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Abstract

In the frame of time series analysis, we compute the quadratic error in the
blind estimation of the projection operator for prediction with infinite past. The
estimation is made using only a single finite sample of the time series. It is performed
by plugging the empirical covariance in a clever Schur complement decomposition
of the projector.

Keywords: Asymptotic Statistics, Covariance Estimation, Time Series.
Subject Class. MSC-2000: 62G05, 62G20.

Introduction

In many concrete situations the statistician observes a finite path X1, . . . , Xn of a real
temporal phenomena. A common modeling is to assume that the observation is a finite
path of a second order weak stationary process X := (Xt)t∈Z (we refer, for example, to
[10], [14] and references therein). This means that the random variable (r.v.) Xt is, for any
t ∈ Z, square integrable and that the mean (supposed to be equal to zero from now) and
the covariance structure of the process is invariant by any translation on the time index.
That is, for any t, s ∈ Z, E(Xt) = 0 and E(XtXs) only depends on the distance between
t and s. A more popular frame is the Gaussian case where the additional Gaussianity
assumption on all finite marginal distributions of the process (Xt)t∈Z is added. In this
case, as the multidimensional Gaussian distribution only depends on moments of order
one and two, the process is also strongly stationary. This means that the law of all finite
dimensional marginal distributions are invariant if the time is shifted:

(X1, · · · , Xn)
L
= (Xt+1, · · · , Xt+n), (t ∈ Z, n ∈ N).

Gaussian stationary process are very popular because they share plenty of very nice
properties concerning their statistical identification and prediction (see, for example, [2] or
[18]). For instance, a well known property of Gaussian time series is that linear prediction
is optimal. Hence, if one wish to predict for t > 0, Xt from X−N , . . . , X−1 (N > 0) the r.v.
minimising the prediction error is just a linear combination of X−N , . . . , X−1 involving a
linear projector operator onto the complete infinite past ProjHX

Z−
defined on the Hilbert

space HX
∞ generated by the process X . Furthermore, ProjHX

Z−
may be computed from the

covariance function of the process (see Section 1 for precise statements). In this paper, we
work with a Gaussian stationary process and we will address the problem of blind filtering.
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This means that observing the finite sample path X−N , . . . , X−1 of the process we wish
to predict the future values Xt, t > 0 without knowing the covariance structure (blind
means that the covariance of X is unknown). The prediction problem is classical (see for
example [9],[1], [3]). The blind one is less classical and have been very few studied. The
particular case of Kriging (see [15], [18]) in which a parametric model on the covariance
is assumed is discussed and studied in [18]. An interesting work of Bickel and al [4]
consider the case where many samples are avaible. In our work, we do not assume any
parametric model and set and solve the problem in a nonparametric way. Our method
relies on the estimation of the covariance function. This function is estimated and an
empirical regularisation method jointly with a clever Schur decomposition of the inverse
covariance operator (see Theorem 2.1) allow to build an accurate estimate of ProjHX

Z−
.

The asymptotic property of this estimate is study and rate of convergence are stated.
Roughly speaking, the rate of convergence stated in the main Theorem 3.3 depends of
the regularity of the covariance function through the spectral density of the process (one
of the main assumption is that the spectral measure of X has a density).

The paper is organized as follows. The next Section is devoted to some recalls and
technical results on time series analysis that will be used throughout the paper. In Sec-
tion 2 we set and discuss the estimation procedure. Further, the asymptotic behavior and
the rate of convergence of the estimator are tackled in Section 3. Section 4 is devoted to
some numerical illustrations of the estimation procedure. All the proofs are postponed to
the Appendix in Section 5.

1 Notations and preliminary definitions

Recall that X = (Xk)k∈Z, is a zero-mean Gaussian stationary process. Denote r(k− j) :=
E [XkXj ]. We assume that the sequence (rk)k∈Z is in l2(Z). This implies the existence of
the L2(T) function

f ⋆(t) :=
∞∑

k=−∞
r(k)eikt,

where T = [0, 2π). This function, called the spectral density of the time series, is a real
even non negative function. As X is a Gaussian process, it conveys all the information
on the process distribution. Furthermore, the covariance operator is a Toeplitz operator
operating on l2(Z) associated to f ⋆, denoted R = T∞(f ⋆) (for a thorough overview on the
subject, we refer to [8]). Let TN (f

⋆) be the covariance matrix of the process observed at
N following times. (Xi+1, · · · , Xi+N), ∀i ∈ Z.

In this section, we recall some useful definitions and results about spectral analysis of
time series.
For any finite or infinite subset B ⊂ Z, we denote by HX

B the partial past of the time
series X for the values indexed by B, that is the information conveyed by the observation
of the Xk, k ∈ B (that is the closure of the vectorial space generated by the Xk, for
k ∈ B).

HX
B := Vect(Xk)k∈B

In particular, let HX
∞ := HX

Z
, be an Hilbert space with corresponding scalar product

〈Y, Z〉HX
∞
= EPX

[Y Z] .
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Define also
HX

−∞ := ∩n∈ZH
X
n

This is the asymptotic past of X . The process is said to be regular if HX
−∞ = {0} , which

is ensured as soon as log(f ⋆) is integrable, as pointed out in [8].
In this paper, we make the following classical assumption, that provide the integrability

of log(f ⋆)

Assumption 1.1.

∃m,m′ > 0, ∀t ∈ T, m < f ⋆(t) < m′

This is the strongest assumption of the paper. It enables to invert the operators
T∞(f ⋆) and TN(f

⋆), ∀N > 0, as shown by the following proposition. Assumption 1.1
provides a controls for a given spectral density f ⋆ on the spectrum of the corresponding
Toeplitz operator T∞(f ⋆) (i.e. the set {λ ∈ C, T∞(f ⋆)− λ Id is not invertible} denoted
Sp(TN(f

⋆))). Note that the Toeplitz operator T∞(f ⋆) is viewed here as an l2(Z) operator
and not a l2(N) one.

Proposition 1.2. [16] Under assumption 1.1,

∀N ∈ Z
+ ∪ {+∞} , Sp(TN(f

⋆)) ⊂ [m,m′]

As a consequence, since m > 0, we obtain that 0 /∈ Sp(TN (f
⋆)).

Now, we get some propositions about several operator norms we will use in this work.
First, define the operator norm on l2(Z):

Definition 1.3 (Canonical norm). Let Q be a linear operator, operating on l2(Z), we define

|||Q|||l2 := sup
x∈l2(Z),‖x‖2=1

‖Qx‖2 ,

where
(Qx)j =

∑

k∈Z
Qjkxk

As a direct consequence of Proposition 1.2, we get the following bound

|||R|||l2 6 m′,

Hence, it is possible to define a new scalar product on l2(Z) with the symmetric
bounded operator R = T∞(f ⋆), and the corresponding operator norm. Let us define

Definition 1.4 (Warped norm).

∀x, y ∈ l2(Z), 〈x, y〉lR2 := 〈x,Ry〉l2

Let Q be a linear operator, operating on l2(Z),

|||Q|||lR2 := sup
x∈l

R
2 (Z),‖x‖

lR2
=1

‖Qx‖lR2 .

Thanks to Assumption 1.1 on f ⋆, the norm |||.|||lR2 given by R is equivalent to the
canonical norm, because the distortion due to R is bounded. The following proposition
states that the operators are bounded on lR2 if and only if they are bounded on l2, which
provides the equivalence of both norms. Indeed for any operator Q, we have
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Proposition 1.5.
m

m′ |||Q|||l2 6 |||Q|||lR2 6
m′

m
|||Q|||l2

Proof.

|||Q|||lR2 = sup
y∈lR2

‖Qy‖lR2
‖y‖lR2

6
m′

m
sup
y∈lR2

‖Qy‖l2
‖y‖l2

=
m′

m
|||Q|||l2

and symmetrically,

|||Q|||lR2 >
m

m′ |||Q|||l2 .

In particular, R is a bounded operator on l2(Z), in the sense of the warped operator
norm.

Proposition 1.6. There is a canonical isometry between HX
∞ and (l2(Z), 〈., .〉R), and also

(
Vect(eikt)k∈Z, 〈., .〉L2(f⋆)

)
(Vect(eikt) denotes here the closure of the set of trigonometric

polynomials), through the following functions :

Φ1 : L2(P) → l2(Z)

Y =
∑

k∈Z
βkXk 7→ (βk)k∈Z

and

Φ2 : L2(P) → L2(f
⋆)

Y =
∑

k∈Z
βkXk 7→ (t 7→

∑

k∈Z
βke

ikt)

Proof. We can write, for any Y ∈ L2(P) such that Y =
∑

k∈Z βkXk. As a result,

‖Y ‖2
L2(P)

=
∑

j,k∈Z
βjβkEP [XjXk]

=
∑

j,k∈Z
βjβkr(|j − k|)

= ‖Φ1(Y )‖2lR2
=

∫

T

|Φ2(Y )(t)|2 f ⋆(t)dt

= ‖Φ2(Y )‖2
L2(f⋆) ,
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All the operators Q used in this paper are defined from HX
∞ into HX

∞. Thanks to the
isometries, we can also see them as operators respectively on

(
Vect(eikt)k∈Z, 〈., .〉L2(f⋆)

)
or

(l2(Z), 〈., .〉R), through ΦkQΦ−1
k .

Finally, we prove a useful proposition which characterize the inverse of a Toeplitz operator
as a Toeplitz operator associated to the inverse.

Proposition 1.7. Under the assumption 1.1, the Toeplitz operator on l2(Z), T∞(f ⋆) is
invertible. Furthermore, we have

(T∞(f ⋆))−1 = T∞(
1

f ⋆
)

Proof. First let us prove that

T∞(a)T∞(b) = T∞(ab)

Indeed, the Fourrier development of ab may be written as

(ab)(t) =
∑

k

(
∑

j

ajbk−j)e
ikt,

so that the equality follows. Then, notice that T∞(1) = I∞, where 1 denotes the constant
function with value 1, and I∞ the identity on the Hilbert space l2(Z).

In the following, we will denote P = R−1 = T∞( 1
f⋆ ).

2 Time series prediction with finite past observations

We wish to predict the future values Xk, for k > 0 of the process X while observing
a finite number of past values X−N , · · · , X−1. Since we consider a Gaussian process,
the best linear predictor, defined as the projection of Xk onto its past is also the best
predictor. This projector can be written using the following notations. Define

zkN(i) = r(|i− k|), ∀i = −1 · · · −N,
(
T−
∞(f ⋆)

)

ij
= r(|i− j|), ∀ −∞ 6 i, j 6 −1

Hence the projection of Xk onto the complete past HX
Z−, denoted by p∞ := ProjHX

Z−
, can

be written as
p∞(Xk) =

(
T−
∞(f ⋆)

)−1
zk∞

Here, we are facing a more difficult issue since the whole past is not observed but only a
finite number of observations. Hence our aim is twofold

• Compute the projector ontoHX
[−N,−1], the linear hull ofX−N , · · · , X−1. This solution

can be written as (TN (f
⋆))−1 zkN .

• Since its expression depends on the spectral density which is unknown, we will use
an estimate of f ⋆ to find an estimator of the projection operator.
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The efficiency of the estimation procedure will be assessed using the quadratic operator
norm between the estimated projector with finite past observations and the true projector
onto the complete past of the process. More precisely, if p∞ is the projection operator
from HX

Z+ onto HX
Z−, and p̂ denotes the current estimate of the projector onto the infinite

past built using the N observations X−N , · · · , X−1, we will compute

‖p̂− p∞‖ = sup
Y ∈HX

[−N,N]
,‖Y ‖

HX
[−N,N]

=1

√

E
[
(p̂(Y )− p∞(Y ))2

]
(1)

Usually, the forecast is investigated in term of prediction error. If X̂k denotes the predic-
tion of Xk, the natural error should be

Prediction error =

√

E(X̂k −Xk)2

Actually, this does not enable to study the consistency nor the asymptotic efficiency of the
estimator, since this error term is macroscopic, that is of same order than the innovation.
That is the reason why, to avoid this problem, we consider the loss function (1), computing
the quadratic error between the prediction knowing the covariance and the one with the
estimated covariance.

2.1 Projection onto finite observations with known covariance

We aim at providing an expression of the projector of an observation onto a finite set
of the past of a time series. For this, we generalize the expression provided by Bondon
([6], [7]) of a projector with infinite past. For any linear operator Q from HX

∞ to HX
∞, we

denote by QCB the operator define on HX
∞ by truncating Q at right on HX

B and at left on
HX

C .
The following theorem provides an alternative expression of any projection operators.

Theorem 2.1. Let A ⊂ Z. Recall that R is the covariance operator of the process, and
P = R−1. Then, writing the operators blockwise with blocks A,M = AC, we have

ProjHX
A

=

[
IdA R−1

A RAM

0 0

]

=

[
IdA −PAMP−1

M

0 0

]

Furthermore, the prediction error E

[

ProjHX
A
(Y )− Y

]2

= aTP−1
M a where Y = aTX for

any a ∈ R
Z. Hence the quadratic error is given by the quadratic form P−1

M .

We provide in the appendix the proof of this theorem.
We point out that this theorem is helpful for the computation of the bias, since it

replaces an inversion of an infinite operator by an inversion of a finite matrix.

2.2 Construction of the empirical projection operator

Previous theorem provides a general expression of the projection which depends on the
unknown spectral density of the process. Hence, we need to estimate it to build an
estimator of the projection operator p∞.
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Recall that the expression of the empirical unbiased covariance estimator is given by
(see for example [2])

∀ 0 < p 6 N, r̂N (p) =
1

N − p

−p−1
∑

k=−N

XkXk+p

Notice when p is close to N , the estimation is hampered since we only sum N − p terms.
Hence we will not use the complete available data but rather use a cut-off level. So
consider a sequence K(N), growing to infinity with N that will be specified later and
define the empirical spectral density as

f̂N
K (t) =

K(N)
∑

p=−K(N)

r̂N(p)e
ipt (2)

To approximate the projection onto the observed variables X−1, · · · , X−K(N), we will
consider an estimator p̂NK(N), defined for any random variable in HX

[1,K(N)], such that, when

K(N) is large, this estimate converges to p∞ the projector of HX
Z+ onto HX

Z−. Moreover,
we want to use a single sample to build the estimator and forecast the future at the same
time.

To this aim, we divide the index space Z into MK ∪ OK ∪BK ∪ FK where :

• MK = {· · · ,−K − 2,−K − 1} denotes the index of the past data that will not be
used for the prediction (missing data)

• OK = −K, · · · ,−1 the index of the data used for the prediction (observed data)

• BK = 0, · · · , K − 1 the index of the data we currently want to project (blind data)

• FK = K,K + 1, · · · the remaining index (future data)

In this framework, Theorem 2.1 shows that the projection operator of HX
BK

onto HX
OK

has the following expression

pK = pOK

∣
∣
BK

= (ROK
)−1ROKBK

Hence, the two quantities ROKBK
and (ROK

)−1 must be estimated. On the one hand, a
natural estimator of the first projector is given by

R̂N
OK

= T∞(f̂N
K )

i.e
(

R̂N
OK

)

ij
= 11|j−i|6K r̂N(|j − i|)

On the other hand, a natural estimator of (ROK
)−1 could be first to estimate the projector

by (R̂OK
) and then to invert it. However, it is not obvious that this matrix is invertible.

So, we will consider an empirical regularized version by setting

R̃N = R̂N
OK

+ α̂IOK
,

for a well chosen α̂. Set

α̂ = −min f̂N
K 11min f̂N

K
60 +

m

4
11min f̂N

K
6

m
4

7



so that
∣
∣
∣

∣
∣
∣

∣
∣
∣(R̃N

OK
)−1
∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

6
m
4
. Remark that R̃N is the Toeplitz matrix associated to the

function f̃N = f̂N
K + α̂, which was taylored to ensure that, f̃N is always greater than

m
4
, yielding the desired control on R̃−1. Other regularization schemes could have been

investigated. Nevertheless note that adding a translation factor makes computation easier
than if we have used for instance a threshold on f̂N

K since we only modify the diagonal
coefficients of the covariance matrix in this case.

Finally, we will consider the following estimator

Definition 2.2. The estimator p̂NK(N) of p∞ at window K(N) is defined as follow :

p̂NK(N) =
(

R̃N
OK

)−1

R̂N
OK ,BK

, (3)

3 Asymptotic behaviour of the empirical projection

operator

We consider Sobolev’s type regularity by setting

∀s > 1,Ws =

{

g ∈ L2(T), g(t) =
∑

k∈Z
ake

ikt,
∑

k∈Z
k2sa2k < ∞

}

and define

∀g ∈ Ws, ‖g‖Ws
= inf

{

M,
∑

k∈Z
k2sa2k 6 M

}

Assumption 3.1. There exists s > 1 such that f ⋆ ∈ Ws.

Recall that the rate of convergence is given with respect to the operator norm defined
in (1). The following proposition describes the behaviour of the bias and variance of the
estimated projector.

Proposition 3.2. Under assumptions 1.1 and 2.1, for N large enough, the empirical esti-
mator with window K(N) satisfies

∥
∥p̂NK(N) − p∞

∥
∥ 6 C1

K(N)2
√

log(K(N))√
N

+ C2
1

K(N)
2s−1

2

,

where C1 and C2 are given in annex.

Obviously, the best rate of convergence is obtained by balancing the variance and the
bias and finding the best window K(N). Indeed, the variance increases as K(N) is larger
while the bias decreases with the window K(N). Proposition 3.2 leads immediately to
the following theorem.

Theorem 3.3 (Rate of convergence of the prediction estimator). Under assumptions 1.1

and 2.1, for N large enough choosing K∗(N) = ( N
log(N)

)
1

2(2s+3) gives to

∥
∥p̂N⋆ − p∞

∥
∥ 6 O

((
log(N)

N

) 2s−1
2(2s+3)

)

(4)
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Notice that the more regular is the function (i.e when s increases), the faster is the

estimation rate. In particular when s → ∞, we obtain ( log(N)
N

)
1
2 , which is, up to the log-

term, the optimal speed. As a matter of fact, in this case, estimating the first coefficients
of the covariance matrix is enough, hence the bias is very small. Proving a lower bound
on the mean error, that could lead to a minimax result is a difficult task since the tools
used to design the estimator are far from the usual estimation technics.

However, there are two main advantages to use our methodology. First, our blind pre-
diction scheme provides a fully numerically tractable predictor that is easily computable.
Note also that rate may be extended to non Gaussian series for linear prediction extend-
ing the exponential inequalities of Lemma 5.5. This will be done in a forthcoming paper
following the ideas developped in [5] and [12]. Another extension will be considered in
[13] in the context of Gaussian processes on general graphs.

4 Numerical Simulations

In this section, we study the estimation procedure with some simulations.

First of all, consider the spectral density defined by f ⋆ = ( x
π
)5 sin(1/x) + 2 on [−π, π].

Note that this density satisfies Assumptions 1.1 and 3.1, with for instance m = 1, m′ = 3,
s = 1. Consider the Toeplitz operator associated to f ⋆ and compute T1000(f

⋆). The
simulation is obtained by the stepwise procedure

• Simulate a sample X = (Xk) for k = −999, · · · , 0.

• Then, for N growing from 4 to 200, 4 by 4, compute the empirical covariance RK(N)

observing Xk for k = −N, · · · ,−1. Here we have chosen the best K(N) = N− 1
3

ranging from N− 1
3 to the theoritical one N− 1

10 using cross validation.

• Compute the quadratic error between this empirical prediction of X0, and the long
past prediction using the true covariance and the whole data set X = (Xk)k∈[−999,−1].

We observe 500 iterations of previous algorithm and give a plot in Figure 4 of the esti-
mation error. The x axis concerns the time, the y axis shows the different iterations and
the error is given by the third axis. The different realizations are sorted by the decreasing
order for the last values. Then, we compute in Figure 4 the empirical mean and variance
of the observations (the mean is given by the dash-dot line and the variance by the con-
tinuous one). As expected, we observe that the estimation error decreases but we also
observe the decrease of the variance of this error. Hence, this implies that the prediction
is more and more reliable while n is growing.

9



Figure 1: Prediction error evolution for X0 on 500 paths

Figure 2: Prediction error for X0. Mean and variance on 500 paths

N 12 20 80 140 200
Mean 0.42 0.22 0.097 0.072 0.050
Variance 1.3 0.50 0.17 0.13 0.092

Table 1: Some values of the prediction error for X0. Mean and variance on 500 paths

10



5 Appendix

5.1 Proof of Theorem 2.1

Proof. First of all, P = R−1 is a Toeplitz operator from HX
∞ to HX

∞ with eigenvalues
in [ 1

m′ ;
1
m
] and PM may be inverted as a principal minor of P . Let us define the Schur

complement of P onHX
M : S = PA−PAMP−1

M PMA. The next lemma provides an expression
of R−1

A , with a inversion blockwise.

Lemma 5.1.

R−1
A = S

= PA − PAMP−1
M PMA

Proof. One can check that, written blockwise,
[
PA PAM

PMA PM

] [
S−1 −S−1PAMP−1

M

−P−1
M PMAS

−1 P−1
M + P−1

M PMAS
−1PAMP−1

M

]

=

[
PAS

−1 − PAMP−1
M PMAS

−1 −PAS
−1PAMP−1

M + PAM(P−1
M + P−1

M PMAS
−1PAMP−1

M )
PMAS

−1 − PMP−1
M PMAS

−1 −PMAP
−1
M PMAS

−1 + PM(P−1
M + P−1

M PMAS
−1PAMP−1

M )

]

=

[
SS−1 (PAMP−1

M PMAS
−1 + IA − PAS

−1)PAMP−1
M

PMAS
−1 − PMAS

−1 −PMAS
−1PAMP−1

M + IM + PMAS
−1PAMP−1

M

]

=

[
IA 0
0 IM

]

And since the matrix are symmetric, we can transpose the last equality, so we obtain
that

[
S−1 −S−1PAMP−1

M

−P−1
M PMAS

−1 P−1
M + P−1

M PMAS
−1PAMP−1

M

]

= P−1

= R

So that RA = S−1.

We can then compute the projection operator :

pA =

[
R−1

A 0
0 0

]

R

=

[
IdA R−1

A RAM

0 0

]

=

[
IdA SRAM

0 0

]

=

[
IdA (PA − PAMP−1

M PMA)RAM

0 0

]

=

[
IdA PARAM − PAMP−1

M (IdM − PMRM)
0 0

]

=

[
IdA PARAM − PAMP−1

M + PAMRM

0 0

]

=

[
IdA −PAMP−1

M

0 0

]

11



where we have used PK = Id in the last two lines.
Now consider the quadratic error operator (Q : X 7→ XTQX the quadratic error).

Q := pTHA
RpHA

= P−1
M

Q can be obtained by a direct computation (writing the product right above), but it is
easier to use the expression of the variance of a projector in the Gaussian case given for
instance by [18].

Q = RM − RMAR
−1
A RAM

Again, notice that Q is the Schur complement of R on HX
A , and thanks to Lemma 5.1

applied to P instead of R, we get
Q = P−1

M .

5.2 Proof of Proposition 3.2

Proof. We will use the operator norm to compute the error. Notice that the operators
studied here may be random. In this case we assume that we have an independent copy
X ′ (defined on Ω′ the corresponding probability space) of the process X (with associated
probability space Ω). Then, |||.|||lR2 denotes the random norm such that

∀ω ∈ Ω |||A(ω)|||lR2 = sup
Y ∈HX′

∞ ‖Y ‖2=1

∫

ω′
(A(ω)Y )2 (ω′)dP(ω′)

and not, as we could have expected

|||A|||lR2 = sup
Y ∈HX

∞‖Y ‖2=1

∫

ω

(A(ω)Y )2 (ω)dP(ω)

This norm measures the performance of the prediction. We could have obtained it if
we had at hand one sample for the estimation, and another independent sample dedicated
to the prediction.

Then, the proof falls into two steps : we compute independently the bias and the
variance :

∥
∥p̂NK(N) − p∞

∥
∥ 6

∥
∥p̂NK(N) − pK(N)

∥
∥

︸ ︷︷ ︸

Variance

+
∥
∥pK(N) − p∞

∥
∥

︸ ︷︷ ︸

Bias

We prove in the next part two next lemmas that contain the major ideas of the proof.
The bias is given by the following lemma

Lemma 5.2. The following upper bound holds, for N large enough,

∣
∣
∣
∣
∣
∣pNK(N) − p∞

∣
∣
∣
∣
∣
∣
lR2

6 C2
1

K(N)
2s−1

2

,

where C2 =
∥
∥
∥

1
f⋆

∥
∥
∥
H2s

m′(1 + m′

m
)

Set A = p̂NK(N) − pK(N), the control for the variance is due to this lemma:

12



Lemma 5.3.

∫ ∞

0

P

(

|||A|||4lR2 > t
)

dt 6 C4
0K(N)4(

log(K(N))

N
)2 + o(K(N)4(

log(K(N))

N
)2),

where C0 = 4m′(6m
′

m2 + 4
m
+ 2)

Then we write, for any window parameter K(N) and centered Y in HX
BK

such that
E [Y 2] = 1,

√

E

[(
pK(N)Y − p∞Y

)2
]

6
∣
∣
∣
∣
∣
∣pK(N) − p∞

∣
∣
∣
∣
∣
∣
lR2

√

E [Y 2]

6 C2
1

K(N)
s−1
2

And, for the variance, we notice first that

1 = E
[
Y 2
]
= β ′RMK

β > mβ ′β = m

K(N)−1
∑

i=0

β2
i ,

Further,

E

[(

A(Y )
)2
]

=

∫

ω

( ∑

i=0···K(N)−1,;j=−K(N),··· ,−1

Aij(ω)βiXj(ω)
)2

dP(ω)

6

∫

ω

−1∑

j=−K(N)

(

K(N)
∑

i=0

Aij(ω)βi)
2

−1∑

j=−K(N)

X2
j (ω)dP(ω)

6

∫

ω

∑

i=0···K(N)−1,;j=−K(N),··· ,−1

A2
ij(ω)

K(N)
∑

i=0

β2
i

−1∑

j=−K(N)

X2
j (ω)dP(ω),

by applying twice Cauchy-Swartz’s inequality. So that,

E

[(

A(Y )
)2
]

6

∫

ω

‖A(ω)‖22
1

m

K(N)+n0∑

j=n0+1

X2
j dP(ω)

6
K(N)

m

∫

ω

|||A(ω)|||2l2
K(N)+n0∑

j=n0+1

X2
j (ω)dP(ω), .

Using the equivalence between this two norms for finite matrix with size (n,m) (see for
instance [17]), we obtain

‖A‖2 6
√
n |||A|||l2 .

Further, using Proposition 1.5, we get

13



6
K(N)

m

∫

ω

|||A(ω)|||2l2
K(N)+n0∑

j=n0+1

X2
j (ω)dP(ω)

6
K(N)

m

√
∫

ω

|||A(ω)|||4l2 dP(ω)

√
√
√
√
√

∫

ω





K(N)+n0∑

j=n0+1

X2
j (ω)



dP(ω)

6
K(N)

m

√
∫

R+

P
(
|||A|||4l2 > t

)
dt

√

K(N)2
∫

ω

(
X4

j

)
dP(ω),

We use here again Cauchy-Schwartz’s inequality and the fact that, for all nonnegative
random variable Y ,

E [Y ] =

∫

R+

P (Y > t) dt

Since X0 is Gaussian, its four order moment is finite, say r4. Then Lemma 5.3 yields
that, for N large enough,

E

[(

A(Y )
)2
]

6
C2

0

√
r4K(N)4 log(K(N)))

mN
,

and so,
∥
∥p̂NK(N) − pNK(N)

∥
∥ 6

C1K(N)2
√

log(K(N))√
N

,

with C1 =
C0

4
√
r4√

m
, which proves the theorem.

5.3 Proofs of Concentration and regularity lemmas

First we compute the bias and prove Lemma 5.2 :

Proof. of Lemma 5.2
Using Theorem 2.1, we can write

ProjH
Z−

∣
∣
BK

= p∞
∣
∣
Z+

= −PZ∗
−Z+(PZ+)

−1

But p.
∣
∣
BK

= p.
∣
∣
Z+

∣
∣
BK

So,

∣
∣
∣

∣
∣
∣

∣
∣
∣pK(N)

∣
∣
BK

− p∞
∣
∣
Z+

∣
∣
∣

∣
∣
∣

∣
∣
∣
lR2

6

∣
∣
∣

∣
∣
∣

∣
∣
∣pK(N)

∣
∣
Z+

− p∞
∣
∣
Z+

∣
∣
∣

∣
∣
∣

∣
∣
∣
lR2

14



We can now compute
∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
pK(N)

∣
∣
Z+

− p∞
∣
∣
Z+

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
lR2

6
m′

m

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
pK(N)

∣
∣
Z+

− p∞
∣
∣
Z+

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
l2

6
m′

m

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[
(ROK

)−1ROKZ+

0

]

−
[

−POKZ+(PZ+)
−1

−P
M−

K
Z+

(PZ+)
−1

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

6
m′

m

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

(ROK
)−1ROKZ+ + POKZ+(PZ+)

−1

PM−
K
Z+

(PZ+)
−1

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

6
m′

m

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

(ROK
)−1ROKZ+PZ+ + POKZ+

PM−
K
Z+

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

∣
∣
∣
∣
∣
∣(PZ+)

−1
∣
∣
∣
∣
∣
∣
l2

6
m′

m

∣
∣
∣
∣
∣
∣(PZ+)

−1
∣
∣
∣
∣
∣
∣
l2

(
∣
∣
∣
∣
∣
∣(ROK

)−1ROKZ+PZ+ + POKZ+

∣
∣
∣
∣
∣
∣
l2
+
∣
∣
∣

∣
∣
∣

∣
∣
∣PM−

K
Z+

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

)

The last step used only the inequality

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

A

B

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
l2

6

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

A

0

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
l2

+

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

0
B

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
l2

= |||A|||l2 + |||B|||l2

But, since P = R−1,
ROKZ+PZ+ +ROK

POKZ+ = −ROKM−
K
PM−

K
Z+

So, we obtain,

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
pK(N)

∣
∣
Z+

− p∞
∣
∣
Z+

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
lR2

6
m′

m

∣
∣
∣
∣
∣
∣(PZ+)

−1
∣
∣
∣
∣
∣
∣
l2

(∣
∣
∣

∣
∣
∣

∣
∣
∣(ROK

)−1
(

−R
OKM−

K
P
M−

K
Z+

)∣
∣
∣

∣
∣
∣

∣
∣
∣
l2
+
∣
∣
∣

∣
∣
∣

∣
∣
∣PM−

K
Z+

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

)

6
m′

m

∣
∣
∣
∣
∣
∣(PZ+)

−1
∣
∣
∣
∣
∣
∣
l2

(
∣
∣
∣
∣
∣
∣(ROK

)−1
∣
∣
∣
∣
∣
∣
l2

∣
∣
∣

∣
∣
∣

∣
∣
∣−ROKM−

K
PM−

K
Z+

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2
+
∣
∣
∣

∣
∣
∣

∣
∣
∣PM−

K
Z+

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

)

6
m′

m

∣
∣
∣
∣
∣
∣(PZ+)

−1
∣
∣
∣
∣
∣
∣
l2

(
∣
∣
∣
∣
∣
∣(ROK

)−1
∣
∣
∣
∣
∣
∣
l2

∣
∣
∣

∣
∣
∣

∣
∣
∣ROKM−

K

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

∣
∣
∣

∣
∣
∣

∣
∣
∣PM−

K
Z+

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2
+
∣
∣
∣

∣
∣
∣

∣
∣
∣PM−

K
Z+

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

)

6
m′

m

∣
∣
∣
∣
∣
∣(PZ+)

−1
∣
∣
∣
∣
∣
∣
l2

(
∣
∣
∣
∣
∣
∣(ROK

)−1
∣
∣
∣
∣
∣
∣
l2

∣
∣
∣

∣
∣
∣

∣
∣
∣ROKM−

K

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2
+ 1

) ∣
∣
∣

∣
∣
∣

∣
∣
∣PM−

K
Z+

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

But, we have,

∣
∣
∣
∣
∣
∣(PZ+)

−1
∣
∣
∣
∣
∣
∣
l2
6 m′,

as the inverse of a principal minor of P .

∣
∣
∣
∣
∣
∣(ROK

)−1
∣
∣
∣
∣
∣
∣
l2
6

1

m
,

since it is the inverse of a principal minor of R.

∣
∣
∣

∣
∣
∣

∣
∣
∣ROKM−

K

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2
6 m′

as an extracted operator of R.
Thus, we get ∣

∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
pK(N)

∣
∣
Z+

− p∞
∣
∣
Z+

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
lR2

6 C4

∣
∣
∣

∣
∣
∣

∣
∣
∣PM−

K
Z+

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2
,
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where C4 = m′2

m
(1 + m′

m
) Since f⋆ ∈ Ws (Assumption 2.1), and f⋆ > m > 0, we have also

1
f⋆ ∈ Ws. If we denote p(k) = Pi,i+k the Fourrier coefficient of 1

f⋆ , we get

∣
∣
∣

∣
∣
∣

∣
∣
∣PM−

K
Z+

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

6

∥
∥
∥PM−

K
Z+

∥
∥
∥
2

6

√
∑

i6−K(N);06j

p(j − i)2

6

√
√
√
√

∞∑

i=K(N)

∞∑

j=i

p(j)2

6

√
√
√
√
√

∞∑

i=K(N)

∥
∥
∥

1
f⋆

∥
∥
∥
Ws

is

6

√∥
∥
∥
∥

1

f⋆

∥
∥
∥
∥
Ws

1

K(N)s−1

So that the lemma is proved and the bias is given by

∣
∣
∣

∣
∣
∣

∣
∣
∣pK(N)

∣
∣
BK

− p∞
∣
∣
Z+

∣
∣
∣

∣
∣
∣

∣
∣
∣
lR2

6 C4

√∥
∥
∥
∥

1

f ⋆

∥
∥
∥
∥
Ws

1

K(N)
2s−1

2

.

Actually, the rate of convergence for the bias is given by the regularity of the spectral
density, since it depends on the coefficients far away from the principal diagonal.

Now, we prove Lemma 5.3, which achieves the proof of the theorem.

Proof. of Lemma 5.3
At first,

|||A|||l2 =
∣
∣
∣

∣
∣
∣

∣
∣
∣(R̃OK

)−1R̂OKBK
− (ROK

)−1ROKBK

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

6 |||ROKBK
|||l2
∣
∣
∣

∣
∣
∣

∣
∣
∣(R̃OK

)−1 − (ROK
)−1
∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

+
∣
∣
∣

∣
∣
∣

∣
∣
∣(R̃OK

)−1
∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

∣
∣
∣

∣
∣
∣

∣
∣
∣R̂OKBK

−ROKBK

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

6 |||ROKBK
|||l2
∣
∣
∣

∣
∣
∣

∣
∣
∣(R̃OK

)−1
∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

∣
∣
∣
∣
∣
∣(ROK

)−1
∣
∣
∣
∣
∣
∣
l2

∣
∣
∣

∣
∣
∣

∣
∣
∣R̃OK

−ROK

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

+
∣
∣
∣

∣
∣
∣

∣
∣
∣(R̃OK

)−1
∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

∣
∣
∣

∣
∣
∣

∣
∣
∣R̂OKBK

−ROKBK

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

But, we have,

|||ROKBK
|||l2 6 m′,

as an extracted operator of R.

∣
∣
∣
∣
∣
∣(ROK

)−1
∣
∣
∣
∣
∣
∣
l2
6

1

m
,

as the inverse of a principal minor of R.

∣
∣
∣

∣
∣
∣

∣
∣
∣(R̃OK

)−1
∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

6
4

m
,
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thanks to the regularization.

∣
∣
∣

∣
∣
∣

∣
∣
∣R̃OK

− ROK

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

6 K(N) sup
p62K(N)

{|r̂N(p)− r(p)|}+ |α̂| ,
.

∣
∣
∣

∣
∣
∣

∣
∣
∣R̂OKBK

− ROKBK

∣
∣
∣

∣
∣
∣

∣
∣
∣
l2

6 K(N)

(

sup
p62K(N)

{|r̂N(p)− r(p)|}
)

thanks to the regularization.

|α̂| =
∣
∣
∣−min f̂N

K 11min f̂N
K
60 +

m

4
11min f̂N

K
6

m
4

∣
∣
∣

So,

|α̂| 6 (2K(N) + 1) sup
p62K(N)

{r̂N(p)− r(p)}+ m

4
11min f̂N

K
6

m
4

For the last inequality, we used the following lemma, proved in the next section

Lemma 5.4. The empirical spectral density is such that, for N large enough
∥
∥
∥f̂N

K(N) − f ⋆
∥
∥
∥
∞

6 (2K(N) + 1) sup
p62K(N)

{r̂N(p)− r(p)}+ m

4
,

which implies
∣
∣
∣min f̂N

K 11min f̂N
K
60

∣
∣
∣ 6 (2K(N) + 1) sup

p62K(N)

{r̂N(p)− r(p)}

So, we obtain,

|||A|||l2 6
4m′

m2

(

K(N) sup
p62K(N)

{|r̂N (p)− r(p)|}+ |α̂|
)

+
4

m
K(N)

(

sup
p62K(N)

{|r̂N (p)− r(p)|}
)

6

(
6m′

m2
+

4

m
+ 2 +

1

K(N)

)

K(N)

(

sup
p62K(N)

{|r̂N(p)− r(p)|}
)

+
m′

m
11min f̂N

K
6

m
4

We will use here some other technical lemmas whose proofs are also given in the last
section. The first one gives an uniform concentration result on the estimator r̂N(p)) :

Lemma 5.5. For all window K(N)such that K(N) → ∞ and K(N) log(K(N)) = o(N),
there exists N0 such that, for all N > N0, and x > 0,

∀p 6 2K(N), |r̂N(p)− r(p)| > 4m′(

√

(log(K(N)) + x)

N
+

x

N
),

with probability at least 1− e−x

For ease of notations, we set C0 = 4m′ (6m′

m2 + 4
m
+ 2
)
and C3 = m′

m
. For the compu-

tation of the mean, the interval [0,+∞] will be divided into three parts, where only the
first contribution is significant, thanks to the exponential concentration. We prove by
computation, that the two other parts are negligible.

We just obtained, for all x > 0

|||A|||lR2 6 (C0 + o(1))K(N)

(√

log(K(N) + x

N
+

x

N

)

+ C311min f̂N
K
6

m
4
,
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with probability at least 1− e−x

Set t1 =

(

C0K(N)
√

log(K(N))
N

)4

For t ∈ [0, t1], we use the inequality

P

(

|||A|||4lR2 > t
)

6 1

We obtain the first contribution to the integral, which is also the non negligible part.

∫ t1

0

P

(

|||A|||4lR2 > t
)

dt =

(

C0K(N)

√

log(K(N))

N

)4

Now, set t2 =

(

C0K(N)
√

log(K(N))+N

N
+ C3

)4

For t ∈ [t1, t2], we use

P

(

|||A|||4lR2 > sup

(

C4
0K(N)4

(
log(K(N)) + x

N

)2

, C4
0K(N)4

( x

N

)4
))

6 e−x+P

(

min f̂N
K 6

m

4

)

But, notice that the last lemma provides

P

(

2K(N) sup
p62K(N)

{|r̂N (p)− r(p)|} >
m

2

)

6 e
− Nm2

(64K(N)m′)2 )

Indeed, set x0(N) = Nm2

(64K(N)m′)2
.

One can compute that with probability at least 1− e−x0(N),

sup
p62K(N)

{|r̂N (p)− r(p)|} 6 4m′
(√

log(K(N)) + x0(N)

N
+

x0(N)

N

)

6 4m′
(√

log(K(N))

N
+

m2

(64K(N)m′)2
+

m2

(64K(N)m′)2

)

6 4m′
(√

log(K(N))

N
+

√

m2

(64K(N)m′)2
+

m2

(64K(N)m′)2

)

6 4m′
(√

log(K(N))

N
+

m

(64K(N)m′)
+

m2

(64K(N)m′)2

)

6
m

8K(N)
,

for N large enough. Hence,

P

(

min f̂N
K 6

m

4

)

6 e
− Nm2

(64K(N)m′)2

So, we have

P

(

|||A|||4l2 > max

(

C4
0K(N)4

(
log(K(N)) + x

N

)2

, C4
0K(N)4

( x

N

)4
))

6 e−x + e
− Nm2

(64K(N)m′)2
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Then, the following lemma will be useful for changing a probability inequality into an L
2

inequality.

Lemma 5.6. Let X be a nonnegative random variable such that there exists two one to one maps

f1 and f2 and a C > 0 with

∀x > 0P (X > sup(f1(x), f2(x))) 6 e−x + C,

then

P (X > t) 6 e−f−1
1 (t) + e−f−1

2 (t) + C

So, thanks to lemma 5.6, we have

P

(

|||A|||4lR2 > t
)

6 e
−N

√

t

C4
1
K(N)4

+log(K(N))

+ e
−N 4

√

Nt

C4
1
K(N)4

+ e
− Nm2

(64K(N)m′)2

Now, we will prove that each term can be neglected. Integrating by part, we obtain

∫ t2

t1

e
−
√

t

C4
0K(N)4

+log(K(N))

dt 6

∫ ∞

t1

e
−N

√

t

C4
0K(N)4

+log(K(N))

dt

6

[

−2
√
tC2

0K(N)2

N
e
−N

√

t

C4
0
K(N)4

+log(K(N))
]∞

t1

+

∫ ∞

t1

C2
0K(N)2

N
√
t

e
−N

√

t

C4
0
K(N)4

+log(K(N))

dt

6
2 log(K(N))C4

0K(N)4

N2
+

2C4
0K(N)4

N2

= o





(

C0K(N)

√

log(K(N))

N

)4




Then,

∫ t2

t1

e
− 4

√

Nt

C4
0
K(N)4

dt 6 t2e
−N 4

√

t1
C4
0
K(N)4

6 t2e
−
√

N log(K(N))

= o





(

C0K(N)

√

log(K(N))

N

)4




So that,

∫ t2

t1

e−x0(N)dt 6 t2e
− Nm2

(64K(N)m′)2

= o





(

C0K(N)

√

log(K(N))

N

)4


 .

Leading to
∫ t2

t1

P

(

|||A|||4l2 > t
)

dt = o





(

C0K(N)

√

log(K(N))

N

)4


 ,

19



Finally, for t ∈ [t2,+∞], we use

P



|||A|||4l2 > max





(

C0K(N)

√

log(K(N)) + x

N
+ C3

)4

,
(

C0K(N)
x

N
+ C3

)4







 6 e−x

Thanks to lemma 5.6, we get

P

(

|||A|||4l2 > t
)

6 e
−N

(

4√
t−C3

C0K(N)

)2

+log(K(N))
+ e

−N
( 4√

t−C3)
C0K(N)

So, by an integrating by part, we obtain

∫ +∞

t2

e
−N

(

4√
t−C2

C0K(N)

)2

+log(K(N))
dt 6

∫ +∞

4
√
t2−C3

4(u+ C3)
3e

−N
(

u
C0K(N)

)2
+log(K(N))

du

6

[

P (u,N,K(N))e
−N

(

u
C0K(N)

)2
+log(K(N))

]+∞

4√t2−C3

6 P (u,N,K(N))e−N

6 o





(

C0K(N)

√

log(K(N))

N

)4


 .

Here, P (u,N,K(N)) is a polynomial of degree 3 in u and is rational function in N and K(n).
Furthermore,

∫ +∞

t2

e
−N

( 4√
t−C3)

C0K(N) dt 6

∫ +∞

4√t2−C3

4(u+ C3)
3e

−N u
C0K(N) du

6

[

P (u,N,K(N))e
−N u

C0K(N)

]+∞
4√t2−C3

6 P (u,N,K(N))e−
√

N(log(K(N))+N)

6 o





(

C0K(N)

√

log(K(N))

N

)4


 ,

where P (u,N,K(N)) is polynomial of degree 3 in u and is rational function in N and K(n).
We proved here

∫ ∞

0
P

(

|||A|||4l2 > t
)

6 C4
0K(N)4(

log(K(N))

N
)2 + o(K(N)4(

log(K(N))

N
)2),

which achieve the proof.

5.4 Technicals lemmas

We prove now the technicals lemmas :

Proof. of Lemma 5.5
Notice that r̂N(p) = TN(u) with u = N

N−p
cos(pt). We use the following proposition

from [11]. Let X1, · · · , Xn be a centered Gaussian stationary sequence and u a bounded
function such that Tn(u) is a symmetric non negative matrix. Then the following concen-
tration inequality holds for Zn(u) =

1
n
(X ′Tn(u)X − E[X ′Tn(u)X ]) :

P
(
Zn(u) > 2 ‖f‖∞

(
‖u‖2

√
x+ ‖u‖∞ x

))
6 e−nx
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By applying this result respectively with u and −u and we obtain

P

(
∣
∣r̂N(p)− r(p)

∣
∣ > 2m′ N

N − p
(
√
x+ x)

)

6 2e−Nx

or, equivalently,

∣
∣r̂N(p)− r(p)

∣
∣ > 2m′ N

N − p
(

√

x+ log(K(N)) + 2 log(2)

N
+

x+ log(K(N)) + 2 log(2)

N
),

with probability lower than e−x

2K(N)
By taking an equivalent, we obtain that there exists

N0 such that, for all N > N0, for all p 6 2K(N)

P

(

∣
∣r̂N(p)− r(p)

∣
∣ > 4m′

√

x+ log(K(N))

N
+

x

N

)

6
e−x

2K(N)

Proof. of Lemma 5.6
We set t = sup(f1(x), f2(x)) If t = f1(x) then

P (X > t) 6 e−f−1
1 (t) + C 6 e−f−1

1 (t) + e−f−1
2 (t) + C

Symmetrically, if t = f2(x) we have

P (X > t) 6 e−f−1
1 (t) + e−f−1

2 (t) + C

Proof. of Lemma 5.4 It is sufficient to ensure that the bias is small enough. Choose N0

such that
2 ‖f ⋆‖Ws

K(N)−s+1
6

m

4

Then we use

∥
∥
∥f̂N

K(N) − f ⋆
∥
∥
∥
∞

6

K(N)
∑

p=−K(N)

∣
∣r̂N(p)− r(p)

∣
∣+ 2

∑

p>K(N)

|r(p)|

6 (2K(N) + 1) sup
p62K(N)

{r̂N(p)− r(p)}+ 2 ‖f ⋆‖Ws
K(N)−s+1

6 (2K(N) + 1) sup
p62K(N)

{r̂N(p)− r(p)}+ m

4
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[16] Ulf Grenander and Gábor Szegő. Toeplitz forms and their applications. Chelsea
Publishing Co., New York, second edition, 1984.

[17] George A. F. Seber. A matrix handbook for statisticians. Wiley Series in Probability
and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2008.

[18] Michael L. Stein. Interpolation of spatial data. Springer Series in Statistics. Springer-
Verlag, New York, 1999. Some theory for Kriging.

22


	1 Notations and preliminary definitions
	2 Time series prediction with finite past observations
	2.1 Projection onto finite observations with known covariance
	2.2 Construction of the empirical projection operator

	3 Asymptotic behaviour of the empirical projection operator
	4 Numerical Simulations
	5 Appendix
	5.1 Proof of Theorem ??
	5.2 Proof of Proposition ??
	5.3 Proofs of Concentration and regularity lemmas 
	5.4 Technicals lemmas


