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1 Introduction

The Three Doors Problem, or Monty Hall Problem, is familiar to statisticians
as a paradox in elementary probability theory often found in elementary
probability texts (especially in their exercises sections). In that context it
is usually meant to be solved by careful (and elementary) application of
Bayes’ theorem. However, in different forms, it is much discussed and argued
about and written about by psychologists, game-theorists and mathematical
economists, educationalists, journalists, lay persons, blog-writers, wikipedia
editors.

In this article I will briefly survey the history of the problem and some of
the approaches to it which have been proposed. My take-home message to
you, dear reader, is that one should distinguish two levels to the problem.

There is an informally stated problem which you could pose to a friend at
a party; and there are many concrete versions or realizations of the problem,
which are actually the result of mathematical or probabilistic or statistical
modelling. This modelling often involves adding supplementary assumptions
chosen to make the problem well posed in the terms of the modeller. The
modeller finds those assumptions perfectly natural. His or her students are
supposed to guess those assumptions from various key words (like: “indis-
tinguishable”, “unknown”) strategically placed in the problem re-statement.
Teaching statistics is often about teaching the students to read the teacher’s
mind. Mathematical (probabilistic, statistical) modelling is, unfortunately,
often solution driven rather than problem driven.

* v.2 // arXiv.org:1002.3878 [stat.AP] // Submitted to Springer Lexicon of Statistics


http://arxiv.org/abs/1002.3878v2

The very same criticism can, and should, be levelled at this very article!
By cunningly presenting the history of The Three Doors Problem from my
rather special point of view, I have engineered complex reality so as to convert
the Three Doors Problem into an illustration of my personal Philosophy of
Science, my Philosophy of Statistics.

This means that I have re-engineered the Three Doors Problem into an
example of the point of view that Applied Statisticians should always be wary
of the lure of Solution-driven Science. Applied Statisticians are trained to
know Applied Statistics, and are trained to know how to convert real world
problems into statistics problems. That is fine. But the best Applied Statis-
ticians know that Applied Statistics is not the only game in town. Applied
Statisticians are merely some particular kind of Scientists. They know lots
about modelling uncertainty, and about learning from more or less random
data, but probably not much about anything else. The Real Scientist knows
that there is not a universal disciplinary approach to every problem. The
Real Statistical Scientist modestly and persuasively and realistically offers
what his or her discipline has to offer in synergy with others.

To summarize, we must distinguish between:

(0) the Three-Doors-Problem Problem [sic|], which is to make sense of
some real world question of a real person.

(1) alarge number of solutions to this meta-problem, i.e., the many Three-
Doors-Problem Problems, which are competing mathematizations of
the meta-problem (0).

Each of the solutions at level (1) can well have a number of different solutions:
nice ones and ugly ones; correct ones and incorrect ones. In this article, I
will discuss three level (1) solutions, i.e., three different Monty Hall problems;
and try to give three short correct and attractive solutions.

Now read on. Be critical, use your intellect, don’t believe anything on
authority, and certainly not on mine. Especially, don’t forget the problem at
meta-meta-level (—1), not listed above.

C’est la vie.

2 Starting Point

I shall start not with the historical roots of the problem, but with the question
which made the Three Doors Problem famous, even reaching the front page
of the New York Times.

Marilyn vos Savant (a woman allegedly with the highest 1Q in the world)
posed the Three Door Problem or Monty Hall Problem in her “Ask Marilyn”



column in Parade magazine (September, 1990, p. 16), as posed to her by a
correspondent, a Mr. Craig Whitaker. It was, quoting vos Savant literally,
the following:

Suppose you’re on a game show, and you’re given the choice of
three doors: Behind one door is a car; behind the others, goats.
You pick a door, say No. 1, and the host, who knows what’s behind
the doors, opens another door, say No. 3, which has a goat. He
then says to you, “Do you want to pick door No. 2¢7 Is it to your
advantage to switch your choice?

Apparently, the problem refers to a real American TV quiz-show, with a real
presenter, called Monty Hall.

The literature on the Monty Hall Problem is enormous. At the end of this
article I shall simply list two references which for me have been especially
valuable: a paper by Jeff Rosenthal (2008) and a book by Jason Rosenhouse
(2009). The latter has a huge reference list and discusses the pre- and post-
history of vos Savant’s problem.

Briefly regarding the pre-history, one may trace the problem back through
a 1975 letter to the editor in the journal The American Statistician by bio-
statistician Steve Selkin, to a problem called The Three Prisoners Problem
posed by Stephen Gardner in his Mathematical Games column in Scientific
American in 1959, and from there back to Bertrand’s Box Problem in his
1889 text on Probability Theory. The internet encyclopedia wikipedia.org
discussion pages (in many languages) are a fabulous though every-changing
resource. Almost everything that I write here was learnt from those pages.

Despite making homage here to the two cited authors Rosenthal (2008)
and Rosenhouse (2009) for their wonderful work, I emphasize that I strongly
disagree with both Rosenhouse (“the canonical problem”) and Rosenthal
(“the original problem”) on what the essential Monty Hall problem is. I am
more angry with certain other authors, who will remain nameless but for
the sake of argument I'll just call Morgan et al., for unilaterally declaring in
The American Statistician in 1981 their Monty Hall problem to be the only
possible sensible problem, for calling everyone who solved different problems
stupid, and for getting an incorrect theorem published in the peer-reviewed
literature.

Deciding unilaterally (Rosenhouse, 2009) that a certain formulation is
canonical is asking for a schism and for excommunication. Calling a particu-
lar version original (Rosenthal, 2008) is asking for a historical contradiction.

T refer to their result about the situation when we do not know the quiz-master’s
probability of opening a particular door when he has a choice, and put a uniform prior on
this probability.



In view of the pre-history of the problem, the notion is not well defined.
Monty Hall is part of folk-culture, culture is alive, the Monty Hall problem
is not owned by a particular kind of mathematician who looks at such a
problem from a particular point of view, and who adds for them “natural”
extra assumptions which merely have the role of allowing their solution to
work. Presenting any “canonical” or “original” Monty Hall problem together
with a solution, is an example of solution driven science — you have learnt
a clever trick and want to show that it solves lots of problems.

3 Three Monty Hall Problems

I will concentrate on three different particular Monty Hall problems. One of
them (Q-0) is simply to answer the question literally posed by Marilyn vos
Savant, “would you switch?”. The other two (Q-1, Q-2) are popular math-
ematizations, particularly popular among experts or teachers of elementary
probability theory: one asks for the unconditional probability that “always
switching” would gets the car, the other asks for the conditional probability
given the choices made so far. Here they are:

Q-0: Marilyn vos Savant’s (or Craig Whitaker’s) question “Is it to your ad-
vantage to switch?”

Q-1: A mathematician’s question“What is the unconditional probability that
switching gives the car?”

Q-2: A mathematician’s question “What is the conditional probability that
switching gives the car, given everything so far?”

The free, and freely editable, internet encyclopedia Wikipedia is the scene of
a furious debate as to which mathematization Q-1 or Q-2 is the right start-
ing point for answering the verbal question Q-0 (to be honest, many of the
actors claim another “original” question as the original question). Along-
side that, there is a furious debate as to which supplementary conditions are
obviously implicitly being made. For each protagonist in the debate, those
are the assumptions which ensure that his or her question has a unique and
nice answer. My own humble opinion is “neither Q-1 nor Q-2, though the
unconditional approach comes closer’. I prefer Q-0, and I prefer to see it as
a question of game theory for which, to my mind, [almost] no supplementary
conditions need to be made.

Here I admit that I will suppose that the player knows game-theory and
came to the quiz-show prepared. I will also suppose that the player wants to
get the Cadillac while Monty Hall, the quizmaster, wants to keep it.
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My analysis below of both problems Q-1 and Q-2 yields the good an-
swer “2/3” under minimal assumptions, and almost without computation or
algebraic manipulation. I will use Israeli (formerly Soviet Union) mathemati-
cian Boris Tsirelson’s proposal on Wikipedia talk pages to use symmetry to
deduce the conditional probability from the unconditional one. (Boris gra-
ciously gave me permission to cite him here, but this should not be interpreted
to mean that anything written here also has his approval).

You, the reader, may well prefer a calculation using Bayes’ theorem, or
a calculation using the definition of conditional probability; I think this is a
matter of taste.

I finally use a game-theoretic point of view, and von Neumann’s minimax
theorem, to answer the question Q-0 posed by Marilyn vos Savant, on the
assumptions just stated.

Let the three doors be numbered in advance 1, 2, and 3. I add the
universally agreed (and historically correct)additional assumptions: Monty
Hall knows in advance where the car is hidden, Monty Hall always opens a
door revealing a goat.

Introduce four random variables taking values in the set of door-numbers

{1,2,3}:

C: the quiz-team hides the Car (a Cadillac) behind door C,

P: the Player chooses door P,

@Q: the Quizmaster (Monty Hall) opens door @,

S: Monty Hall asks the player if she’ld like to Switch to door S.
Because of the standard story of the Monty Hall show, we certainly have:

@ # P, the quizmaster always opens a door different to the player’s
first choice,

Q # C, opening that door always reveals a goat,
S # P, the player is always invited to switch to another door,

S # @, no player wants to go home with a goat.

It does not matter for the subsequent mathematical analysis whether proba-
bilities are subjective (Bayesian) or objective (frequentist); nor does it matter
whose probabilities they are supposed to be, at what stage of the game. Some
writers think of the player’s initial choice as fixed. For them, P is degenerate.

I simply merely down some mathematical assumptions and deduce math-
ematical consequences of them.



4 Solution to Q-1:
unconditional chance that switching wins

By the rules of the game and the definition of S, if P # C then S = C, and
vice-versa. A “switcher” would win the car if and only if a “stayer” would
lose it. Therefore:

If Pr(P = C) =1/3 then Pr(S = C) = 2/3, since the two events
are complementary.

5 Solution to Q-2:
probability car is behind door 2 given
you chose door 1, Monty Hall opened 3

First of all, suppose that P and C are uniform and independent, and that
given (P, (), suppose that @) is uniform on its possible values (unequal to
those of P and of C'). Let S be defined as before, as the third door-number
different from P and (). The joint law of C, P, @, S is by this definition
invariant under renumberings of the three doors. Hence Pr(S = C|P =
x,Q = y) is the same for all x # y. By the law of total probability, Pr(S = C)
(which is equal to 2/3 by our solution to Q-1) is equal to the weighted average
of all Pr(S = C|P =2,Q =y), v # y € {1,2,,3}. Since the latter are all
equal, all these six conditional probabilities are equal to their average 2/3.

Conditioning on P = z, say, and letting y and y’ denote the remaining
two door numbers, we find the following corollary:

Now take the door chosen by the player as fixed, P = 1, say. We are to
compute Pr(S = C|Q = 3). Assume that all doors are equally likely to hide
the car and assume that the quizmaster chooses completely at random when
he has a choice. Without loss of generality we may as well pretend that
P was chosen in advance completely at random. Now we have embedded
our problem into the situation just solved, where P and C are uniform and
independent.

If P =1 1s fized, C is uniform, and Q) is symmetric, then “switch-
ing gives car” is independent of quizmaster’s choice, hence

Pr(S=C|Q=3) = Pr(S=C|Q=2) = Pr(S=C) = 2/3.

Some readers may prefer a direct calculation. Using Bayes’ theorem in
the form “posterior odds equal prior odds times likelihoods” is a particularly



efficient way to do this. The probabilities and conditional probabilities below
are all conditional on P = 1, or if your prefer with P = 1.
We have uniform prior odds

Pr(C=1):Pr(C=2):Pr(C=3) = 1:1:1.

The likelihood for C', the location of the car, given data Q = 3, is (propor-
tional to) the discrete density function of @ given C' (and P)

Pr(Q=3|C =1): Pr(Q = 3|C = 2) : Pr(Q = 3|C = 3) — %:1;0.

The posterior odds are therefore proportional to the likelihood. It follows
that the posterior probabilities are

Pr(Q:3|C:1):%, Pr(Q:?)\C:Q):%, Pr(Q = 3/C = 3) = 0.

6 Answer to Marylin vos Savant’s Q-0:
should you switch doors?

Yes. Recall, You only know that Monty Hall always opens a door revealing
a goat. You didn’t know what strategy the quiz-team and quizmaster were
going to use for their choices of the distribution of C' and the distribution of
@ given P and C, so naturally (since you know elementary Game Theory)
you had picked your door uniformly at random. Your strategy of choosing
C' uniformly at random guarantees that Pr(C' = P) = 1/3 and hence that
Pr(S =C) =2/3.

It was easy for you to find out that this combined strategy, which I'll call
“symmetrize and switch”, is your so-called minimax strategy.

On the one hand, “symmetrize and switch” guarantees you a 2/3 (uncon-
ditional) chance of winning the car, whatever strategy used by the quizmaster
and his team.

On the other hand, if the quizmaster and his team use their “symmetric”
strategy “hide the car uniformly at random and toss a fair coin to open a
door if there is choice”, then you cannot win the car with a better probability
than 2/3.

The fact that your “symmetrize and switch” strategy gives you “at least”
2/3, while the quizmaster’s “symmetry” strategy prevents you from doing
better, proves that these are the respective minimax strategies, and 2/3 is
the game-theoretic value of this two-party zero-sum game. (Minimax strate-
gies and the accompanying “value” of the game exist by virtue of John von
Neumann’s (1929) minimax theorem for finite two-party zero-sum games).

7



There is not much point for you in worrying about your conditional prob-
ability of winning conditional on your specific initial choice and the specific
door opened by the quizmaster, say doors 1 and 3 respectively. You don’t
know this conditional probability anyway, since you don’t know the strategy
used by quiz-team and the quizmaster. (Even though you know probability
theory and game theory, they maybe don’t). However, it is maybe comforting
to learn, by easy calculation, that if the car is hidden uniformly at random,
then your conditional probability cannot be smaller than 1/2. So in that
case at least, it certainly never hurts to switch door.

7 Discussion

Above I tried to give short clear mathematical solutions to three mathemat-
ical problems. Two of them were problems of elementary probability theory,
the third is a problem of elementary game theory. As such, it involves not
much more than elementary probability theory and the beautiful minimax
theorem of John von Neumann (1928). That a finite two-party zero-sum
game has a saddle-point, or in other words, that the two parties in such a
game have matching minimax strategies (if randomization is allowed), is not
obvious. It seems to me that probabilists ought to know more about game
theory, since every ordinary non-mathematician who hears about the prob-
lem starts to wonder whether the quiz-master is trying to cheat the player,
leading to an infinite regress: if I know that he knows that I know that....

[ am told that the literature of mathematical economics and of game
theory is full of Monty Hall examples, but no-one can give me a nice reference
to a nice game-theoretic solution of the problem. Probably game-theorists
like to keep their clever ideas to themselves, so as to make money from
playing the game. Only losers write books explaining how the reader could
make money from game theory.

It would certainly be interesting to investigate more complex game-theoretic
versions of the problem. If we take Monty Hall as a separate player to the
TV station, and note that TV ratings are probably helped if nice players
win while annoying players lose, we leave elementary game theory and must
learn the theory of Nash equilibria.

Then there is a sociological or historical question: who “owns” the Monty
Hall problem? I think the answer is obvious: no-one. A beautiful mathemat-
ical paradox, once launched into the real world, lives it own life, it evolves,
it is re-evaluated by generation after generation. This point of view actually
makes me believe that Question 0: would you switch is the right question,
and no further information should be given beyond the fact that you know



that the quizmaster knows where the car is hidden, and always opens a door
exhibiting a goat. Question 0 is a question you can ask a non-mathematician
at a party, and if they have not heard of the problem before, they’ll give the
wrong answer (or rather, one of the two wrong answers: no because nothing
is changed, or it doesn’t matter because it’s now 50-50). My mother, who
was one of Turing’s computers at Bletchley Park during the war, but who
had had almost no schooling and in particular never learnt any mathematics,
is the only person I know who immediately said: switch, by immediate intu-
itive consideration of the 100-door variant of the problem. The problem is a
paradoz since you can next immediately convince anyone (except lawyers, as
was shown by an experiment in Nijmegen), that their initial answer is wrong.

The mathematizations Questions 1 and 2 are not (in my humble opinion!)
the Monty Hall problem; they are questions which probabilists might ask,
anxious to show off Bayes’ theorem or whatever. Some people intuitively try
to answer Question 0 via Questions 1 and 2; that is natural, I do admit. And
sometimes people become very confused when they realize that the answer to
Question 2 can only be given its pretty answer “2/3” under further conditions.
It is interesting how in the pedagogical mathematical literature, the further
conditions are as it were held under your nose, e.g. by saying “three identical
doors”, or replacing Marilyn’s ”say, door 1”7 by the more emphatic “door 1”.

It seems to me that adding into the question explicitly the remarks that
the three doors are equally likely to hide the car, and that when the quizmas-
ter has a choice he secretly tosses a fair coin to decide, convert this beautiful
paradox into a probability puzzle with little appeal any more to non experts.

It also converts the problem into one version of the three prisoner’s para-
dox. The three prisoners problem is isomorphic to the conditional probabilis-
tic three doors problem. I always found it a bit silly and not very interesting,
but possibly that problem too should be approached from a sophisticated
game theoretic point of view.

By the way, Marilyn vos Savant’s original question is semantically am-
biguous, though this might not be noticed by a non-native English speaker.
Are the mentioned door numbers, huge painted numbers on the front of the
doors a priori, or are we just for convenience naming the doors by the choices
of the actors in our game a posteriori. Marilyn stated in a later column in
Parade that she had originally been thinking of the latter. However, her own
offered solutions are not consistent with a single unambiguous formulation.
Probably she did not find the difference very interesting.

This little article contains nothing new, and only almost trivial mathe-
matics. It is a plea for future generations to preserve the life of The True
Monty Hall paradox, and not let themselves be misled by probability purists
who say “you must compute a conditional probability”.
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