)

Further simplification can be proceeded according to the vector(or submatrices) c, r.

There are four cases in general, i.e., (1), (c = 0, r = 0); (2), (c 6= 0, r = 0); (3),

(c = 0, r 6= 0); (4), (c 6= 0, r 6= 0). Here c 6= 0 means that r(c) ≥ 1 and different

ranks will result in different classes, i.e.,

Γ00
2 =




× × × 0 0 0 0 0
× × × 0 0 0 0 0
× × × 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0




, 1Γ
10
2 =




× × × 0 0 0 0 0
× × × 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0




, (46)

Γ01
2 =




× × 0 0 0 0 0 0
× × 0 0 0 0 0 0
× × 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0




, 1Γ
11
2 =




× 0 × 0 0 0 0 0
× 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0




, (47)

2Γ
10
2 =




× × × 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0




, 2Γ
11
2 =




0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0




. (48)

Clearly, analogous with the set CN−1, l in Ref.[11], we can finally get the following set

cM−1, l = {(Λ,Γ)| r(Γ) = l; Γ =

(
J 0
0 B

)
; (Λ,Γ) ∈ CM−1, l} . (49)

J represents the Jordan canonical form.
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Theorem 2 ∀ (Λ,Γ) ∈ cM−1, l, the set cM−1, l is of the classification of CM−1, l. (i)

suppose two states are SLOCC equivalent, they can be transformed into the same matrix

vector (Λ,Γ); (ii) this matrix vector is unique in cM−1, l, that is suppose (Λ,Γ′) is SLOCC

equivalent with (Λ,Γ), (Λ,Γ′) = (Λ,Γ) (Γ′ = Γ means Js are equivalent in the condition

of theorem 1 and B′ = B).

The proof of this theorem is in the same manner as that of theorem 2 in [11].

Following the procedure of n = (M − 1) and the method introduced in [11], we can

further classify the more generally cases, i.e., n = M − i with i > 1. Here we neglect

the proof and only give a concrete example of the classification of this kind. We give a

complete classification of 2 × (M + 5) × (2M + 5) for M = 1, i.e., 2 × 6 × 7 state whose

classification has not been presented in literature so far.

Classes of sets c6, l : for all inequivalent classes in c6, l, they have the same form of Γ1 in

the definition (29)

Γ1 =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0



. (50)

So we only list the form of Γ2s,




× × × × × 0 0
× × × × × 0 0
× × × × × 0 0
× × × × × 0 0
× × × × × 0 0
0 0 0 0 0 0 1



,




× × × × 0 0 0
× × × × 0 0 0
× × × × 0 0 0
× × × × 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



,




× × × 0 0 0 0
× × × 0 0 0 0
× × × 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



,(51)




× × 0 0 0 0 0
× × 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



,




0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



,




0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



. (52)
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Here the square matrices of {×}n×n in Eq.(51, 52) consists of all the inequivalent classes

of sets cn,l in 2 × n× n states. For example the first matrix of Eq.(51) is made up by all

the genuine entanglement classes of the sets c5,l in 2 × 5 × 5 state and plus the one with

{×}5×5 = 0, thus there are (26 + 1) [15] inequivalent forms of this matrix.

Classes of set c5, l: for all inequivalent classes in c5, l, they has the same form of Λ

Λ =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0



. (53)

The different Γ2s are



× × 0 0 0 0 0
× × 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0



,




0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0



,




0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0



, (54)




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0



,




0 0 0 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0



,




0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0



. (55)




0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0



, (56)

Same as that of c6, l, {×}2×2 here has three different forms.

Thus we get (26+1)+(13+1)+(5+1)+(2+1)+1+1+(2+1)+1+1+1+1+1+1 = 61

inequivalent entanglement classes in 2 × 6 × 7. It is clearly to see that this method is

simple and effective, meanwhile each entangled state can be read out directly from the

matrix pairs.

15



4 Conclusions

In summary, we have generalized our method of entanglement classification under

stochastic local operations and classical communications to the more general case of 2 ×

M × N systems. Two examples of 2 × 4 × 6 and 2 × 6 × 7 are given where all their

inequivalent entanglement classes are determined. Because the classification procedure is

essentially a constructive algorithm, the method can serve as a powerful tool in practical

entanglement classifications with the aid of computers. Most importantly a wide range of

state space is explored which provide a rich resource for possible new applications in the

quantum information theory.
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