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Quantum noise and self-sustained radiation of PT -symmetric systems
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The observation that PT -symmetric Hamiltonians can have real-valued energy levels even if
they are non-hermitian has triggered intense activities, with experiments in particular focusing on
optical systems, where hermiticity can be broken by absorption and amplification. For classical
waves, absorption and amplification are related by time-reversal symmetry. This work shows that
microreversibility-breaking quantum noise turns PT -symmetric systems into self-sustained sources
of radiation, which distinguishes them from ordinary, hermitian quantum systems.

PACS numbers: 42.50.Lc, 03.65.-w, 03.65.Nk

A frequent common factor in quantum systems with
a non-hermitian Hamiltonian is the non-conservation of
particle number, either because the system is open, or
because of loss or gain in an absorbing or amplifying
medium. Ignoring non-linear effects such as the feed-
back in a laser, such systems ordinarily do not possess
stationary states; instead, they only support decaying
quasi-bound states with complex energy, where the imag-
inary part ImE = −1/2τ (setting ~ ≡ 1) accounts for
particle loss with decay rate 1/τ . A notable exception
are non-hermitian systems that are invariant under joint
parity (P) and time-reversal (T ) symmetry [1]. These
PT -symmetric systems generically possess a set of real-
valued energy levels, as well as complex energy levels that
occur in complex-conjugate pairs. Systems with entirely
real spectrum define a consistent unitary extension of
quantum mechanics [2, 3]. This observation has led to
intense research efforts delivering a new theoretical per-
spective on systems as varied as quantum field theories
and complex crystals (reviewed in Ref. [4]), while experi-
mental realizations in particular focus on optical systems
where hermiticity can be violated by absorption and am-
plification [5].

For classical waves, amplification and absorption are
strictly related by time reversal. Physically, the existence
of stationary states with real energy can therefore be seen
as a consequence of the balance of amplification and ab-
sorption in parity-related regions of PT -symmetric sys-
tem. At the heart of absorption and amplification, how-
ever, are noisy microscopic quantum processes (sponta-
neous and stimulated emission events, and stimulated
absorption events) which effectively break time-reversal
symmetry [6] (for the delicate reservoir engineering re-
quired to time-reverse spontaneous emission see [7]). In
this work I show that the effects of quantum noise dis-
tinguish PT -symmetric systems from hermitian quantum
systems, and indeed suggest an alternative interpretation
of the physics behind non-hermitian PT -symmetry: (i)
Accounting for quantum noise, PT -symmetric systems
with stationary states are self-sustained sources of radi-
ation, fed by the pumping in the amplifying parts of the
system. (ii) That the energy of these states is real means
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FIG. 1: Illustration of the scattering input-output approach
to non-hermitian PT -symmetric systems, defining the scat-
tering input-output operators â and internal bosonic modes
b̂ in different parts of the system. Semi-transparent mirrors
with transmission probability Γ are introduced to study the
limit Γ → 0 of a closed system.

that the system is stabilized at the lasing threshold. (iii)
When the system is sufficiently open, the emitted radi-
ation breaks parity symmetry (i.e., the emission pattern
is asymmetric). (iv) In the limit of a closed system the
emitted radiation intensity approaches a constant value,
and provides a direct measure of the non-hermiticity of
the system. The internal energy density of radiation then
diverges, which entails a practical limitation for the im-
plementation of PT symmetry in closed systems.

These conclusions are obtained by employing the
quantum-optical input-output formalism in its scattering
formulation [8–10]. The scattering approach also pro-
vides insight into PT symmetry for classical waves [11],
which defines the starting point of this paper.

Scattering approach to non-hermitian PT -symmetric

systems.—Probing the internal dynamics of an optical
system by external radiation naturally leads to the scat-
tering scenario depicted in Figure 1. The relation aout =
Sain between incoming and outgoing wave amplitudes

is provided by the scattering matrix S(E) =

(

r t′

t r

)

,

which contains blocks describing reflection (r, r′) and
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transmission (t, t′) when probed from the left or right, re-
spectively. Each block consists of an N ×N -dimensional
matrix, where N is the number of modes at each en-
trance. The poles of the scattering matrix determine
the energies of quasibound states, which turn into bound
states as the system is closed off.
In general, the scattering matrix fulfills the fol-

lowing two reciprocity relations: The Onsager rela-
tion S(γ,−B,E) = ST (γ,B,E), and the relation
S(−γ,B,E) = [S†(γ,B,E∗)]−1 of classical microre-
versibility. Here, γ and B characterize two possi-
ble sources of broken time-reversal symmetry: absorp-
tion/amplification (γ > 0/γ < 0), which contribute an
imaginary symmetric (nonhermitian) term to the Hami-
tonian H, and magneto-optical effects (B), which con-
tribute an imaginary antisymmetric (but still hermitian)
term.
Conventional time-reversal T H = H∗ transforms so-

lutions according to T ψ = ψ∗, which interchanges in-
coming and outgoing states, and therefore transforms the
scattering matrix according to

T S(γ,B,E) = [S∗(γ,B,E)]−1 = S(−γ,−B,E∗). (1)

Assuming that energy is real, a system has T symme-
try, T S = S hence S∗ = S−1, if S(γ,B) = S(−γ,−B),
which requires γ = B = 0 [12]. Parity PH(x) = H(−x)
transforms solutions according to Pψ(x) = ψ(−x), which
exchanges the left and right leads and yields

PS(γ,B,E) = σxS(γ,B,E)σx, (2)

where σx is a Pauli matrix. The PT operation on the
scattering matrix is therefore given by

PT S(γ,B,E) = σx[S
∗(γ,B,E)]−1σx (3)

= σxS(−γ,−B,E∗)σx. (4)

For hermitian systems, PT -symmetry implies S =
σxS

Tσx [13]. For non-hermitian systems, PT symme-
try implies the additional condition Pγ = −γ [e.g.,
γ(x) = −γ(−x) if P is reflection about the xy plane],
i.e., there is a balance of absorption and amplification in
parity-related regions.
Let us now explore from the scattering perspective how

real-energy bound states appear in PT -symmetric sys-
tems. As shown in Fig. 1, such systems can be con-
structed by joining two regions, where the left region,

with scattering matrix S1 =

(

r1 t′1
t1 r′1

)

, is PT -symmetric

to the right region, S2 = PT S1, which using standard
block-inversion formulas can be written as

S2 =





1
(r′

1
−t1r

−1

1
t′
1
)∗

(r′−1
1 t1)

∗ 1
(t′

1
r
′−1

1
t1−r1)∗

(r−1
1 t′1)

∗ 1
(t1r

−1

1
t′
1
−r′

1
)∗

1
(r1−t′

1
r′
1

−1
t1)∗



 .

(5)

Bound states can be studied by closing the system off
by mirrors with small transmission probability Γ ≪ 1,
described by a scattering matrix

SΓ = −
( √

1− Γ i
√
Γ

i
√
Γ

√
1− Γ

)

. (6)

Including the mirrors, the scattering matrix of the left
half of the system can then be written as

SL = −





r1+
√
1−Γ

1+r1

√
1−Γ

it
′

1

√
Γ

1+r1

√
1−Γ

it1

√
Γ

1+r1

√
1−Γ

t1t
′

1

√
1−Γ

1+r1

√
1−Γ

− r′1



 , (7)

while the scattering matrix SR = PT SL of the right half
again follows from symmetry. These scattering matrices
relate amplitudes of in- and outgoing modes (defined in
Fig. 1) according to

(

aout
L

aright0

)

= S
L

(

ain
L

aleft0

)

,

(

aleft0

aout
R

)

= S
R

(

aright0

ain
R

)

.

(8)
The scattering matrix of the composed system is ob-

tained by algebraically eliminating the amplitudes aleft0

and aright0 at the interface between both regions. For
Γ → 0, these amplitudes become singular when

det Im (r′
L
) = det

[

Im

(

r′1 −
t1t

′
1

1 + r1

)]

= 0, (9)

which is the quantization condition of the closed system.
The quantization condition (9) requires that theN real

column vectors of Im (r′
L
) be linearly dependent, which

generically can be achieved by varying a single real pa-
rameter (identifying this as a problem of co-dimension
one). Therefore, the system typically possesses a number
of bound states with real energy, even if the Hamiltonian
is not hermitian.
Quantum noise.—The scattering approach can be ex-

tended to include quantum noise by passing from wave
amplitudes ain, aout to bosonic annihilation operators
âin, âout, respectively. This defines the scattering vari-
ant of the input-output formalism [8–10], which has been
used to describe systems that are exclusively absorbing
or amplifying. To adapt the approach to PT -symmetric
systems, where both effects are combined, we formally
separate the absorbing regions from the amplifying re-
gions, and then join them together similar to the de-
scription of classical waves, given above.
For definiteness let us assume that the left half of the

system is purely absorbing. For this part, the input-
output scattering relations then take the form

(

âout
L

âright0

)

= SL

(

âin
L

âleft0

)

+QLb̂L, (10)

which connects the in- and outgoing modes to bosonic
operators b̂ representing the medium. These operators
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appear because both âin and âout have to satisfy stan-
dard canonical commutation relations, dictating that the
coupling matrix QL satisfies the fluctuation-dissipation
theorem Q

L
Q†

L
= 1 − S

L
S†
L
[9]. In the right half of the

system, where the medium is amplifying, we have

(

âleft0

âout
R

)

= SR

(

âright0

âin
R

)

+Q
R
b̂†
R
, (11)

where the commutation relations now dictate coupling
to creation operators, with Q

R
Q†

R
= S

R
S†
R
− 1. By as-

sumption, the operators b̂†
L

and b̂R commute with âin;
however, according to Eqs. (10) and (11) they do not
commute with âout, which is a manifestation of broken
micro-reversibility in quantum optics.
We can now describe the full PT -symmetric system

by algebraically eliminating the interface operators âleft0

and âright0 . In absence of any incoming radiation, the
intensity emitted to the left and right is then given
by IL(E) = 1

2π 〈â
out†
L

âout
L

〉, IR(E) = 1
2π 〈â

out†
R

âout
R

〉, re-

spectively, which can be evaluated assuming 〈b̂†
L
b̂L〉 =

1 (ground-state population in the absorbing regions),

〈b̂†
R
b̂R〉 = 0 (total population inversion in the amplifying

regions; these conditions minimize the quantum noise).
Let us first consider the case of a single-mode resonator

(N = 1) with purely ballistic internal dynamics and ab-
sorption in the left region [14], described by scattering
matrices

S1 =

(

0 t1
t1 0

)

, S2 =

(

0 1/t∗1
1/t∗1 0

)

, (12)

where |t1| < 1. Including the mirrors, the total scattering
matrix is

S =





√
1−Γ(t∗1

2−t
2

1)
t2
1
(1−Γ)−t∗

1

2

|t1|2Γ
t2
1
(1−Γ)−t∗

1

2

|t1|2Γ
t2
1
(1−Γ)−t∗

1

2

√
1−Γ(t∗1

2−t
2

1)
t2
1
(1−Γ)−t∗

1

2



 , (13)

and the quantization condition (9) for the closed res-
onator takes the form Im t21 = 0. Following the quantum-
optical procedure described above we find that this res-
onator emits radiation of intensity

IL(E) =
Γ
(

|t1|−2 − 1
) (

1− Γ + |t1|2
)

π|(t1/t∗1)2 − 1 + Γ|2 , (14)

IR(E) =
Γ
(

1− |t1|2
) (

1− Γ + |t1|−2
)

π|(t1/t∗1)2 − 1 + Γ|2 . (15)

Since |t1| < 1 this gives IR > IL, the difference being

∆I(E) = IR(E)− IL(E) =
Γ2

(

|t1|−1 − |t1|
)2

π|(t1/t∗1)2 − 1 + Γ|2 . (16)

Therefore, the emission from the right exit, close to the
amplifying region of the medium, is larger than the emis-
sion from the left exit, close to the absorbing region of

the medium (formally, and up to a sign, IL and IR are
related by the transformation t1 → 1/t∗1).

The overall output intensity to both sides can be writ-
ten as

I(E) = IL(E) + IR(E) =
Γ(2− Γ)

(

|t1|−2 − |t|2
)

π|(t1/t∗1)2 − 1 + Γ|2 . (17)

Close to quantization in the closed system, [Γ ≪ 1,
E ≈ E0, where E0 fulfills the quantization condition
Im t21(E0) = 0], the emission pattern becomes symmetric
and approaches a Lorentzian of the form

IL(E) = IR(E) =
Γ
(

|t0|−2 − |t0|2
)

π|2iτ(E − E0) + Γ|2 . (18)

Here t0 = t1(E0), while τ = 2 Im t−1
1 dt1/dE|E=E0

is the
transmission delay time of propagation between the two
mirrors. The full width at half maximum is given by
∆E = Γ/τ . While this width shrinks to zero as the
system is closed off, remarkably the total intensity

Itot =

∫

I(E) dE =
|t0|−2 − |t0|2

τ
(19)

remains finite, and can be interpreted as a direct mea-
sure of the degree of non-hermiticity of the system (for
ballistic transport, hermiticity implies |t0| = 1, for which
the intensity vanishes).
In the more general case of a single-mode resonator

with backscattering (where r1 and r′1 are finite), compact
expressions can still be obtained as long as the leakage
remains small (Γ ≪ 1), implying according to Eq. (7)
that |rL +1|, |tL|, |t′L| ≪ 1. The emission pattern is then
still symmetric, with intensity

IL(E) = IR(E) =
1

2π

(1− |r′
L
|2)|t′

L
|2

|2( Im r′
L
)− itLt′L|2

. (20)

Linearization around the quantization condition again
reveals a Lorentzian line shape, with line width ∆E =
Re {d[(Im r′

L
)/tLt

′
L
]/dE}−1. Accounting for the scaling

(7) of scattering coefficients with Γ, the total intensity
Itot ∝ (1 − |r′

L
|2) again remains finite as Γ → 0. In the

hermitian case, this limit would imply |r′
L
| = 1, such that

the intensity vanishes. Therefore, the emitted radiation
is still a direct measure of the degree of non-hermiticity
of the system.
Following the general formalism described above, the

observations for one-dimensional scattering can be di-
rectly extended to the general case of PT -symmetric
systems with many modes, for which compact expres-
sions are no longer available. In particular, the emit-
ted intensity generally remains finite even in the limit
of a closed system. Because the expectation values
〈âleft†0 âleft0 〉 ∝ Γ−1, 〈âright†0 âright0 〉 ∝ Γ−1 of the internal
operators generally diverge in this limit, this is accom-
panied by a diverging internal energy density, which can
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be interpreted as the source of this radiation. In prac-
tice, this necessarily leads to saturation in the amplifying
parts of the system and therefore identifies an obstacle for
the implementation of strict PT symmetry in closed op-
tical systems. For open systems, the internal energy den-
sity becomes finite, while the emitted intensity remains
a direct measure of the non-hermiticity of the system.
Conclusions.—It has been observed that non-

hermitian PT -symmetric systems with an entirely real
spectrum define a consistent unitary theory of quantum
mechanics [2, 3]. This fascinating prospect can be formal-
ized using the concept of quasi-hermiticity, which intro-
duces a new scalar product based on a generalised conju-
gation operation C, satisfying C2 = 1, [C, H] = [C,PT ] =
0. The present paper demonstrates that accounting for
quantum noise, non-hermitian PT -symmetric systems
are physically distinct from ordinary hermitian quantum
systems because they emit self-sustained radiation of an
intensity which is a direct measure of non-hermiticity. To
understand the relation to quantum noise on a fundamen-
tal level, it suffices to consider the canonical commuta-
tion relations for the input and output operators. These
commutation relations are only invariant under unitary
transformations, which constraints the possibility to in-
troduce alternative scalar products. From a practical
perspective, the self-sustained radiation can be used as
an indicator of successfully implemented non-hermitian
PT -symmetry in open systems, while the diverging in-
ternal energy density identifies a practical obstacle for
its implementation in closed systems.
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