
 1 

Dispersion supported BB84 quantum key distribution using phase modulated light  

 

J. Mora, A Ruiz, W. Amaya and J. Capmany  

 

iTEAM Research Institute, Universidad Politécnica de Valencia 

Camino de Vera s/n, 46022 – Valencia (Spain) 

 

 

 

ABSTRACT 

We propose and experimentally demonstrate that, contrary to what it was thought up to 

now, BB84 operation is feasible using the double phase modulator (PM-PM) 

configuration in frequency coded systems. This is achieved by exploiting the phase to 

intensity conversion due to the chromatic dispersion provided by the fiber linking Alice 

and Bob.  Thus, we refer to this system as dispersion supported or DS BB84 PM-PM 

configuration.  
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Quantum cryptography features the unique way of sharing a random sequence of bits 

between users with a certifiably security not attainable with either public or secret-key 

classical cryptographic systems. This is achieved by means of quantum key distribution 

(QKD) techniques, which rely on exploiting the laws of quantum mechanics [1]. 

 

QKD deals with the need to distribute a key between a transmitter (Alice) and a receiver 

(Bob) with complete confidentiality.  If Alice and Bob encode their bits in states of a 

quantum system, a third party, the eavesdropper (Eve) interested in gaining access to the 

information they share will modify the quantum state and therefore will destroy its 

information.  At the same time, the eavesdropper will neither be able to keep a perfect 

copy of the sequence nor to send it again in order to avoid being detected, as this is not 

allowed by the non-cloning theorem [2]. 

 

Photonics is the principal enabling technology for long distance QKD using optical 

fiber links. A particularly interesting approach is the so called frequency coding 

technique proposed by Merolla and co-workers [3] which relies on encoding the 

information bits on the sidebands of either phase [4] or amplitude [5] radiofrequency 

(RF) modulated light.  In essence, Alice randomly changes the phase of the electrical 

signal used to drive a light modulator among four phase values (0, π) and (π/2, 3π/2), 

which form a pair of conjugated basis.  When arriving to Bob, he modulates the signal 

again using the same microwave signal frequency and thus his new sidebands will 

interfere with those created by Alice [3].  The frequency coded approach has the 

additional added value that its capacity can be upgraded by adding more microwave 
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subcarriers, an approach which is known as Subcarrier Multiplexed Quantum Key 

Distribution (SCM-QK) [6]-[8] 

 

The original proposal by Merolla and co-workers [5] based on the use of a pair of 

simple phase modulators (PM-PM configuration) was, in principle, suited only for the 

implementation of the B92 protocol [9]. In fact, to demonstrate the implementation of 

the BB84 protocol it had to be modified by replacing the phase modulators by 

amplitude modulators (AM-AM configuration) [5,10], which, in addition, need to be 

properly biased for successful operation.  

 

In this letter we demonstrate, contrary to what it was thought up to now, that BB84 

operation is feasible using the PM-PM configuration. This is achieved by exploiting the 

phase to intensity conversion due to the chromatic dispersion provided by the fiber 

linking Alice and Bob.  Thus, we refer to this system as dispersion supported or DS 

PM-PM configuration. This result is important for two reasons: first of all because it 

allows to implement the BB84 protocol rather than the insecure B92 protocol using the 

simplest frequency coded configuration (PM do not require bias voltage) and secondly 

because the conditions under which this is possible are compatible with those to be 

found in practice, since Alice and Bob will be, in general separated by a dispersive 

optical fiber link. 

 

The system under consideration is shown schematically in Fig. 1. We briefly recall its 

operation [3]. Assuming that Alice’s transmitter contains a monochromatic optical 

source that emits photons with an angular frequency ωo. The optical source is externally 

modulated by a phase modulator (PM1) which is fed by means of a local oscillator OL1. 
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The local oscillator gives an RF signal of frequency Ω in which Alice can introduce a 

random phase shift ΦA to encode the binary secret key (0 for bit “0” and p for bit “1”).  

Therefore, the output signal of Alice’s transmitter can be described when low 

modulation index mA is considered as: 

 

    (1)  

 

Where Eo is the amplitude of the electrical signal related with the average number of 

photons per bit and tA represents the optical losses of the PM1. After propagation 

through a fiber link of length L, the light is again externally modulated by another PM2 

at Bob’s receiver. PM2 is driven also with a frequency Ω but with variable phase ΦB 

coming from an OL2. Then, the output optical signal after PM2 is given by:  
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where α is the optical fiber losses, tB is the optical losses of the PM2 and mB is the 

modulation index of the PM2. From equation (2), we can observe that fiber chromatic 

dispersion β2 introduces a phase factor Φo = β2L  after propagation between the 

sidebands and the carrier of the optical signal coming from Alice’s transmitter. 

 

The final stage in the system is composed of two optical filters centered at ωo+Ω and 

ωo-Ω in order to measure the intensity of each optical sideband carrying the secret key. 
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The output of each filter is then sent to a photon counter. Therefore, the optical power 

normalized for each sideband is given by: 

P ωo +Ω( ) = 1
2
1+V cos ΦB − ΦA( )⎡⎣ ⎤⎦  

P ωo − Ω( ) = 1
2
1+V cos ΦB − ΦA + β2LΩ

2( )⎡⎣ ⎤⎦  

(3) 

 

Where the parameter V corresponds with visibility of each band, which can be written 

as: 

 (4) 

 

From equation (3), we observe that both sidebands have the same value when the fiber 

dispersion is negligible or compensated, i.e., when the term  can be considered 

close to zero or negligible, as assumed, for instance in [3]. Therefore, the BB84 protocol 

cannot be implemented since the amplitudes of both sidebands are always equal 

regardless of which particular base is chosen. However, we can see that the BB84 

protocol can be implemented when the visibility is unity ( ) and the following 

condition is fulfilled: 

 

 

(5) 

 

Since then, equation (3) can be written as [5]: 

 

 (6) 
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Equation (5) provides a design criterium for the system. If the overall link dispersion 

β2L  is fixed, then (5) gives the required value of the subcarrier frequency. On the other 

hand, if Ω  is fixed, then from (5) we get the value of the minimum required link 

dispersion.  

 

Implementing the QKD system with a pair of phase modulators brings up several 

advantages in terms of cost and system complexity. For instance phase modulators are 

cheaper than amplitude modulators and there is no need to fulfil the counterphase bias 

condition required when using two amplitude modulators. This point is certainly 

important since the modulator bias voltage tends to drift with time and keeping this 

condition would require in practice an additional simultaneous bias tracking circuitry. In 

addition, we can consider this configuration as a security upgrade since only the BB84 

protocol is implemented between Alice and Bob when (5) is fulfilled. For example if  

Ω  and β2  are fixed and Alice and Bob are separated by a distance L = π β2Ω
2  then 

any attempt of attack made by Eve at a point 0<z<L between Alice and Bob will result 

in her retrieving information with an increased QBER(z) as compared to that of a 

standard BB84 protocol. In fact, a simple computation yields the value: 

 

       (7) 

Where  dB is the detector dark count probability and the contrast C is defined as:  
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       (8) 

 

Note that the contrast takes its maximum value which corresponds with the visibility V 

for  z=L. As an example, figure 2 shows the evolution of the QBER for the DS PM-PM 

configuration as a function of the link distance z normalized to the total link length L 

for the case where , dB=8.10-6 and V=98%. For the sake of comparison a 

broken-trace curve is included showing the QBER evolution for the BB84 system based 

on the AM-AM configuration [merolla] and negligible dispersion. It becomes clear that 

the dispersion supported scheme converges to the standard BB84 system performance 

for z=L. 

 

In order to validate the proposal, we have  tested  the QKD system under classical 

operation regime (similar results are to be obtained when attenuating the signals as long 

as they can be represented by coherent states). The experimental demonstration was 

implemented with an optical laser delivering an output power of 5 dBm at 1550 nm. 

Both modulators, PM1 and PM2, were electrooptic phase modulators with a 20 GHz 

electrical bandwidth and a 2.5 dB optical insertion losses. The half-wave voltage was 

7.4 V.  The modulation index was 0.35 with a RF signal of 15 GHz. The fiber link had a 

length around 15 km to comply with equation (5) with n=1,  and the spectra were 

recorded using an optical spectrum analyzer (OSA). 

 

Figure 3 shows the power spectrum density measured at the OSA for three different 

fiber lengths when Bob chooses the correct base for the same state that Alice (left) or 
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the orthogonal state (right) which corresponds with a phase difference of 0 or 

π, respectively. In Fig.3 (a), we can observe that BB84 protocol can be implemented 

when the condition  is experimentally satisfied. According to expression (4), 

the optical sidebands  and appear or not depending to the constructive o 

destructive interference imposed by the phases chosen between Alice and Bob. 

However, the contrast of the interference is reduced when the length of the fiber link is 

far from that required by Equation (5) as shown in Figs. 3(b) and 3(c) which plot similar 

results for a fiber lengths of 7.3 km or a few of meters respectively. Due to the optical 

fiber losses, the optical power of the optical carrier  is -0.7, -2.6 and -4.0 dBm, 

respectively. 

 

The theoretical and experimental values of the amplitudes of the detected sidebands are 

plotted in figures 4.a (upper sideband) and 4.b (lower sideband) respectively as a 

function of the phase mismatch between Alice and Bob’s RF modulating signals. 

Results are included for the three different fiber link lengths previously considered. An 

excellent agreement can be observed between theoretical and experimental results. 

Furthermore, only for the case where the link length is that designed to fulfill with the 

condition imposed by Eq (5) one can appreciate the complementary characteristic of the 

sideband amplitudes, which is a distinctive feature of the BB84 operation.  

 

As an additional supporting experimental evidence, figure 5 plots the theoretical and 

experimental evolution of the contrast function given by (8). Notice again the excellent 

agreement between both results.  
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In summary, we have proposed and demonstrated, that by exploiting the phase to 

intensity conversion, which takes place in an optical fiber link due to chromatic 

dispersion, BB84 operation is feasible using the PM-PM configuration, which was 

thought to be valid only up to now for the implementation of the B92 protocol. 

Experimental results have been provided to support our proposal showing an excellent 

agreement with the theoretical predictions.   
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FIGURE CAPTIONS 

 

Figure 1. Scheme of the frequency coded system using a pair of phase modulators (PM-

PM configuration)). Alice an Bob are separated by a dispersive link of length L. 

 

Figure 2. (Solid trace) Evolution of the QBER for the DS PM-PM configuration as a 

function of the link distance z normalized to the total link length L for  and 

V=98%. (Broken-trace) QBER evolution for the BB84 system based on the AM-AM 

configuration [merolla] and negligible dispersion 

 

Figure 3. Power spectra for a fiber link with a length (a) 15 km, (b) 7.3 km and (c) 0 km 

. Left column results are for ΦA − ΦB = 0 . Right column results are for ΦA − ΦB = π  

 

Figure 4. Amplitude of sidebands for different phase shifts between Alice and Bob after 

15 km (■), 7.3 km (●) y 0 km (▲): (a) left optical sideband and (b) right optical 

sideband. (Solid traces represent theoretical results) . 

 

Figure 5. Theoretical and experimental evolution of the contrast function given by (8) 
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Figure 1. Scheme of the frequency coded system using a pair of phase modulators (PM-

PM configuration)). Alice an Bob are separated by a dispersive link of length L 
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Figure 2. (Solid trace) Evolution of the QBER for the DS PM-PM configuration as a 

function of the link distance z normalized to the total link length L for  and 

V=98%. (Broken-trace) QBER evolution for the BB84 system based on the AM-AM 

configuration [5] and negligible dispersion 
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Figure 3. Power spectra for a fiber link with a length (a) 15 km, (b) 7.3 km and (c) 0 km 

. Left column results are for ΦA − ΦB = 0 . Right column results are for ΦA − ΦB = π  
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Figure 4. Amplitude of sidebands for different phase shifts between Alice and Bob after 

15 km (■), 7.3 km (●) y 0 km (▲): (a) left optical sideband and (b) right optical 

sideband. (Solid traces represent theoretical results)  
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Figure 5. Theoretical and experimental evolution of the contrast function given by (8) 

 


