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Abstract: This paper extends Edgeworth-Cornish-Fisher expansions for the distribution
and quantiles of nonparametric estimates in two ways. Firstly it allows observations to have
different distributions. Secondly it allows the observations to be weighted in a predetermined
way. The use of weighted estimates has a long history including applications to regression,
rank statistics and Bayes theory. However asymptotic results have generally been only first
order (the CLT and weak convergence). We give third order asymptotics for the distribution
and percentiles of any smooth functional of a weighted empirical distribution, thus allowing
a considerable increase in accuracy over earlier CLT results.

Consider Aindependent non-identically distributed (non-iid) observations X1y, ..., Xnn
in R®. Let F(z) be their weighted empirical distribution with weights wip, ..., wnp,. We
obtain cumulant expansions and hence Edgeworth-Cornish-Fisher expansions for 7' (1/7\ ) for
any smooth functional T'(-) by extending the concepts of von Mises derivatives to signed
measures of total measure 1. As an example we give the cumulant coefficients needed for
Edgeworth-Cornish-Fisher expansions to O(n~3/2) for the sample variance when observa-
tions are non-iid.

Keywords: Edgeworth-Cornish-Fisher expansions; von Mises derivatives; Weighted em-
pirical distribution.

1 Introduction and Summary

Withers (1983, 1988) gave third order asymptotics for the distribution of functionals of
empirical (or sample) distributions for iid observations. This paper extends these results to
non-iid weighted observations.

Traditional inference is based on the empirical distribution function. This gives each
observation equal weight. However in many contexts it is more appropriate to weight the
observations differently. An important class of weighted statistics are the rank statistics
studied by Hajek and Sidak (1967). They gave first order (asymptotic) results both for
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iid observations, and for the contiguous case where the observations are from distributions
approaching the null case. However they did not deal with the case where observations
have fixed distinct distributions. A seminal contribution to the theory of weighted empirical
distributions was made by Koul (1992) who gave first order properties for linear models.
This was extended by another seminal contribution, Koul (2002), to allow for random
weights with applications to M- and R- estimates as well as to autoregressive processes.
However, he confined his focus to first order (weak convergence) results. Optimality of
certain weights in a Bayesian setting was proved by Chernoff and Zacks (1964) for testing
the hypothesis of a jump in the mean. For other work, including a comprehensive account
of the literature, we refer the readers to Lahiri (1992a, 1992b, 1992c) and Lahiri (2003).

This paper - following on from Withers and Nadarajah (2008) - gives cumulant expan-
sions - and hence Edgeworth-Cornish-Fisher expansions - for smooth functionals of weighted
empirical distributions for arbitrary non-iid observations. These cumulant expansions are
given in Section 2. As simple examples, Section 3 applies these results to the mean and
variance. Section 4 gives a chain rule for the functional derivative of a function of several
functionals, and uses this to obtain the leading cumulant coefficients for the Studentized
mean, and the coefficient of variation. For completeness the Edgeworth-Cornish-Fisher
expansions for the distribution and quantiles are given in Appendix A, as well as the mul-
tivariate Edgeworth expansion.

Let Xq,, ..., X, beindependent random variables in R® with distributions Fi,,, ..., Fyy.
Let wiy, ..., wn, be given real numbers adding to n:

Wiy + ... + Wpp = N (1.1)

The simplest example giving more weight to the later observations are the weights w;, =
2i/(n + 1) shown by Chernoff and Zacks (1964) to be optimal in a Bayesian setting for

testing for a jump in the mean. The mean with these weights was also used by Kander and
Zacks (1966) and others.

Define the weighted empirical distribution as

n
F(z)=n"" Z Win I (Xin < x)
i=1

for z in R®, where I(A) =1 or 0 for A true or false. Its mean is

~

i=1
F' has moments
my = mT(F) = /;pTdF(ﬂj) = ’I’L_l Zwlan(En)7 Uy = ,u’f‘(F) = EF(X _ ml)T
i=1

with sample versions

~ ~

n n
My =mp(F) =0 win X7, fir = pr(F) =07 win(Xin — )"
i=1 i=1

For convenience we now suppress the subscript n and write X; = X, F; = Fin, w; = Wip,.



Let T(G) be a smooth real functional defined for all signed measures G(x) on R® with
total measure G(oco) = 1. (This is the condition that requires the constraint (II]).) The rth
order (von Mises) functional derivative of T(G) Tg(x1,...,x,) for z1,...,z, in R® may be
defined just as in the case when F'(x) is a probability distribution, and the von Mises-Taylor
expansion for two such signed measures GG, H remains valid, giving an iterative method for
obtaining higher derivatives:

(o]
T(G) - T(H) = S T.(G, H) /1, (1.3)
r=1
where
T.(G,H) :/.../TH(azl,...,xr)dG(xl)...dG(xT,),
where T (x1,...,x,) is made unique by two conditions: first that it is symmetric under
permutation of arguments x1,...,x,; and second that it satisfies

/Tp(azl, censxp)dF (1) =0 (1.4)

for r > 1. The first derivative, T (z) is just the coefficient of € in the Taylor expansion
of T(H + €(d, — H)) about € = 0, where ¢, is the distribution putting weight 1 at z. It
is sometimes called the influence function of T'(F). The rule for differentiating S(H) =
Ty (z1,...,x,) given by Theorem 2.1 of Withers (1983) remains valid:

Ty (1. . 2r1) = Su(@e1) + Y To (1. 2415 (1.5)
=1

where S(H) = Ty (z1...2z,) and (-); means “drop the ith column”. For example, putting
r = 1, the second derivative is given by Ty (x122) = Sg(x2)+Tg(z2), where S(H) = Ty (z1).
The theory of statistical functionals was pioneered by von Mises (1947). The importance
and use of the influence function has been widely used to obtain the asymptotic variance
of general estimates,

nvar(T(F)) — /TF($)2dF($)
as n — 0o. The second derivative has been used to estimate and correct for bias:
ET(F)— T(F) = n"! / To(z, 2)dF(x)/2 + O(n~2).

This was used by Jaeckel (1972) to justify the infinitesimal jackknife. However the use of
other higher order derivatives has not been widespread. The reason for seems to be that not
until Withers (1983), was the formula (5] available to compute higher order derivatives.
Nevertheless their use since then has been disappointing. Perhaps this is due to a common
misconception that for T'(F') a function of moments, it is just as easy to simply use ordinary
Taylor expansions. To see that this is not true, consider the following simple example.

Example 1.1 Let us compute the asymptotic variance of the rth central sample moment,
that is, az1/n, by both the functional method and the ordinary Taylor expansion method,



when T(F) = p, = [(z — p)"dF(z), p = mi(F), observations are iid, and the ordinary
unweighted empirical dzstrzbutwn is used. Then

Ty =(x—p) —pr—r(@—ppr1,

om = [ T2F(@) = i = 2= e + P (1.6)

The ordinary Taylor series method writes p, as a function of the non-central moments:

e = S (] mani = = (1 ) +Z (7t =t )

1=0

say, with derivatives t.; = Ot(mq,--- ,m,)/0Om; given by

b= (17— g +Z 7= (7)o = dmamg e,

and for 1 <i<r,

~

Also covar(mi(F),mj(ﬁ)) ~ (mjyj —m;ym;j)/n. So,

r
ags1 = E titj (miﬂ' — mlm])
i,5=1

The challenge to these advocates of the ordinary Taylor method is to show that this reduces
to (I4). Even for the variance, this takes some time.

In Section 2 we use the von-Mises expansion for =T (ﬁ ) to obtain the basic cumulant
expansion

ke (B) = > ann” (1.7)

for r > 1 needed for the Edgeworth-Cornish expansions of Appendix A. (So, as;/n and
aj1/n are the asymptotic variance and bias of T(ﬁ ), viewed as an estimator of T'(F).)
These expansions require that the cumulant coefficients {a,;} are all bounded as n — oo.
This is true if

n
=n"") uj (1.8)
i=1

is bounded for r > 1 and the [-];;... functions of Section 2 are bounded. The expansions of
Appendix A also require that as; is bounded away from 0. Typically this is true if Wy is
bounded away from 0. The first order results of Koul (2002) may be reconciled with our
first order results by noting that he works with d; = w;/(nWs)'/2. Throughout, we assume
that all weights {w;, } are bounded and that all weight functions have finite derivatives.



2 Moment and Cumulant Expansions for Estimates

What happens to non-parametric estimates when the assumption that observations come
from the same distribution breaks down? Here we derive the cumulant expansion (L.7)) for
0 = T(ﬁ ), giving explicitly the cumulant coefficients of (7)), a21, a11, asz, ase, as3, needed
for third order expansions and inference for non-iid observations.

We follow the approach of Withers (1983) deriving the cumulant expansion from the
moment expansion

EA{T(F)-TF)} =Y an
Jj>r/2

for 7 > 1 using the relations between their coefficients {a,;} and {a;;} given in Theorem
3.1 of Withers (1983). We use the following notation with F' of (L.2)):

Txl...xr = TF(xlw”rxT’)a
1), = BT = [ TLdR@)
[1T711]i = E T;(iTXiXi = /TQZlemdFi(xl)’
[17,12%,2"] . = E™ T T x, Tk, = / / Ty T3 2, Ta, dFy (x1)dFj (22),

ij T1T1T2 T2

[1,122],; = E™ Tx,Tx,x,x, = / / Ty Tirapwn dF (1) dFj (29),

[1,2,3,123),., = E™ Tx,Tx,Tx,Tx,x,x,

ijk
= ///TrlTwQTwsTwlewdei(xl)dF}(m2)dFk($3)

and so on, where E"¢ means E treating X;, X j» -+ as independent. Now set
n
1] =n""> wi[17];,
i=1

n
1711 ==ty w2 (1],

i=1
n
£ =2 +s, s+t t
[17,12%,2'] = n™2 > " wf Pwi ™ [17,12°,2 liis
i,j=1
and more generally for S a number of sequences from and including 1,2,...,r we set

[S]=n"" z": En: wi‘ll ...wi)‘:[S]il...iT’

=1 ip=1
where )\; is the number of times j occurs in S.

In Appendix B we derive the following expressions for the cumulant coefficients needed



for the Edgeworth-Cornish-Fisher expansions of T’ (ﬁ ) to O(n=3/2):

aip = T(F), a1 = {12}7 (2-1)
ay; = {11}/2 and a3 = {13} + 3{1,2,12}, (2.2)
age = {1,11} + {122}/2 4 {1,122}, (2.3)
a3 = {11} — 3{12,1%} + 12{1,2% 12} + 12{1,2,13,23} +4{1,2,3,123}, (2.4)
where
{1} = "> win(Tr(Xy))
=1
n~t Z?:l w?([12]i - [1]12)7 if r =2,
= o o wH{[1P] - 31117 + 21]F), ifr=3,
nt 3o wi{[1; — 4[] + 6[1F[1%); - 311}, ifr =4,
{11}y = [11] - n_IZw?[M]ii _1Zw2{ [11]; — [12]si},
{1,2, 12} = n_2 Z w 1 2 12 2[1]j[1712]ij + [1]2[1]1[12]U)’
,5=1
{1,11} = n7! Zw?([l, 11]; — [105[11]); — 2[1,12]5 + 2[1]:[12]3:),
{122} = n7? Z wiw?([12%);; — 2[12,13)5;5 + [12]3)),
,7=1
{1, 122} = n_2 Z w 1 122 [1, 123]ijj - [1]1[122]U + [1]2[123]2”),
,7=1
{12,132} = n_lzw po(Tr(X = _IZw 1]2)%,
{1,212} = n7? Z wiw? ([1,2%,12];; — [17]5[1, 125 — [1]5[1, 2, 12];;
,7=1
+2[1J35[1, 12155 — [1i73)
m; = [12 12]j2- — [1%);[12]5; — (11511, 1205 + 2[1]3[12]s5,
{1,2,13,23} = n? Z wiwiwy([1,2,13,23]55 — [1k[1,12, 23]k
i,5,k=1
—[1,12]35[1, 12]; + 2[1]x [12]5x[1, 1235 — [1]s[1]x[12]35[12] k),
{1,2,3,123} = n7® Y wiwiwi((1,2,3,123]; — 3[1)[1,2, 123];
i,j,k=1
+3[1]; 1]k (1, 123]550 — [1a[1]5[1]6[123]ij1)-
In addition the following coefficient is useful for the calculation of the second order bias:
arp = {111} /6 + {1122}/8, (2.5)



where

{111} =71 " wd (111, - 3[122]; + 2[123],,,)
i=1
and
(1122} =2 Y wiu? ([1122]2.]. —2[1233],,; + [1234]iijj> .
ij=1
Typically a1 is bounded away from 0 if and only if W5 is bounded away from 0.
For iid observations, (2.1)—(2.5]) reduce to
arg = T(F), ag =[1%=Wy[1",

ay; = [11]/2:W2[11]1/2,
azy = [13]+3[1,2,12] = Wa[1%]; + 3W2[1,2, 1211,
agg = [1,11] + [12%]/2 4 [1,122]
= Wi[1,11]y + W$[12%]11/2 + WE[1,122]11,
a3 = [14 = 3Wy[1%)? + 12[1,12,22] + 12[1,2,23,31] + 4[1, 2, 3, 123]

= Wa{[1Y], - 3[1%]7} + 12WaWs [1,12,2%]
+AWS{3(1,2,23,31],,, +[1,2,3,123], 1, },
aly = [111]/6 + [1122] /8 = W3 [111], /6 + W [1122],, /8,

where W, is given by (L8]). This follows from the above results and (I4]). For wj, = 1
these reduce to the expressions of Theorem 3.1 of Withers (1983).

3 Two Simple Examples

If T(F) is a polynomial in F of degree r, (for example, p,(F')), then derivatives of order
greater than r are zero. Let us work through two simple examples: the mean and the
variance.

Example 3.1 Suppose that T(F) = w(F) = p say, and s = 1. Then T, = x — u, and
higher derivatives are zero. Then

n
Qprr—1 = n~t Z w;'n’fr(Xi)
i=1

and other cumulant coefficients are 0. If the observations are iid, then a,,—1 = Wyk,(X).

Now suppose that {w;, F;(x)} can be parameterised as wi, = w(i/n), Fi,(x) = F(x,i/n)
for some smooth functions w(t), F(x,t). That is, Xy, has distribution G /m () say, and
F(z,t) = Gy (x). Then we can write

E X;, =m,(i/n), where m,(t) = /l‘TF(d$,t),
ke (Xin) = Kr(i/n), where k1(t) = my(t), ka(t) = ma(t) —m(t)?,---

e Z kr(i/n), where ky(t) = w(t)" k(t). (3.1)

i=1



That is, m.(t) and k.(t) are the rth moment and cumulant of Gyw)(z). By the Euler-
McLaurin expansion (Abramowitz and Stegqun, 1964, Equation (23.1.30), page 806),

n! Z g(i/n) = Z ar(g)n™", where
i=1 k=0

ai(g) = {g9(1) —9(0)} /2,

ar(g) = {g*70(1) = 9" DO } B/l for k= 2,3,...
and By, is the kth Bernoulli number, given by Abramowitz and Stegun (1964, page 809, last
column): By = —1/2, Bo =1/6, B3 =0, By = —1/30, --+ and By =0 for k =3,5,7,---

Applying this to g = k, of (31l), we see that the rth cumulant of ,u(ﬁ) satisfies the basic
expansion (1.7) with the new coefficients a;j = ajy1—r(kr). So, the leading coefficients are

In particular

1 1
dig = /0 w(t)dt / 2F(dz,t), dy — /O w(t)2hs()dt.

So, for the unweighted case w(t) =

a’o —/ dt/:EF (dz,t), abhy —/ Ko(t)dt.

Example 2.1.1 Suppose that Gg(z) =1 —e*/? on (0,00), the scaled exponential distribu-
tion. Then

Ke(t) = (r—=D0@)", k.(t) = (r — 1)In(t)", where n(t) = w(t)0(t),
1
oy = (1 — 1)!/0 n(t)"dt, a,,. = (r—1)![n(1)" —n(0)]/2.

So, to this degree of approximation, weighting the observations amounts to weighting the
scale parameter, 0(t).

Since p(F') is linear in F, the last example did not need the machinery of functional
differentiation. But as pointed out in Example 1.1, this is not the case for the next example,
the variance.

Example 3.2 Suppose that s = 1 and T(F) = uz(F) = po say. Then T, = p2 — po,

where py = x — p, Ty = —2uzpy, and higher derivatives are zero. We give the cumulant
coefficients in terms of

n
=n"" Z w?ﬂri,usi T (32)
=1



where pi; = Ep’y = E (X; — p)". Since
n
{17} =071 wlue (i),
i=1

we have ay = {12} = M? — M2, {13} = M — 3M3, + 2M3y, and {1*} = Mg — 4AMy, +
6Myyy — 3Myygy. Also [11]; = —2FE %, = —2pai, [12]55 = —2p1ip1j, so that

ajl = —M22 —|—M121.

Also [1]; = poi—pa, [1,12]55 = —2(usi — popirs) g, [1,2,12]55 = —2(usi — popers) (135 — t2fi1j)
giving {1,2,12} = —2(M2 — M%)?, so that

asy = Mg — BM3, + 2M3yy — 6(M?? — M3)*.

Also {1,11} = —2(M} — 2Mjs — M3, + 2M7yy), {12°} = 4(M3 — M7))?, {1,122} = 0, so
that

aga/2 = (M3 — MP))? — M§ + M3y + 2Mi3 — 2M75.
Similarly writing (24) as ass = by — 3ba + 12bg + 12by + 4b5, one obtains

bi = Mg —4Myg + 6 Moy, — 3Mosg,

by = Mjy —2Mypy + My,

by = 2M3(—M; + M7y + M3 — 4AMiyy + po M3 + 55 M7)
+2MPH[2ME — M3; + 2Miyy — 3o (M3 + Miy) + 3u5M; ]
—2M7 pa[ M5 + M7y — 2Miyy — 2p5 (M3 + Miy) + 8p5 My,

by = A(Mj — paM7)(MF — M) (M5 — M7y),

bs = O.

Specialising to the iid case gives pp; = pr,

(1] = pua — i3, [11]1 = —2p2, [1°]1 = pg — 3o + 243,
[1,2,12011 = =243, [1,11)1 = —2(pa — 413),

[12%]11 = 4p3, (141 = ps — dpape + 6p3pa — 3u3,
[1,12,2%]11 = —2u3(us — 2p2p13), [1,2,23,31]111 = dpop3,
[1,2,3,123]111 = [1,122]17 = [111]; = [1122]1; = 0,

so that
agy = Walps — p3), an = —Wapa,
asy = Walus — uapa + 2u3) — 6W3p3,
agg = —2Wa(pa — pi3) + 2W3p3,
asy = Walus — dpaps + Oppa — 3py — 3(pa — p3)%] — 24WaWaps(us — 2uaps)

+ABWS g p13.

For the unweighted case, these cumulant coefficients {a,;}, reduce to those of Example 2 of
Withers (1983).



4 A Chain Rule for More Complex Examples

When T'(F) is a function of moments (for example, the coefficient of variation or correlation),
the following chain rule is very useful.

Suppose that f: RP — R is a smooth function and that S(F") is a smooth functional in
RP. For 1 < a <p, let Sq.z,..z, denote the rth derivatives of S,(F). Then by an extension
of the chain rule for differentiating a function of a function, the first three derivatives of

T(F) = f(S(F)) are

Tx = faSa:ca T:c1:c2 = faSa-xlxg + fawa:cle-mza
3

TZB1(E2(E3 = faSa-xlxgmg + fab Z Sa-m1 Sb~x2x3 + facha-m1 Sbmgsc-xga
123

where f, = fay..a, = 0" f(5)/0s1 -+ 0s;|s—g(r), We use the tensor summation convention

of implicit summation of pairs of a,b,---, and 25)23 sums over all 3 permutations of 1,2,3
giving distinct terms. Set

v = E S,x,Spx, - and M¥(ab--- jed--- - _1Zwk ab---y ed:

—_

[1]; = favi's 1 ]z—fafsz )
[1°); = fa ofew £

[11]; = fa + foE Sax,x.,
[12]ij = faiV) + faE™ Sax,x;,
[

[

1,12];; = fc(fabVacV + fuE™ S Sex;Sax:X; )
1,2,12];5 = fafo(feavi“v; bd ¢ f B Sax;Spx;5cx,x;)-
Set
C(ab) = p(Sax,, Spx,) = M?(ab) — M*(a,b),
C(abc) = n_Ing’u(SaX“Sin,SCX.) M3(abc) — ZM?’ (ab, c) +2M3(a, b, c)
i=1 abc
since
1(Sax;, Svx,» Sex,) = vi* ZVach-i-?Vf Vv
abc
Then

az = fafpC(ab),

n
2a11 = fabc(ab) + fa nt Z wzz(E SaXiXi - Eind SaXin |j:i)-
=1

10



Also agg is given by (2.2) in terms of
{1’} = fafofeClabe),

n
{1,2, 12} = fafbfc n—?2 Z w?wszind SaXin (SinSch — QV?SCXZ- + V?Vf)
ij=1

+fafvfea C(ad)C(be).

For the iid case these reduce to

ag = Wafa fyi?,
a = Wa(fai + fuF Saxx)/2,
azg = fafofe(Wsvf? + 3WZE™ S, x. x,S0x,5exs) + 3fafofeaWaridvle.

Example 4.1 Suppose that s =1, p=2, S1(F) = p, So(F) = pa. After some simplifica-
tion one obtains

az = fafpC(ab) = fFC(11) + 2f1f2C(12) + f5C(22),

2a11 = fepC(ab) — 2f2C(11) = (f11 — 2f2)C(11) + 2f12C(12) + f22C(22),

azg = {1°} +3{1,2,12},

where
{1°} = fFC(111) + 3f7 C(112) + 3f1 f70(122) + f3C(222),
{1,2,12} = D}(fu1 — f2) + 2D1Ds fia + D3 f12, Dj = foC(ja).
Also, in the notation of (32), C(ab), C(abc) reduce to
C(ab) = M2, — M2;

a

3
Clabc) = M2,y . — Z M3+b,c + 2M3,b,c :
abc
C(111) = M3, C(112) = M3} — M3, — 2M35 + 2M3,,
C(122) = M3 — M}, — 2M3; + 2M3y,, C(222) = M3 — 3M3, + 2M3),.
For the iid case,
C(11) = Wopg, C(12) = Wapz, C(22) = Wa(ua — 13),
C(111) = Wapug, C(112) = Ws(pus — p3),
C(122) = Wa(us — 2uap3), C(222) = Wa(ug — 3puapa + 2u3).
We now give two applications of this example, the Studentised mean and the coefficient

of variation. Set 0 = o(F) = u;m and A\, = ur/,ugm.

Example 4.2 The Studentized mean. Take s =1, T(G) = [u(G) — u(F)]/o(G). Then
in terms of C'(ab), C(abc) of Example 2.4,

T(F)=fo=fi1=fo=0, fi=c ', fiu=-07/2
ag] = 0(11)//@, aip = —0'_30(12)/2,
aze = C(111)0™3 = 3C(11)C(12)0 .

11



For the iid case, ag; = Wa, a;1 = —Wal3/2, age = (W3 — 3W2)2)\3. For the unweighted
case, this gives asy = 1, a;1 = —A3/2, aza = —2\3, in agreement with Withers (1989,
Ezample 1.2, page 300).

Example 4.3 The inverse of the coefficient of variation. Suppose that s = 1 and
T(F) = p/o. Using the notation of the previous two examples, we obtain

ag = C(11)/pg — C(12)p/ 3 + C(22)p4° /4y,
2a11 = (C(11)pu — C(12))o =3 + 3C(22) o> /4,
aze = {13} + 3{1,2,12},

where

{13} = C(111)0 2 — 3C(112)uo " /2 + 3C(122) %0~ /4 — C(222) 35 72/8,
{1,2,12} = (D?i — D1 D2)o 3 + 3D2 10~ /4,
Dy = [C(11) = C(12)p/2pglo ™", Dy = [C(12) — C(22)p/2p0)0 "

For the iid case,

Dy = Whooy, where ag =1 — A\3T(F)/2,
Dy = Waoan, where ag = A3 — (A — 1)T(F) /2,

and
ag1 = Wall = \T(F) + (A — 1)T(F)? /4],
2a11 = Wa[T(F)(1 +3\y)/4 — N3],
{1°}/W3 = X3 = 3T(F) (A4 — 1)/2 4 3T(F)*(As — 2X3) /4 = T(F)* (A6 — 3A\s +2)/8,
{1,2,12} /W2 = o3T(F) — ayos + 303T(F),
aze = {1°} + 3{1,2,12}.
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Appendix A: Edgeworth-Cornish-Fisher Expansions

Since the cumulants of T(F) satisfy the expansion (7)), it follows by Withers (1984) that
its standardized version, Y;, = n!/ 2a2_11/ 2{T(ﬁ )—T(F)}, has the Edgeworth-Cornish-Fisher
expansions

P (z) = P(Y, <x)~ Z hy(2)n /2,
=1

P(|Yn| < ) = 28(x) — 1 - 2¢(z) Y _ hop(2)
r=1

[e.9]

q>—1 % Z —T/Q’

P (®(z) =z + Z gr(z)n "2,

where @ and ¢ are the distribution and density of a unit normal random variable and
{hr, fr,gr} are certain polynomials given by (4.1) of Withers (1984) in terms of the stan-

dardized cumulant coefficients A,; = a2_1r/ 2am-. In terms of the Hermite polynomial He;(x) =
¢(x)~Y(—d/dx)'¢(x), the first few are given by

hi = fi=g1 = An+ AsaHey/6,
hy = (A% + Ag)He1/2 + (4A11Azo + Ayz)Hes /24 + A2, Hes /72,
hy = Az + (A} +3A11 A2 + As3)Hes /6
+(10A%, Az + 5A11 Ayz + 10490 Az + Asy)Hep /120
+(2A11 A%y + Ao Aygz)Heg /144 + AzyHeg /1296,
fo(z) = (bo)2 — L1l3)3)x + €4(x® — 3x) /24 — (3(4a® — Tx) /36,
fa(x) = —loly)2+ 0305/6 — lals(5a® — 3)/12 — (104(x% — 1)/8
+l5(2t — 622 + 3)/120 4 £102(122% — 7) /36 — £3£4(112* — 422% + 15) /144
+03(6921 — 1872% 4 52) /648 + Aqp + Asz(2? —1)/6,
g2(z) = lox)2 + Ly(ax® — 3x)/24 — £3(223 — 52) /36,
g3(z) = —lolz(x? —1)/6 + 5(z* — 627 4 3)/120 — L34y (x* — 527 4 2) /24
+03(122" — 5322 +17)/324 + A1 + Asz(2? — 1) /6,
where {1 = Ay, bo = Agg, I3 = Aso, €4 = Ayz and f5 = Asy. The coeflicients given in §2

give {h,, fr,gr,1 < r < 2} and so give the distribution and quantiles of Y;, to O(n=%/2).
The same is true of its density, since we can write

— Z{hm-He,-(x) :r 41 odd },

SO

3r—1

P Zn—r/Q Z hm a/ax ( )

14



giving density

pu(@) = @@){1+ Y n "R (2)},
r=1

where

3r—1
he(z) = Z {hriHe;y1(x) : 7+ 1 odd}.

=1
SO, El = Ay1Hep + A32H€3/6, Eg = (A%l + A22)H€2/2 + (4A11A32 + A43)H€4/24 +
A2,Heg /T2, and so on.

Suppose T'( F)\ is g-variate and the weights p-variate. Then the distribution and density
of Y,, = n'/2{T(F) — T(F)} have the multivariate Edgeworth expansions for z in RY

Py(z) = P(Yo <2) =Y 0 "2P(=0/0x)Dy (x)
r=0

and
pu(x) = (0/021) ... (0/d24)P(Yn < x) Zn "12P,(—0/0x) ¢y (z),

where @y (z) and ¢y (z) are the distribution and density of A'(0,V), V = (a2),

Py(t) =1,

Pi(t) = a§te + a§t,t 5t /6,
Po(t) = a3tutp)2 + ay?  tat gtots /24 + Pi(t)?,

and so on, again using implicit summation over repeated pairs of indices.
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Appendix B: Proofs for Section 2

Here we derive the results of Section 2. By the von Mises expansion (L3)) and (L.4)),
N [ee]
T(F) — T(F) = 3 T /1,
r=1

where T(,y = T.(F,F) = O,(n~"/?) for T(F) regular. We may express the moments of
T(F) — T(F) in terms of ays.. = E T Tisy--- = O(n™"), where v = R/2 for R even,
v=(R+1)/2for Rodd and R =7+ s+ .... Since

T(T) = n—T’ Z Wiy - .- Wy, / . /Txl...xrd‘[hl e dIiT-TW

i1 peir=1

where I, = I(X; < x,) — Fj(x,), to simplify a,, . we need expressions for D;; , =
E Ijp... 1. Set

8ij...=Ili=j=..)),
Sijke. =Ili=j=...£k=0=..),
Oijkt;mn = 1(i = j,k = £,m = n all three distinct),

and so on. Then

E Il = 6;;Dji,
E Ii1Ijs1y3 = 65k Di123,
3
E Iinljolyzles = 6 4 Dj1234 + Z 055 ke Din2Dy34

for

3
E 0ijeDi12Diza = 63 peDin2 Diaa + ik jeDinzDjos + 00 jiDi1aDjas,

10
ElLy...Ins = 0imDi. .5+ Z 0ij kemDin2 D345,
15
ElLy...Ing = 0i.nDi1.6+ Z 0ij k..nDi12Di3ase
10 15

+ > ik emnDir23Deass + > 8ijkt.mn Dira Diaa Dimss

and ZIO and 215 defined similarly. Setting F;, = F;(z,) and Fjjpon... = Fi(min(zq, 29, ...)),
we have

Dj; =0,
D12 = Fiipo — Fi1 Fio,
3
Dj123 = Fiipon3 — Z FiFiaops + 2Fj FioFis,
123
4 6
Di1..a = Fan.pa — Z Fi1Fiopana + Z FinFioFigng — 3Fj1 ... Fiy,
1234 1234

16



and so on, where ZTT 91.r = Y. gz summed over all m permutations of 1...r giving
distinct terms. So, writing 17, =T, . 4, ,

a1 = E T(l) = n_l Zwi/TldDil = O,
Qo = FE T(2) = n_2 sz’w]//Tlng Iﬂ[jg
ij
= n_22w?//T12dDi12

= n72) wl{[11];, - [12],;} = n~ {11},
az = E Ty :n_?’Zwiijk///Tl%dE TinIjolys

ijk

= n_3zw?///T123dDi123:n_2{111},
a4 = ET(4):n_4Zw,~...wg/.../dEIil...IM
i.0

= n_3a4.1 + 3n_2a4.2

for
ag.1 = n_l Zw? / .. -/Tl...4dDi1...4 = O(l)
i
and
/
Qg9 = n_2Zwl~2wi/. .. /Tl___4dDi12de34,
ik
where Z;] sums over distinet 4,j...1in 1,...,n. So, aus = 5 + O(n~1), where o,

replaces Z;k by > .- So, oy, = {1122}. The expressions for ajg,a11,a12 follow since
a’h- = aij;. Also

E{T(F) — T(F)}? = a11 + 012 4+ 13/3 + age /4 + O(n3),
where
alp = n_2zwiwj//T1ngE Il = n‘2Zw?//T1T2dDi12
i )
= 1%},

g = n_?’Zwiijk///ﬂT%dE L1013

ijk
= 7’L_3Z’w?///T1T23dDZ’123:’I’L_z{l,ll},
7

—4§ :

a3 = N wi...wg/.../T1T234dE [il...[g4 = o131 + @13.9,
1.0

Q22 = Q221+ Q222
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for
a3 =n"") w} / . /T1T234dDi1234 =0(n™?),
i
/
a1s2 =n"tY wi} / - /T1T234d(Di12Dk34) = algy +0(n7),
ik

Q991 = Tl_4 Zw;l / . /T12T34dDi1m4 = O(n_?’),
i
Q9.2 = Q991 + 209292 + O(n73),

ago =n"" g w?w?//T12T34d(Dil2Dj34) =n"2{11}%,
]

agor =n"" g w?w?//T12T34d(Dil3Dj24) =n"2{12%},
]

where o3, replaces > i by >, so ol = n72{1,122}. So, db; = {12} and @), =
{1,11} + {1,122} + {11}2/4 + {122} /2. Now use a2 = db; and age = ah, — a?;. Also

EA{T(F) -~ T(F)}® = a111 + 3a112/2 + O(n™?),

where
a1 = n_?’zw,-ijk///TszTsdE Ii1IjoIy3
ijk
= Tl_gzw?///TngngDilgg = Tl_2{13}
i
and
alle = n_4Zwi L Wy / ... /T1T2T34dE I ... Iy
il
= ai12.1 + o122 + 200123
for

a112.1

n_42w§1/. . ./TngngDil___4 = O(n_?’),

/
1129 = n“*Zw?w?/.../T1T2T34d(Di12Dj34)
ij
= 211} + 0 ),
/
o112.3 = n—42u)i2w?/.../T1T2T34d(Di13Dj24)
ij

= n2{1,2,12} + O(n™3).
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0, Qg9 = + + , 2, . OW USe a3z = Qg9 — Ja21a11 tO obtain asge
So, aj, 13} + 3{12}{11}/2 + 3{1,2,12}. N o — 3 btai
above. Also

EA{T(F) — T(F)}* = c1111 + 201112 + 201113/3 + 3a1122/2 + O(n ™),
a1111 = a1111.1 + 311112,

a1112 = a1112.1 + 30a112.2 + 611123 + Q11124

o113 = a1z + O(n™?),

o122 = 1221 + O(n™?)

for

a1111.1 — n_4Zw§1/.../T1T2T3T4dD1234 :n_3{14},
i

/
11112 = n—42u)2~2wjz»/.../T1...T4d(Di12Dj34)
ij
= aHIPR a1,

11121 = n_szw?/---/T1T2T3T45dDi1...5 =0(n™%),
i

/
iz = n_szw?w?/--'/T1T2T3T45d(Di12Dj345)
]
= n?{1*H1,11} + O(n™Y),
/
iy = n_szw?w?/--'/T1T2T3T45d(Di14Dj235)
]
= n7%{1,12,2°} + O(n™"),
/
a4 = n_szw?w?/--'/T1T2T3T45d(Di45Dj123)
ij

= {1711} + O™,
15
@11131 = n_ﬁzw?w?w]%/---/T1T2T3T456dzDi12Dj34Dk56

ijk
= Y9ainsz + 6ainss,
@132 = n_ﬁzw?wiwz/---/T1T2T3T456d(Di12Dj34Dk56)
ijk
= 121, 122),
@11133 = n_ﬁzw?wjz'w?g/---/T1T2T3T456d(Di14Dj25Dk36)
ijk
= n3{1,2,3,123},
15
11221 = n_ﬁzw?wgw%/---/T1T2T34T56dZDi12Dj34Dk56
ijk
= n7%(y1 + 42 + 873 + 274),
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where
m o= n_gzw?w?w;%/---/T1T2T34T56d(Di12Dj34Dk56)
ijk
= {1°H11)?

Yo = n_gzw?wgwi/.../TlT2T34T56d(Di13Dj24Dk56)
ijk
= {11}{1,2,12},

Y3 = n_3Zwi2wj2»wz/.../T1T2T34T56d(D,~13Dj45Dk26)
ijk
= {1,13,32,2},

Y4 = n_3Zwi2wj2»w,2€/.../T1T2T34T56d(D,~12Dj35Dk46)
ijk

— {1212},

So, ajy = 3{1%2}? and d}3 = as3 + 4ai1a32 + 6agiah, for asz as above. Now use ay3 =
/ /
Q3 — 4&11@32 - 6&21@22.

Note B.1 An alternative method better for obtaining these expressions for the cumulant
coefficients a,;, is to use the parametric approach of Withers (1988). This is possible since

~

K(F(z1),..., F(z;) =n' "k(z1 ... 2,),

where
E(zy...xz,)=n"" ngkz(ml cooxp Fy)
i=1

and k(xy ...z, F;) = k(1(X; < x1),...,1(X; < ).
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