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Abstract

Improved EM strategies, based on the idea of efficient data augmentation (Meng and van
Dyk 1997, 1998), are presented for ML estimation of mixture proportions. The resulting
algorithms inherit the simplicity, ease of implementation, and monotonic convergence prop-
erties of EM, but have considerably improved speed. Because conventional EM tends to be
slow when there exists a large overlap between the mixture components, we can improve the
speed without sacrificing the simplicity or stability, if we can reformulate the problem so as
to reduce the amount of overlap. We propose simple “squeezing” strategies for that purpose.
Moreover, for high-dimensional problems, such as computing the nonparametric MLE of the
distribution function with censored data, a natural and effective remedy for conventional EM
is to add exchange steps (based on improved EM) between adjacent mixture components,
where the overlap is most severe. Theoretical considerations show that the resulting EM-type
algorithms, when carefully implemented, are globally convergent. Simulated and real data
examples show dramatic improvement in speed in realistic situations.

Keywords: AECM; cocktail algorithm; data augmentation; doubly censored data; EM; global
convergence; NPMLE; nonparametric mixtures; squeezing; vertex exchange method.

1 Introduction

Several statistical problems give rise to a likelihood function formally equivalent to that of a fi-

nite mixture model with known component densities. One example is maximum likelihood (ML)

estimation in a saturated multinomial model with ignorable missing data where some units are

partially classified (Dempster et al. 1977). Another example is nonparametric ML estimation

(NPMLE) of a mixing distribution (Lindsay 1983) when this distribution is assumed to be sup-

ported on a finite grid. Closely related is the NPMLE problem for the distribution function for
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censored data (Groeneboom and Wellner 1992; Böhning et al. 1996). The EM algorithm (Demp-

ster et al. 1977; Meng and van Dyk 1997) is among the simplest and best known methods for

ML computation in such mixture-like problems; Turnbull (1976) used it on censored data before

Dempster et al. (1977) laid down the general framework. The potential slow convergence of EM

in general, and for NPMLE computation in particular, is also well documented. Other methods

of computing the NPMLE include the iterative convex minorant (ICM) algorithm (Aragon and

Eberly 1992; Jongbloed 1998), the vertex exchange method (VEM; Böhning et al. 1996), and

constrained Newton methods (Wang 2008). EM or EM-like algorithms are also widely used for

related problems such as optimal experimental design (Silvey et al. 1978; Yu 2010a), Poisson im-

age reconstruction using positron emission tomography (Vardi et al. 1985), and channel capacity

calculations in Shannon theory (Arimoto 1972; Blahut 1972; Csiszár and Tusnády 1984).

This paper is concerned with improved EM strategies for maximizing a finite mixture log-

likelihood with known component densities. Possible extensions to more general problems are

mentioned in Section 5. Our main motivation is fast computation of the NPMLE for censored

data. The NPMLE problem is challenging partly because of the high dimension (there are many

mixture components), and the heavy overlap between components, which slows down conventional

EM. Our goal is to design algorithms that improve the speed of EM, but preserve its simplicity,

ease of implementation, and monotonic convergence properties. First, we introduce “squeezing”

strategies that reformulate the problem so as to reduce the overlap between component densities.

Such squeezing strategies capitalize on the idea of efficient data augmentation and are inspired by

Fessler and Hero (1994). The resulting EM algorithms converge faster because they correspond

to augmented data that are less informative. Secondly, we observe that although “squeezing”

may not always be effective for the entire collection of mixture components, we can apply it to

sub-collections that overlap most severely. Adding such EM-based conditional maximization steps

(nearest neighbor exchanges) can improve the speed dramatically. Overall, our algorithms fit in

the broad spectrum of alternating-expectation-conditional-maximization (AECM) schemes (Meng

and van Dyk 1997, 1998). The simplicity and effectiveness of these algorithms testify to the

advantage of working within the general EM framework (Dempster et al. 1977; Wu 1983; Meng

and Rubin 1993; Liu and Rubin 1994; Meng and van Dyk 1997; Liu et al. 1998). Also relevant

is the work of Pilla and Lindsay (2001), who focus on the nonparametric mixture problem and
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propose pairing nearby components and rotating the pairs for fast ML computation.

In Section 2, we introduce the squeezing strategies to improve EM for maximizing a mixture log-

likelihood. Intuitively, squeezing yields an equivalent problem where the mixture components have

less overlap, and its effect on the speed of EM is explained in terms of efficient data augmentation.

Section 3 argues that squeezing strategies can be effectively implemented to sub-collections of

the mixture components. This leads to a “cocktail algorithm” with several different moves that

complement each other. A global convergence theorem for the cocktail algorithm is proved. A real-

data example is included as an illustration. Section 4 focuses on the NPMLE problem for censored

data, and demonstrates the effectiveness of our new algorithms through simulation. Section 5

concludes with a discussion on possible extensions (to the bivariate interval censoring problem,

for example). Efficient implementations of our EM-type algorithms, which take advantage of the

sparsity features of the NPMLE problem for censored data, are collected in the appendix.

2 EM Algorithms for Mixture Proportions

Suppose n observations y = (y1, . . . , yn) are taken from a mixture of m known densities with

unknown proportions p1, . . . , pm. Writing fij as the jth component density evaluated at yi, we

can express the log-likelihood for p = (p1, . . . , pm) as

l(p) =

n
∑

i=1

log

(

m
∑

j=1

fijpj

)

. (2.1)

We seek to maximize (2.1) over p ∈ Θ where

Θ =

{

p :

m
∑

j=1

pj = 1, pj ≥ 0; l(p) > −∞

}

.

2.1 Conventional EM

Conventional EM introduces latent indicators Iij such that Iij = 1 if the ith observation is from

component j, and Iij = 0 otherwise. At iteration t, when the current estimate of p is p(t) =
(

p
(t)
1 , . . . , p

(t)
m

)

, the E-step simply computes the conditional expectation of Iij given observed data

and p(t):

E
(

Iij
∣

∣y,p(t)
)

=
fijp

(t)
j

∑m
k=1 fikp

(t)
k

.
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The M-step then sets p
(t+1)
j =

∑n
i=1E

(

Iij |y,p
(t)
)

/n. Overall each iteration can be written as

p
(t+1)
j =

1

n

n
∑

i=1

(

fij
∑m

k=1 fikp
(t)
k

)

p
(t)
j , j = 1, . . . , m. (2.2)

The EM algorithm maintains monotone increase in the log-likelihood, i.e., l(p(t+1)) ≥ l(p(t)).

Moreover, when started from the interior of the parameter space, i.e., when p
(0)
j > 0 for all

1 ≤ j ≤ m, EM is guaranteed to converge to p̂, the MLE (Csiszár and Tusnády 1984). Convergence

is potentially very slow, however, when there exists heavy overlap among the mixture components.

2.2 Squeezing Strategy I

To improve conventional EM, let us introduce an auxiliary vector g = (g1, . . . , gn) and write the

objective function (2.1) as

l(p) = n log 2 +
n
∑

i=1

log

(

m
∑

j=1

gipj/2 +
m
∑

j=1

(fij − gi)pj/2

)

(2.3)

= n log 2 +

n
∑

i=1

log

(

gi/2 +

m
∑

j=1

(fij − gi)pj/2

)

. (2.4)

We require gi ≥ 0 and fij − gi ≥ 0 for all i, i.e.,

0 ≤ gi ≤ min
j

fij . (2.5)

Conventional EM (2.2) can also be derived from (2.3), viewing it as a mixture log-likelihood

with 2m components with proportions pj/2, j = 1, . . . , m, each appearing twice. Specifically,

under this new formulation, we let the density of component j (j = 1, . . . , 2m) evaluated at

observation i be

f̃ij =











fij − gi, 1 ≤ j ≤ m,

gi, m+ 1 ≤ j ≤ 2m.

Let Ĩij be the latent indicator of whether the ith observation is from component j, j = 1, . . . , 2m.

The jth component has proportion pj/2 if 1 ≤ j ≤ m, and pj−m/2 if m + 1 ≤ j ≤ 2m. Then the

E-step becomes

E
(

Ĩij

∣

∣

∣
y,p(t)

)

=
f̃ij

gi +
∑m

k=1 f̃ikp
(t)
k

×











p
(t)
j , 1 ≤ j ≤ m,

p
(t)
j−m, m+ 1 ≤ j ≤ 2m,

(2.6)
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and the M-step becomes

p
(t+1)
j ∝

n
∑

i=1

E
(

Ĩij + Ĩi,j+m

∣

∣

∣
y,p(t)

)

, j = 1, . . . , m. (2.7)

Routine algebra reveals that the resulting EM iteration is the same as (2.2).

We can also apply EM to maximize (2.4), viewing it as a problem with m+1 mixture compo-

nents, one of which has proportion 1/2. Equivalently, in the above derivation of (2.6) and (2.7),

instead of Ĩij , 1 ≤ i ≤ n, 1 ≤ j ≤ 2m, let us treat

Ĩij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, and Ĩi0 ≡

2m
∑

j=m+1

Ĩij , 1 ≤ i ≤ n,

as the set of latent indicators. The latter, being a collapsed version of the former, contains less

information about p. Note that Ĩi0 is the indicator of a mixture component with proportion 1/2,

whose density evaluated at observation i is gi. The E-step proceeds to calculate the conditional

expectation of Ĩij , j = 0, 1, . . . , m, resulting in the same formula as (2.6) for j = 1, . . . , m. The

M-step becomes

p
(t+1)
j ∝

n
∑

i=1

E
(

Ĩij

∣

∣

∣
y,p(t)

)

, j = 1, . . . , m. (2.8)

The conditional expectation of Ĩi0 does not appear in (2.8). Combining (2.6) (for j = 1, . . . , m)

with (2.8), we obtain an EM iteration as

p
(t+1)
j =

(

n−
n
∑

i=1

gi
∑m

k=1 fikp
(t)
k

)−1 n
∑

i=1

(

fij − gi
∑m

k=1 fikp
(t)
k

)

p
(t)
j , j = 1, . . . , m. (2.9)

The iteration (2.2) corresponds to (2.9) with g ≡ 0.

Because (2.9) is derived in the EM framework, it inherits nearly all the desirable properties of

(2.2). For example, each iteration of (2.9) increases the log-likelihood (2.4). Furthermore, because

the convergence rate of EM is determined by the fraction of missing information, we know that

(2.9) converges faster than (2.2) because it is based on a reduced set of latent variables. This

is an example of efficient data augmentation (Meng and van Dyk 1997): we speed up EM by

augmenting less. This strategy of improving (2.2) is called a squeezing strategy because the key

equivalent formula (2.4) is obtained by subtracting (“squeezing out”) a nonnegative vector g from

each component density.
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A slight extension of the above discussion shows that the convergence rate of (2.9) is monotonic

in the squeezing parameter g. Because of the restriction (2.5), the optimal g is therefore the upper

bound gi = minj fij , that is, we perform as much squeezing as allowed. This optimal g may be

viewed as the overlap among all component densities. If this overlap is small, i.e., g is close to

a vector of zeros, then (2.9) is not very different from (2.2). Hence we may expect significant

speedup only if the overlap is large enough.

This squeezing strategy (as well as the strategy of Section 2.3) is inspired by the work of Fessler

and Hero (1994) on efficient EM for Poisson image problems. Similar strategies also work for the

Arimoto-Blahut algorithm for calculating the Shannon capacity of a discrete memoryless channel

(see Yu 2010b).

2.3 Squeezing Strategy II

The squeezing strategy of Section 2.2 can be improved by further manipulation of the log-

likelihood. Let us introduce another auxiliary vector β = (β1, . . . , βm), and rewrite (2.4) as

l(p) = n log(2 + β+) +

n
∑

i=1

log
gi −

∑m
j=1 f̃ijβj +

∑m
j=1 f̃ijpj +

∑m
j=1 f̃ijβj

2 + β+
(2.10)

= n log(2 + β+) +
n
∑

i=1

log
gi −

∑m
j=1 f̃ijβj +

∑m
j=1 f̃ij(pj + βj)

2 + β+

, (2.11)

where f̃ij = fij − gi as before, and β+ =
∑m

j=1 βj . It is required that

βj ≥ 0, 1 ≤ j ≤ m; gi −

m
∑

j=1

f̃ijβj ≥ 0, 1 ≤ i ≤ n. (2.12)

When m = 2 and gi = minj fij, (2.12) is equivalent to

0 ≤ β1 ≤ min
i: fi1>fi2

fi2
fi1 − fi2

, 0 ≤ β2 ≤ min
i: fi2>fi1

fi1
fi2 − fi1

. (2.13)

In general, however, it is not clear how to reduce (2.12) to an explicit range for β. Although we

do address the choice of β in this section, further study is desired.

Iteration (2.9) can also be derived from (2.10), viewing it as a mixture log-likelihood with

2m+ 1 components. The density of the jth component (0 ≤ j ≤ 2m) evaluated at observation i
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is

f#
ij =























gi −
∑m

k=1 f̃ikβk, j = 0,

f̃ij, 1 ≤ j ≤ m,

f̃i,j−m, m+ 1 ≤ j ≤ 2m.

The proportion of the jth component is (2 + β+)
−1 if j = 0, pj/(2 + β+) if 1 ≤ j ≤ m, and

βj−m/(2+β+) if m+1 ≤ j ≤ 2m. The factor 2+ β+ makes these proportions sum to one. Let I#ij

denote the indicator of whether observation i is from component j. Similar to Section 2.2, if we

treat I#ij , 1 ≤ i ≤ n, 0 ≤ j ≤ 2m, as latent variables, then the resulting EM iteration is precisely

(2.9).

On the other hand, we can derive an EM iteration based on (2.11), viewing it as a mixture

log-likelihood with m + 1 components, one of which has proportion (2 + β+)
−1, and the others

have proportions (pj + βj)/(2 + β+), j = 1, . . . , m. Equivalently, we treat

I#i0 , 1 ≤ i ≤ n, and I#ij + I#i,j+m, 1 ≤ i ≤ n, 1 ≤ j ≤ m, (2.14)

as latent indicators instead of the entire collection I#ij , 1 ≤ i ≤ n, 0 ≤ j ≤ 2m. The E-step, as

before, is to calculate the conditional expectations. We have

E
(

I#ij + I#i,j+m

∣

∣

∣
y,p(t)

)

=
f̃ij

(

p
(t)
j + βj

)

gi +
∑m

k=1 f̃ikp
(t)
k

≡ Kij .

The M-step seeks to maximize the function

m
∑

j=1

n
∑

i=1

Kij log(pj + βj). (2.15)

By checking the Karush-Kuhn-Tucker conditions, it can be shown that (2.15) is maximized by

choosing pj as

p
(t+1)
j = max

{

0, δ
n
∑

i=1

Kij − βj

}

, 1 ≤ j ≤ m, (2.16)

where δ is determined by the constraint
∑m

j=1 p
(t+1)
j = 1. Iteration (2.9) corresponds to (2.16)

with βj ≡ 0.

The new EM iteration (2.16) is more complicated than (2.9) or (2.2), but only slightly so.

First, we observe that the right-hand side of (2.16) is a continuous and increasing function of δ,
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and hence a δ exists to ensure
∑m

j=1 p
(t+1)
j = 1, as long as

∑

i Kij > 0 for some j. Moreover, such a

δ can be found efficiently (in O(m logm) time) using a “waterfilling” algorithm (see Appendix A

in Yu 2010b).

The convergence rate of (2.16) is no worse than that of (2.9), because the latent variables

(2.14) are less informative than the entire collection I#ij , 1 ≤ i ≤ n, 0 ≤ j ≤ 2m, which lead

to (2.9). A slight extension of this argument reveals that, for fixed g, the convergence rate of

(2.16) is monotonic in β = (β1, . . . , βm). Such results resemble those of Yu (2010b) on improved

Arimoto-Blahut algorithms for channel capacity calculations. In Yu (2010b), the convergence

rate comparison results are derived by calculating the matrix rate and analyzing its eigenvalues.

Because we work within the EM framework, however, the convergence rate comparison results

here are obtained automatically once we specify the appropriate latent variables.

Combined with the convergence rate comparisons of Section 2.2, the above considerations

suggest the following guideline for choosing the squeezing parameters g and β.

• Choose gi = minj fij, which satisfies the upper bound in (2.5).

• Choose βj to be as large as possible, subject to (2.12).

When m = 2, the condition (2.12) reduces to (2.13). Hence we recommend setting β at the upper

bounds in (2.13).

It is helpful to write down an explicit formula for (2.16) with these optimal choices of g and

β in the m = 2 case. Actually, for later convenience, we present a slightly more general iterative

formula for maximizing (m = 2)

l̃(p) =
n
∑

i=1

log (ri + fi1p1 + fi2p2) , (2.17)

subject to pj ≥ 0, j = 1, 2, and p1 + p2 = β0. Here ri, i = 1, . . . , n, are nonnegative constants,

and β0 > 0 is fixed. Define gi = min{fi1, fi2}, and

β1 = min
i: fi1>fi2

ri + β0fi2
fi1 − fi2

, β2 = min
i: fi2>fi1

ri + β0fi1
fi2 − fi1

.

Suppose the current parameter estimate is p(t). We compute

Sj =
(

p
(t)
j + βj

)

n
∑

i=1

fij − gi

ri + fi1p
(t)
1 + fi2p

(t)
2

, j = 1, 2.
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Then we update p(t) as

p
(t+1)
j = max{0, min{β0, (β0 + β1 + β2)Sj/(S1 + S2)− βj}}, j = 1, 2, (2.18)

which is a slight generalization of (2.16) for m = 2. The iteration (2.18) is uniquely defined if

S1+S2 6= 0, for which it suffices to have fi1−fi2 6≡ 0. (Inspection shows that p
(t)
j +βj > 0, j = 1, 2,

as long as l̃(p(t)) > −∞.) If fi1−fi2 ≡ 0, then the M-step is not unique, but it is convenient to set

p(t+1) = p(t). Because of the max and min operations, (2.18) can potentially transfer all the mass

from one component to the other in a single step. This will be especially useful in later sections

after we introduce nearest neighbor exchanges.

3 Nearest Neighbor Exchanges and the Cocktail Algo-

rithm

3.1 Nearest Neighbor Exchanges

The intuition that conventional EM tends to be slow when there exists heavy overlap between

mixture components is used to our advantage in Section 2 for designing faster EM schemes via

squeezing. However, the strategies so far begin by squeezing out a common vector g from each of

the components. When there exist many components, it is conceivable that squeezing applied to

all components may not be effective, even though a sub-collection may have severe overlap. Then

it is worthwhile to apply some form of “local squeezing” to a sub-collection of components.

For example, consider a nonparametric mixture problem where the observations yi are assumed

to be drawn independently from a mixture of normals

yi ∼
m
∑

j=1

pjN(µj, 1).

The variance is fixed for simplicity. We assume the mixing distribution puts mass pj on N(µj, 1),

where µj is obtained by discretizing an interval, say µj = Uj/m, and U > 0 denotes the largest of

the normal means. As m increases, the overlap between adjacent densities N(µj, 1) and N(µj+1, 1)

increases, and conventional EM slows down. The global squeezing strategies may not be effective,

however, because the overlap between the left-most density N(U/m, 1) and the right-most density

N(U, 1) can still be small.
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A natural remedy, therefore, is to exchange the mass between each pair of nearby components

in turn, holding the other components fixed. This is similar to (but somewhat simpler than)

the paired and rotated EM of Pilla and Lindsay (2001). In general, given the current parameter

estimate p(t), let j1 < · · · < jq+1 be the elements of
{

j : p
(t)
j > 0

}

where q + 1 is the number of

support points of p(t). We perform mass exchanges between jk and jk+1 for k = 1, . . . , q in turn,

i.e.,

p(t+k/q) = V E
(

jk, jk+1,p
(t+(k−1)/q)

)

, k = 1, . . . , q. (3.1)

We use p̃ = V E(u, v,p), u 6= v, to denote an update of the form

p̃j =























pj , j /∈ {u, v},

pj + δ, j = u,

pj − δ, j = v,

where δ ∈ [−pu, pv] is chosen so that l(p̃) ≥ l(p). To choose the step-length δ, we naturally

use (2.18). The iteration (2.18) is applicable because, when other components are held fixed, the

log-likelihood for pu, pv is exactly in the form of (2.17). Because (2.18) is an EM iteration, the log-

likelihood is automatically monotonic. Moreover, (2.18) is easy to implement, and very amenable

to theoretical analysis. These all add to the appeal of (2.18) when compared with standard tools

such as Newton’s method. We refer to the composite mapping p(t) → p(t+1) given by (3.1) as the

set of nearest neighbor exchanges (NNEs).

We have found that by adding nearest neighbor exchanges based on (2.18) to conventional

EM can lead to considerably improved speed. There is one caveat, however. Conventional EM

is usually started at the interior of the parameter space, i.e., p
(0)
j > 0 for all j, because once a

component receives zero mass, it does so in all subsequent iterations. By adding nearest neighbor

exchanges, certain pj may be set to zero. While this has the desirable effect of eliminating bad

support points, it may accidentally eliminate a good one, and yield a suboptimal solution. The

problem is easily remedied, however, by adding in the following step, known as the vertex direction

method (VDM; Fedorov 1972). Given the current parameter estimate p, we first calculate the

derivatives

dj =
∂l(p)

∂pj
=

n
∑

i=1

fij
ηi

,

10



where ηi =
∑m

j=1 fijpj. Let j
# denote any index such that dj, j = 1, . . . , m, is maximized. Then

we update p to p̃ with

p̃j =











(1− δ)pj, j 6= j#,

(1− δ)pj + δ, j = j#,
(3.2)

where δ ∈ [0, 1] is chosen so that l(p̃) ≥ l(p). We use iteration (2.18) for choosing δ because l(p̃)

as a function of (δ, 1− δ) is again in the form of (2.17).

Let us denote the mapping (3.2) with δ chosen by (2.18) as p̃ = V DM(j#,p). In Section 3.2 we

show that VDM based on (2.18), when added to conventional EM and nearest neighbor exchange

iterations, results in a globally convergent algorithm. That is, starting from any p(0) ∈ Θ, all limit

points of the resulting algorithm are global maxima of the log-likelihood function on Θ. The proof

actually shows that by adding VDM to any monotonic algorithm we obtain a globally convergent

algorithm.

3.2 The Cocktail Algorithm

We summarize a “cocktail algorithm” based on VDM, nearest neighbor exchanges, and EM steps.

A convergence proof is then provided. Empirical evaluation of such a strategy is presented in

Section 3.3. Yu (2009) applies this strategy to the D-optimal design problem, and reports dramatic

improvement in speed. We show similar performance for the mixture problem.

Cocktail Algorithm

1 At iteration t, first perform a VDM step (3.2) where δ is chosen using (2.18).

2 Then use the output of VDM, say p̃, as input for the nearest neighbor exchanges, i.e., (3.1),

again based on (2.18).

3 Finally, update the output of (3.1) using (2.2), i.e., conventional EM, to obtain the next iterate

p(t+1).

Note that this is only one of the potential algorithms based on reducing the overlap between

component densities. There is much room for further exploration. One could consider, for example,

an algorithm that uses only Steps 1 and 2 above at each iteration. That is, a VDM step is combined
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with nearest neighbor exchanges. We call this algorithm NNE+. We design the cocktail algorithm

in the hope that the nearest neighbor steps and conventional EM can complement each other,

since NNE+ focuses on purely local modifications, whereas EM focuses on purely global ones. As

we shall illustrate in empirical examples, the performance of NNE+ or conventional EM (each by

itself) can be poor, but the cocktail algorithm is very fast.

Because the cocktail algorithm consists of many EM sub-steps, the log-likelihood is guaranteed

to increase at each iteration. Further analysis yields the following convergence theorem.

Theorem 1. The cocktail algorithm is globally convergent. That is, if p(t) is a sequence generated

by the cocktail algorithm starting from any p(0) ∈ Θ, then all limit points of p(t) are global maxima

of l(p) on p ∈ Θ.

Proof. The proof is similar to that of Theorem 1 in Yu (2009). Let p̃(t) denote the output of the

VDM step at iteration t. By monotonicity,

l(p(t)) ≤ l(p̃(t)) ≤ l(p(t+1)).

Hence the two sequences l(p(t)) and l(p̃(t)) tend to the same (finite) limit. Let p∗ be a limit

point of p(t), and let p(tj ) be a subsequence converging to p∗. Without loss of generality, we

may assume that the VDM steps p(tj ) → p̃(tj) are all performed on the same index k = j# as

in (3.2), since at least one of the m indices will appear infinitely often. If fik ≡
∑

j fijpj for

some p = p(tj) or p = p∗, then we can show directly that ∂l(p)/∂pk = n. By the choice of

k, we have ∂l(p)/∂pj ≤ n for all 1 ≤ j ≤ m, and hence p is already a global maximum by

the general equivalence theorem (Lindsay 1983). Assume fik 6≡
∑

j fijpj for all p = p(tj ) and

p = p∗. Then inspection of (3.2) and (2.18) reveals that all VDM steps p(tj ) → p̃(tj ) are uniquely

defined. Moreover, when k is considered fixed, the VDM mapping is continuous at p∗. Hence p̃(tj )

converges to V DM(k,p∗) = p̃, say, and l(p̃) = l(p∗) as a result. Since this VDM step p∗ → p̃ is

derived in the EM framework, p̃ being uniquely defined means that it is the unique maximizer at

the M-step. If p̃ 6= p∗, then the expected complete-data log-likelihood increases strictly, and so

does the observed log-likelihood, which contradicts l(p̃) = l(p∗). It follows that p̃ = p∗, i.e., p∗ is

a fixed point of the VDM mapping. Inspection of (3.2) and (2.18), however, shows that this fixed

point must satisfy ∂l(p∗)/∂pk ≤ n, which implies that p∗ is a global maximum.
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3.3 Numerical Illustration

This section gives a numerical illustration of the effectiveness of the cocktail algorithm. The

cocktail algorithm is compared with conventional EM, i.e., iteration (2.2), the algorithm NNE+

mentioned in Section 3.2, and the vertex exchange method (VEM) of Böhning (1985). To describe

VEM, suppose the parameter estimate at iteration t is p(t). Define dj = ∂l
(

p(t)
)

/∂pj , and let j#

and j# be indices between 1 and m such that

dj# = min
j: p

(t)
j

>0

dj, dj# = max
1≤j≤m

dj .

VEM sets p(t+1) as

p(t+1) = V E
(

j#, j#,p
(t)
)

.

That is, we exchange the mass between the indices j# and j# so as to increase the log-likelihood.

We again employ (2.18) to choose the step-length.

We run each of (conventional) EM, NNE+, VEM, and the cocktail algorithm until convergence

and record the number of iterations and computing time. An iteration of NNE+ consists of

one iteration of VDM and the set of nearest neighbor exchanges. An iteration of the cocktail

algorithm consists of one iteration each of NNE+ and conventional EM. We shall concentrate on

the computing time as a more objective measure of performance. All calculations are performed

on the same Sun Solaris 10 machine, and the computing time is recorded using the R function

system.time(). The program is written in C and is available, together with the R interface, upon

request from the author.

Each algorithm is started from the same uniform probability vector, i.e., p
(0)
j = 1/m, j =

1, . . . , m. We use the common convergence criterion

max
1≤j≤m

dj − n ≤ ǫ, (3.3)

where dj = ∂l(p)/∂pj . The theoretical basis for (3.3) is that for any p that satisfies this criterion

we have

l(p̂)− l(p) ≤ ǫ,

where p̂ is the MLE (Lindsay 1983, Böhning et al. 1996). We choose ǫ = 10−6 in our experiments.

EM, NNE+, VEM, and the cocktail algorithm are tested on data taken from Roeder (1990)

concerning the velocities of 82 galaxies. Following Pilla and Lindsay (2001), we fit a normal finite

13



Table 1: Iteration count and computing time (in seconds) until convergence for four algorithms

on the galaxy data.

Iteration count Computing time

EM NNE+ VEM Cocktail EM NNE+ VEM Cocktail

21777 74 974 36 87 0.02 0.13 0.02

mixture model to these data. The means of the normal components lie on a grid of 64 equally-

spaced points from 10.0 to 33.94, and the common standard deviation is σ = 0.95. The algorithms

deliver the same MLE as reported by Pilla and Lindsay (2001), and their performance is recorded

in Table 1.

Clearly the nearest neighbor exchanges are very effective, since both NNE+ and the cocktail

algorithm improve conventional EM dramatically, reducing its computing time by orders of mag-

nitude. Adding conventional EM to NNE+ appears to have increased the computing time per

iteration, but decreased the number of iterations, so that the cocktail algorithm and NNE+ have

similar overall computing time. We remark that the cocktail algorithm is also appealing because

it is easy to implement and requires virtually no tuning.

4 Efficient EM for Computing the NPMLE for Censored

Data

We show that the EM strategies designed in Sections 2 and 3, in particular the cocktail algorithm of

Section 3, are also effective for the NPMLE problem for censored data. Section 4.1 briefly reviews

how this problem can be viewed as a problem of mixture proportions. Section 4.2 highlights fast

implementations of our algorithms. Section 4.3 contains numerical illustrations using simulated

data.
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4.1 NPMLE for Censored Data

Assume that failure time data collected from n units are independent and identically distributed

according to a distribution function F , except that they are subject to censoring. Following

Gentleman and Geyer (1994), assume there is an inspection time process Q which is independent

of the failure times, and suppose each unit is subject to inspections governed by Q independently.

The observed data then consist of n observation intervals (li, ri], where li is the last inspection

time prior to failure and ri is the first inspection time after failure for subject i. Right censoring

may be represented by ri = ∞, and left censoring by li = 0; the exact failure time is observed

when li coincides with ri, i.e., when the individual is subject to continuous inspections.

Doubly censored data arise when units are subject to both right and left censoring. The

inspection time process is given by a pair of random variables (L, U), L < U . If the failure time

T satisfies L < T ≤ U , then T is observed; if T ≤ L, then the observation is left censored at L;

if T > U , then the observation is right censored at U . For (case 2) interval censored data, the

failure time T is not observed, but only known to fall within a random interval.

In either case, let us order the distinct observation times (i.e., end points of the intervals (li, ri])

as 0 = z0 < z1 < . . . < zm−1 < zm = ∞. Denote

p = (p1, . . . , pm), pj = F (zj)− F (zj−1),

and define the n×m matrix (fij) by

fij =











1, zj ∈ (li, ri],

0, otherwise.

For notational convenience we assume that observation intervals are open at the left, and closed

at the right, end points, though extension to the general case is trivial; if the ith observation is

exact, for example, we simply set fij = 1 if zj = li(= ri) and fij = 0 otherwise. Seeking the

maximizer F̂ that jumps only at observed time points, we note that the log-likelihood function is

exactly (2.1). Thus all the EM-type algorithms in Sections 2 and 3 can be applied to compute the

NPMLE, defined as the p̂ that maximizes (2.1).
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4.2 Efficient Implementations

Straightforward implementation of conventional EM, NNE+, VEM, or the cocktail algorithm, as

described in Sections 2 and 3, each requires O(nm) time per iteration. For univariate censored

data, however, one can take advantage of the special structure of the matrix (fij) to derive O(n)

implementations. This is a substantial reduction since m is often of the same order of magnitude

as n. It is especially relevant in situations such as bootstrap resampling, when repeated use of the

algorithms is needed.

Noted only briefly by Jongbloed (1998), who does not give the technical details concerning

computational complexity, this possibility of fast EM implementation has remained largely un-

noticed. Zhang and Jamshidian (2004) present fast implementations for doubly censored data,

but not (case 2) interval censored data. In Appendix A, we show that all four algorithms admit

efficient implementations for univariate interval censoring in general.

4.3 Evaluation of Algorithms on Doubly Censored Data

In this section we evaluate the effectiveness of EM, NNE+, VEM, and the cocktail algorithm for

computing the NPMLE for doubly censored data. Simulations are performed under conditions

similar to those of Wellner and Zhan (1997), and Zhang and Jamshidian (2004). Wellner and

Zhan (1997) propose an effective algorithm which combines EM and iterative convex minorant

(ICM; Jongbloed 1998) iterations. We have decided to focus on evaluating the cocktail algorithm

relative to EM, NNE+ and VEM because they are easy to describe and easy to implement. A full

evaluation, including the case of bivariate censoring, is work in progress.

Our simulation setting is as follows. The failure time Ti for unit i is generated as an independent

exponential random variable with mean 1, and the censoring variables Li, Ui are generated as the

q1th and q2th order statistics of 20 independent uniform(0, 1) random variables. The resulting

observation is

Ti, if Li < Ti ≤ Ui;

(0, Li], if Ti ≤ Li;

(Ui,∞], if Ti > Ui.

By adjusting q1 and q2 we obtain varying degrees of censoring.

As in Section 3.3, all algorithms are started at the uniform probability vector, and the com-
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Table 2: Means and standard deviations of the number of iterations and computing time (in

seconds) until convergence for four algorithms for doubly censored data. Input data are generated

with q1 = 3 and q2 = 18.

Iteration count Computing time

EM NNE+ VEM Cocktail EM NNE+ VEM Cocktail

n = 1000

mean 5076 15456 5714 46.2 3.22 20.5 0.80 0.07

s.d. 194 488 206 7.7 0.20 1.2 0.04 0.01

n = 2000

mean 9920 44044 12008 67.3 17.0 157 3.77 0.28

s.d. 892 1645 269 7.3 2.2 9 0.15 0.08

n = 4000

mean 20347 100000+ 24924 93.3 85.6 740+ 19.1 0.77

s.d. 1056 369 7.9 5.2 0.7 0.06

mon convergence criterion is (3.3) with ǫ = 10−6. Our limited experience suggests that VEM

may benefit from a starting value with fewer support points, but the cocktail algorithm is rel-

atively insensitive to the initial number of support points. Again, an iteration of the cocktail

algorithm consists of an iteration of VDM, the set of nearest neighbor exchanges, and an iteration

of conventional EM.

Based on 10 replications, Tables 2 and 3 display the means and standard deviations of the

number of iterations and computing time (in seconds) until convergence for EM, NNE+, VEM

and the cocktail algorithm. The input data are generated with q1 = 3 and q2 = 18 (moderate

censoring) for Table 2, and with q1 = 8 and q2 = 12 (heavy censoring) for Table 3.

In either situation we see that the cocktail algorithm is a dramatic improvement; it reduces

the computing time of (conventional) EM or NNE+ by large factors, the reduction being more

significant as n, the number of units, becomes larger. The improvement is especially remarkable
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Table 3: Means and standard deviations of the iteration count and computing time (in seconds)

until convergence for four algorithms for doubly censored data. Input data are generated with

q1 = 8 and q2 = 12.

Iteration count Computing time

EM NNE+ VEM Cocktail EM NNE+ VEM Cocktail

n = 1000

mean 5793 2768 2170 65.3 7.77 1.70 0.38 0.05

s.d. 877 421 170 8.3 1.76 0.34 0.11 0.01

n = 2000

mean 11034 8669 4411 103 38.0 13.0 1.56 0.20

s.d. 2022 491 192 8 8.3 1.0 0.08 0.01

n = 4000

mean 20397 27247 9176 145 163 89.8 8.76 0.61

s.d. 5481 1957 336 17 51 8.8 0.57 0.08
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because the cocktail algorithm is a direct combination of EM and NNE+, each of which is very

slow. NNE+ performs much worse for moderately censored data than for heavily censored data.

In the case of q1 = 3, q2 = 18 and n = 4000, each of the 10 runs of NNE+ takes more than

100000 iterations. As expected, each algorithm takes more iterations as n increases. Somewhat

unexpectedly, for the same n, EM has similar iteration counts for moderately versus heavily

censored data. Yet the computing time of EM in the heavily censored case is significantly higher.

Another peculiarity is that, for the same n, VEM takes fewer iterations and less time for heavily

censored data than for moderately censored data. But the main feature in Tables 2 and 3 is the

clear superiority of the cocktail algorithm in this example.

5 Discussion

We have shown how to use efficient data augmentation to design fast EM-type algorithms for

maximizing a mixture log-likelihood with known component densities. Squeezing strategies are

presented that take advantage of the overlap between components. A cocktail algorithm that

combines conventional EM with a nearest neighbor exchange strategy is found to perform very

well for computing the NPMLE for censored data, which is the intended application area of this

work.

The nearest neighbor exchange strategy works well with conventional EM when there is a

natural ordering of the mixture components, as in the case of univariate censored data. It would

be interesting to extend such algorithms to bivariate censoring (Betensky and Finkelstein 1999),

where we observe a pair of possibly censored random variables for each unit. Bivariate censoring

presents many inferential and computational challenges. Work on extending the effective nearest

neighbor strategy is in progress, with encouraging preliminary results. Extensions that accommo-

date truncation in addition to censoring, or that facilitate semi-parametric estimation, would also

be desirable.

It would be interesting to extend the squeezing strategies of Section 2 to mixture problems

with unknown parameters in the component densities. One approach is to again adopt AECM

(Meng and van Dyk 1997), and perform two types of EM-based maximization steps, one for

the mixture proportions given the other parameters, and one for the other parameters given the

mixture proportions. The squeezing strategies can be used at the former maximization step. It
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would be worthwhile to investigate the potential gain of using such strategies.
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Appendix A: Fast Implementations for the NPMLE Prob-

lem with Censored Data

The conventional EM mapping, (2.2), contains a summation of n terms for each j = 1, . . . , m.

However, one can take advantage of the special structure of the matrix (fij) for fast computation.

This is a zero-one matrix whose non-zero entries are consecutive in each row. Equivalently, if we

let

a(i) = min{j : zj ∈ (li, ri]}, b(i) = max{j : zj ∈ (li, ri]}, i = 1, . . . , n, (.1)

then fij = 1 if a(i) ≤ j ≤ b(i) and fij = 0 otherwise. For convenience, we drop the superscripts in

(2.2) and focus on how to efficiently compute

pnewj =
1

n

n
∑

i=1

(

fij
∑m

k=1 fikpk

)

pj, j = 1, . . . , m,

for any p = (p1, . . . , pm) ∈ Θ. Note that computing ηi =
∑m

k=1 fikpk, i = 1, . . . , n, can be done in

O(m+ n) time (or equivalently O(n) time because m ≤ 2n+ 1) using Algorithm 1.

Algorithm 1

Step 1 Calculate the cumulative sums sj =
∑j

k=1 pk, j = 1, . . . , m. Set s0 = 0.

Step 2 Set ηi = sb(i) − sa(i)−1, i = 1, . . . , n.

If we can calculate

dj =
n
∑

i=1

fij/ηi =
∑

i: a(i)≤j≤b(i)

1/ηi, (.2)

then pnewj = djpj/n. To calculate dj efficiently, we rely on the following algorithm.
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Algorithm 2

Step 1 Initialize dj = 0, j = 1, . . . , m.

Step 2 For i = 1, . . . , n, add 1/ηi to da(i), and, if b(i) + 1 ≤ m, subtract 1/ηi from db(i)+1.

Step 3 Replace (d1, . . . , dm) by its cumulative sum, i.e., for j = 2, . . . , m, add dj−1 to dj .

Obviously, Algorithm 2 costs O(n) time. We have

Proposition 1. Algorithm 2 is valid, i.e., its output agrees with (.2).

Proof. This can be shown by induction. First, in the output of Algorithm 2, d1 =
∑

i: a(i)=1 1/ηi,

which agrees with (.2). Assume Algorithm 2 gives the correct answer for dj−1, j > 1. Then

Algorithm 2 computes dj using

dj = dj−1 +
∑

i: a(i)=j

1/ηi −
∑

i: b(i)+1=j

1/ηi,

which again agrees with (.2) if we consider the difference dj − dj−1. By the induction principle,

all dj, j = 1, . . . , m, are correctly computed.

Algorithms 1 & 2 clearly give an O(n) implementation of a conventional EM iteration. Because

ηi, i = 1, . . . , n and dj, j = 1, . . . , m, are also the key quantities for VDM and VEM, the same

efficient implementation applies to VDM and VEM. Specifically, the underlying iteration (2.18) is

done in O(n) time by keeping track of ηi.

For NNE+ and the cocktail algorithm, we notice that each sub-step of nearest neighbor ex-

change in (3.1) affects only a limited number of terms in the log-likelihood. Specifically, to imple-

ment sub-step k, only observation intervals (li, ri] such that either a(i) ≤ jk ≤ b(i) and jk+1 > b(i),

or jk < a(i) and a(i) ≤ jk+1 ≤ b(i), need be considered. Define the set

Vk = {i : a(i) ≤ jk ≤ b(i), jk+1 > b(i)} ∪ {i : jk < a(i), a(i) ≤ jk+1 ≤ b(i)}.

The time cost of sub-step k is proportional to |Vk|, the number of entries in Vk. However, because

each i belongs to at most two of Vk, k = 1, . . . , q, the total number of entries satisfy
∑q

k=1 |Vk| ≤ 2n.

Hence, with a bit of bookkeeping, the entire set of nearest neighbor exchanges can be implemented

in O(n) time per iteration.
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Remark. Algorithms 1 and 2 take a(i), b(i), i = 1, . . . , n, given by (.1), as input. Setting

these up requires sorting the end points of the observation intervals (li, ri], which costs O(n logn)

time. Although slightly higher than the O(n) per-iteration cost, this is typically a small fraction of

the total computing time because of the required number of iterations. Setting up the full matrix

(fij), on the other hand, costs O(mn) time, which is O(n2) in the worst case.
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