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Abstract

We find the exact eigenvalues and eigenfunctions for the problem of a particle in a box with

a delta function potential V (x) = λδ(x − x0) using the factorization method. We show that the

presence of the delta function potential results in the discontinuity of the corresponding ladder

operators. More importantly, the presence of the delta function potential allows us to obtain the

full spectrum of the problem in the first step of the factorization procedure even for the weak

coupling limit (λ → 0).
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I. INTRODUCTION

Schrödinger equation is the basic equation for the non-relativistic quantum mechanics.

The time-independent form of this equation in the presence of a potential V can be written

as1

Hψ = − h̄2

2m
∇2ψ + V ψ = Eψ, (1)

where H is the Hamiltonian operator of the system, ψ is the wave function, m is the mass of

the particle and E is the eigenenergy. This eigenvalue equation can be solved exactly only

for a few number of potentials.

A particle in a box and a particle in a δ−function potential are two well-known, instruc-

tive, and exactly solvable examples in quantum mechanics textbooks.1 The former can be

used to describe the semiconductor quantum dots and quantum wells at low temperatures2,3

and the later can be used as a model for atoms and molecules.4

The problem of a particle in a box with a delta function potential has been recently

investigated using a perturbative expansion in the strength of the delta function potential

λ.5 Moreover, the exact solutions has also been obtained by Joglekara for the weak (λ→ 0)

and the strong (1/λ→ 0) coupling limits.6

In this paper, we discuss the problem of a particle in a box with a delta function potential

using the factorization method. We obtain the energy spectrum and the corresponding

ladder operators. We show that, contrary to the first anticipation, the presence of the delta

function potential simplifies the factorization procedure more. In this respect, we find the

full spectrum of the Hamiltonian in the first step of the factorization method. Furthermore,

we show that this result is also true for the weak coupling limit (λ→ 0).

II. PARTICLE IN A BOX WITH A DELTA FUNCTION POTENTIAL

Let us consider a particle in a one-dimensional box of size a with a delta function potential,

V (x) = λ δ(x−x0) = λ δ(x−pa) where 0 < p < 1. Now, the corresponding time-independent

Schrödinger equation takes the following form

− h̄2

2m

d2ψn(x)

dx2
+ λδ(x− pa)ψn(x) = Enψn(x), (2)

where ψn(x) and En are the corresponding eigenfunctions and eigenvalues, respectively.

Because of the boundary conditions (ψn(x) = 0 for x ≤ 0 or x ≥ a) the eigenfunctions take
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the following form inside the box

ψn(x) =











A sin(knx), 0 ≤ x ≤ pa,

B sin[kn(x− a)], pa ≤ x ≤ a,
(3)

where kn =
√

2mEn

h̄2
. Moreover, the continuity condition of the wave function at x = pa

gives AB =
sin[(p− 1)kna]

sin(pkna)
. Since the delta function potential is infinite at the point x = pa,

the first derivative of the wave function is not continuous and the relation between the left

and right derivatives of the wave function can be obtained by integrating the Schrödinger

equation (2) over a small interval (x0 − ǫ, x0 + ǫ)

dψn(x)

dx
|pa+ǫ −

dψn(x)

dx
|pa−ǫ =

2m

h̄2

∫ pa+ǫ

pa−ǫ
V (x)ψn(x)

=
2mλ

h̄2
ψn(pa). (4)

Substituting above eigenfunctions (3) in the discontinuity condition (4) results in the fol-

lowing quantization condition5,6

kn sin(kna) =
2mλ

h̄2
sin(pkna) sin[(p− 1)kna]. (5)

The solutions to above equation give us the energy spectrum of the Hamiltonian, En =
h̄2k2n
2m .

III. PARTICLE IN A BOX WITH A DELTA FUNCTION POTENTIAL REVIS-

ITED: THE FACTORIZATION METHOD

To calculate the eigenvalues and eigenfunctions of a Hamiltonian operator H, we can

use a general operational procedure so called the factorization method. In this method, the

Hamiltonian of the system is written as the multiplication of two ladder operators. Then,

we use these operators to obtain the Hamiltonian’s eigenfunctions. In general, in contrast

to the case of a simple harmonic oscillator, one ladder operator is not enough to form all

the Hamiltonian’s eigenfunctions and for each eigenfunctions a ladder operator is needed.

This method was first introduced by Schrödinger7–9 and Dirac10 and was further developed

by Infeld and Hull11 and Green12. The spirit of the factorization method is to write the

second-order differential operator H as the product of two first order differential operators

a and a†, plus a real constant E. The form of these operators depends on the form of the

potential V (x) and the factorization energy.
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The procedure of finding the ladder operators and the eigenfunctions consists of some

steps;13 We find operators a1, a2, a3, ... and real constants E1, E2, E3, ... from the following

recursive relations

a†1a1 + E1 = H,

a†2a2 + E2 = a1a
†
1 + E1,

a†3a3 + E3 = a2a
†
2 + E2, ...

(6)

or generally

a†n+1an+1 + En+1 = ana
†
n + En, j = 1, 2, ..., (7)

where the real constants En’s are the Hamiltonian’s eigenvalues and the operators an’s are

the ladder operators used to form the eigenfunctions. Also, assume that there exists a null

eigenfunction |ξn〉 with zero eigenvalue for each an, namely

an|ξn〉 = 0. (8)

Hence, En is the nth eigenvalue of the Hamiltonian with the following corresponding

eigenfunction13 (up to a normalization coefficient)

|En〉 = a†1a
†
2...a

†
j−1|ξn〉. (9)

Because of Eq. (6), it would be useful to consider the following form of ladder operators

an =
1√
2m

(P + ifn(x)), (10)

where P is the momentum operator and fn(x) is a real function of x. Although these

operators are not hermitian (a†n = 1√
2m

(P − ifn(x)) 6= an), their product will be hermitian

a†nan =
1

2m
P 2 +

1

2m
f 2
n +

h̄

2m

dfn
dx

. (11)

Now, we are ready to find the ladder operators and eigenenergies of our problem. First, let

us consider Eq. (6) for n = 1

a†1a1 + E1 = H. (12)

Because of the form of the Hamiltonian (2) and the ladder operators (11), we can rewrite

above equation as

P 2

2m
+

1

2m
f 2
1 +

h̄

2m

df1
dx

+ E1 =
P 2

2m
+ λδ(x− pa), (13)
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or equivalently
1

2m
f 2
1 +

h̄

2m

df1
dx

+ E1 = λδ(x− pa). (14)

Note that, contrary to the case of Schrödinger equation (2), above equation is a non-linear

first-order differential equation. To solve Eq. (14), let us consider the left-hand and right-

hand sides of the delta function potential separately. For these regions, above equation

reduces to
1

2m
f 2
1 +

h̄

2m

df1
dx

+ E1 = 0, x 6= pa, (15)

which has the following solution

f1 =
√

2mE1 cot[

√
2mE1

h̄
(x− b)], (16)

where b is the constant of integration. We insist that f1 be finite in the range 0 < x < a,

where it is the answer to our problem. Knowing that the singularities of cotangent function

are π radian apart, we choose the points x = 0 and x = a as the singularity points of the

f1. Since at these points the potential and hence the Hamiltonian are infinite, f1 could be

infinite at the boundaries. So we have

f1(x) =











√
2mE1 cot[

√
2mE1

h̄
x], x < pa,

√
2mE1 cot[

√
2mE1

h̄
(x− b)], x > pa,

(17)

where

√

2mE1

h̄ (a − b) = π. In order to fix the value of b, we need to use the discontinuity

relation of ladder operators which can be obtained by integrating Eq. 14 over the small

interval (pa− ǫ, pa+ ǫ)

f1(pa+ ǫ)− f1(pa− ǫ) =
2mλ

h̄
. (18)

This relation shows that the presence of the delta function potential results in the discon-

tinuity of f1(x) at x = pa. Now, using Eq. 17 and b = − πh̄
√

2mE1

+ a, Eq. 18 reduces

to
√

2mE1

{

cot[

√
2mE1

h̄
(pa+

πh̄√
2mE1

− a)]− cot[

√
2mE1

h̄
(pa)]

}

=
2mλ

h̄
. (19)

Also, using the fact that cot(π+α) = cotα, the above result will be written in the following

form

k1 {cot[(p− 1)k1a]− cot(k1a)} =
2mλ

h̄2
, (20)
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or

k1 sin(k1a) =
2mλ

h̄2
sin(pk1a) sin[(p− 1)k1a], (21)

where k1 =

√

2mE1

h̄ . This equation is similar to Eq. (5) which has previously been obtained

using the explicit form of the Schrödinger equation. It is interesting to note that, although

we were looking for the ground state energy of the Hamiltonian in the first step of the

factorization method, this result gives us the full spectrum of the model. Moreover, this

conclusion is also true for the case of weak coupling limit (λ → 0). At this limit, from

Eq. (21) we have sin(k1a) = 0 which results in the full spectrum of a particle in a box

k1 =
nπ
a . This result has an interesting consequence; If we use the factorization method to

calculate the energy levels of a particle in a box with λ = 0, we cannot find all of them in

the first step of the procedure. In fact, we should continue the recursion relations to find one

of the eigenvalues in each step13. Thus, contrary to the case of Schrödinger equation, the

presence of the delta function potential simplifies the problem more from the factorization

method point of view. So, it is not necessary to continue the recursion relations and we only

need to replace index 1 with n in Eqs. (17,21).

Now, in order to obtain the eigenfunctions we rewrite Eq. (8) as
(

h̄

i

d

dx
+ ih̄kn cot(knx)

)

ξn(x) = 0, x < pa, (22)

(

h̄

i

d

dx
+ ih̄kn cot[kn(x− b)]

)

ξn(x) = 0, x > pa, (23)

where ξn(x) ≡ 〈x|ξn〉. It can be easily checked that the following solution satisfy above

equations

ξn(x) =











sin(knx), x < pa,

sin[kn(x− b)], x > pa.
(24)

It is obvious that this result is similar to Eq. (3) for x < pa. Moreover, since knb = kna− π

we have sin[kn(x− b)] = sin[kn(x− a) + π] = − sin[kn(x− a)]. So, these eigenfunctions are

equal to Eq. (3) up to normalization coefficients.

IV. CONCLUSION

We have considered the problem of a particle in a box in the presence of a delta function

potential using the factorization method. We obtained the energy eigenvalues and eigenfunc-
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tions and their corresponding ladder operators. We showed that the presence of the delta

function potential results in the discontinuity of the ladder operators. More importantly, we

obtained all solutions in the first step of the factorization method even for the weak coupling

limit (λ → 0). So, the presence of the delta function potential much more simplifies the

factorization procedure with respect to its absence.
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