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Abstract: This paper extends Edgeworth-Cornish-Fisher expansions for the distribution
and quantiles of nonparametric estimates in two ways. Firstly it allows observations to have
different distributions. Secondly it allows the observations to be weighted in a predetermined
way. The use of weighted estimates has a long history including applications to regression,
rank statistics and Bayes theory. However asymptotic results have generally been only first
order (the CLT and weak convergence). We give third order asymptotics for the distribution
and percentiles of any smooth functional of a weighted empirical distribution, thus allowing
a considerable increase in accuracy over earlier CLT results.

Consider independent non-identically distributed (non-iid) observations X1n, . . . ,Xnn

in Rs. Let F̂ (x) be their weighted empirical distribution with weights w1n, . . . , wnn. We
obtain cumulant expansions and hence Edgeworth-Cornish-Fisher expansions for T (F̂ ) for
any smooth functional T (·) by extending the concepts of von Mises derivatives to signed
measures of total measure 1. As an example we give the cumulant coefficients needed for
Edgeworth-Cornish-Fisher expansions to O(n−3/2) for the sample variance when observa-
tions are non-iid.

Keywords: Edgeworth-Cornish-Fisher expansions; von Mises derivatives; Weighted em-
pirical distribution.

1 Introduction and Summary

Withers (1983, 1988) gave third order asymptotics for the distribution of functionals of
empirical (or sample) distributions for iid observations. This paper extends these results to
non-iid weighted observations.

Traditional inference is based on the empirical distribution function. This gives each
observation equal weight. However in many contexts it is more appropriate to weight the
observations differently. An important class of weighted statistics are the rank statistics
studied by Hajek and Sidak (1967). They gave first order (asymptotic) results both for

1

http://arxiv.org/abs/1002.4338v1


iid observations, and for the contiguous case where the observations are from distributions
approaching the null case. However they did not deal with the case where observations
have fixed distinct distributions. A seminal contribution to the theory of weighted empirical
distributions was made by Koul (1992) who gave first order properties for linear models.
This was extended by another seminal contribution, Koul (2002), to allow for random
weights with applications to M - and R- estimates as well as to autoregressive processes.
However, he confined his focus to first order (weak convergence) results. Optimality of
certain weights in a Bayesian setting was proved by Chernoff and Zacks (1964) for testing
the hypothesis of a jump in the mean. For other work, including a comprehensive account
of the literature, we refer the readers to Lahiri (1992a, 1992b, 1992c) and Lahiri (2003).

This paper - following on from Withers and Nadarajah (2008) - gives cumulant expan-
sions - and hence Edgeworth-Cornish-Fisher expansions - for smooth functionals of weighted
empirical distributions for arbitrary non-iid observations. These cumulant expansions are
given in Section 2. As simple examples, Section 3 applies these results to the mean and
variance. Section 4 gives a chain rule for the functional derivative of a function of several
functionals, and uses this to obtain the leading cumulant coefficients for the Studentized
mean, and the coefficient of variation. For completeness the Edgeworth-Cornish-Fisher
expansions for the distribution and quantiles are given in Appendix A, as well as the mul-
tivariate Edgeworth expansion.

LetX1n, . . . ,Xnn be independent random variables inRs with distributions F1n, . . . , Fnn.
Let w1n, . . . , wnn be given real numbers adding to n:

w1n + . . .+ wnn = n. (1.1)

The simplest example giving more weight to the later observations are the weights win =
2i/(n + 1) shown by Chernoff and Zacks (1964) to be optimal in a Bayesian setting for
testing for a jump in the mean. The mean with these weights was also used by Kander and
Zacks (1966) and others.

Define the weighted empirical distribution as

F̂ (x) = n−1
n∑

i=1

winI(Xin ≤ x)

for x in Rs, where I(A) = 1 or 0 for A true or false. Its mean is

F (x) = E F̂ (x) = n−1
n∑

i=1

winFin(x). (1.2)

F has moments

mr = mr(F ) =

∫
xrdF (x) = n−1

n∑

i=1

winmr(Fin), µr = µr(F ) = EF (X −m1)
r

with sample versions

m̂r = mr(F̂ ) = n−1
n∑

i=1

winX
r
in, µ̂r = µr(F̂ ) = n−1

n∑

i=1

win(Xin − m̂1)
r.

For convenience we now suppress the subscript n and write Xi = Xin, Fi = Fin, wi = win.
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Let T (G) be a smooth real functional defined for all signed measures G(x) on Rs with
total measure G(∞) = 1. (This is the condition that requires the constraint (1.1).) The rth
order (von Mises) functional derivative of T (G) TG(x1, . . . , xr) for x1, . . . , xr in Rs may be
defined just as in the case when F (x) is a probability distribution, and the von Mises-Taylor
expansion for two such signed measures G, H remains valid, giving an iterative method for
obtaining higher derivatives:

T (G)− T (H) =

∞∑

r=1

Tr(G,H)/r!, (1.3)

where

Tr(G,H) =

∫
. . .

∫
TH(x1, . . . , xr)dG(x1) . . . dG(xr),

where TH(x1, . . . , xr) is made unique by two conditions: first that it is symmetric under
permutation of arguments x1, . . . , xr; and second that it satisfies

∫
TF (x1, . . . , xr)dF (x1) ≡ 0 (1.4)

for r ≥ 1. The first derivative, TH(x) is just the coefficient of ǫ in the Taylor expansion
of T (H + ǫ(δx − H)) about ǫ = 0, where δx is the distribution putting weight 1 at x. It
is sometimes called the influence function of T (F ). The rule for differentiating S(H) =
TH(x1, . . . , xr) given by Theorem 2.1 of Withers (1983) remains valid:

TH(x1 . . . xr+1) = SH(xr+1) +

r∑

i=1

TH 〈x1 . . . xr+1〉i , (1.5)

where S(H) = TH(x1 . . . xr) and 〈·〉i means “drop the ith column”. For example, putting
r = 1, the second derivative is given by TH(x1x2) = SH(x2)+TH(x2), where S(H) = TH(x1).
The theory of statistical functionals was pioneered by von Mises (1947). The importance
and use of the influence function has been widely used to obtain the asymptotic variance
of general estimates,

nvar(T (F̂ )) →

∫
TF (x)

2dF (x)

as n → ∞. The second derivative has been used to estimate and correct for bias:

E T (F̂ )− T (F ) = n−1

∫
TF (x, x)dF (x)/2 +O(n−2).

This was used by Jaeckel (1972) to justify the infinitesimal jackknife. However the use of
other higher order derivatives has not been widespread. The reason for seems to be that not
until Withers (1983), was the formula (1.5) available to compute higher order derivatives.
Nevertheless their use since then has been disappointing. Perhaps this is due to a common
misconception that for T (F ) a function of moments, it is just as easy to simply use ordinary
Taylor expansions. To see that this is not true, consider the following simple example.

Example 1.1 Let us compute the asymptotic variance of the rth central sample moment,
that is, a21/n, by both the functional method and the ordinary Taylor expansion method,
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when T (F ) = µr =
∫
(x − µ)rdF (x), µ = m1(F ), observations are iid, and the ordinary

unweighted empirical distribution is used. Then

Tx = (x− µ)r − µr − r(x− µ)µr−1,

a21 =

∫
T 2
xdF (x) = µ2r − µ2

r − 2µr−1µr+1 + r2µ2
r−1µ2. (1.6)

The ordinary Taylor series method writes µr as a function of the non-central moments:

µr =
r∑

i=0

(−1)r−i

(
r

i

)
mim

r−i
1 = (−1)r−1(r − 1)mr

1 +
r∑

i=2

(−1)r−i

(
r

i

)
mim

r−i
1 = t(m1, · · · ,mr)

say, with derivatives t·i = ∂t(m1, · · · ,mr)/∂mi given by

t·1 = (−1)r−1(r − 1)rmr−1
1 +

r∑

i=2

(−1)r−i

(
r

i

)
(r − i)mim

r−i−1
1 ,

and for 1 < i ≤ r,

t·i = (−1)r−i

(
r

i

)
mr−i

1 .

Also covar(mi(F̂ ),mj(F̂ )) ≈ (mi+j −mimj)/n. So,

a21 =

r∑

i,j=1

titj (mi+j −mimj).

The challenge to these advocates of the ordinary Taylor method is to show that this reduces
to (1.6). Even for the variance, this takes some time.

In Section 2 we use the von-Mises expansion for θ̂ = T (F̂ ) to obtain the basic cumulant
expansion

κr(θ̂) =

∞∑

j=r−1

arjn
−j (1.7)

for r ≥ 1 needed for the Edgeworth-Cornish expansions of Appendix A. (So, a21/n and
a11/n are the asymptotic variance and bias of T (F̂ ), viewed as an estimator of T (F ).)
These expansions require that the cumulant coefficients {arj} are all bounded as n → ∞.
This is true if

Wr = n−1
n∑

i=1

wr
i (1.8)

is bounded for r ≥ 1 and the [·]ij... functions of Section 2 are bounded. The expansions of
Appendix A also require that a21 is bounded away from 0. Typically this is true if W2 is
bounded away from 0. The first order results of Koul (2002) may be reconciled with our
first order results by noting that he works with di = wi/(nW2)

1/2. Throughout, we assume
that all weights {win} are bounded and that all weight functions have finite derivatives.
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2 Moment and Cumulant Expansions for Estimates

What happens to non-parametric estimates when the assumption that observations come
from the same distribution breaks down? Here we derive the cumulant expansion (1.7) for
θ̂ = T (F̂ ), giving explicitly the cumulant coefficients of (1.7), a21, a11, a32, a22, a43, needed
for third order expansions and inference for non-iid observations.

We follow the approach of Withers (1983) deriving the cumulant expansion from the
moment expansion

E {T (F̂ )− T (F )}r =
∑

j≥r/2

a′rjn
−j

for r ≥ 1 using the relations between their coefficients {arj} and {a′rj} given in Theorem
3.1 of Withers (1983). We use the following notation with F of (1.2):

Tx1...xr = TF (x1, . . . , xr),

[1r]i = E T r
Xi

=

∫
T r
x1
dFi(x1),

[1r, 11]i = E T r
Xi
TXiXi

=

∫
T r
x1
Tx1x1

dFi(x1),

[
1r, 12s, 2t

]
ij

= Eind T r
Xi
T s
XiXj

T t
Xj

=

∫ ∫
T r
x1
T s
x1x2

T t
x2
dFi(x1)dFj(x2),

[1, 122]ij = Eind TXi
TXiXjXj

=

∫ ∫
Tx1

Tx1x2x2
dFi(x1)dFj(x2),

[1, 2, 3, 123]ijk = Eind TXi
TXj

TXk
TXiXjXk

=

∫ ∫ ∫
Tx1

Tx2
Tx3

Tx1x2x3
dFi(x1)dFj(x2)dFk(x3)

and so on, where Eind means E treating Xi, Xj, · · · as independent. Now set

[1r] = n−1
n∑

i=1

wr
i [1

r]i ,

[1r, 11] = n−1
n∑

i=1

wr+2
i [11]i ,

[
1r, 12s, 2t

]
= n−2

n∑

i,j=1

wr+s
i ws+t

j

[
1r, 12s, 2t

]
ij
,

and more generally for S a number of sequences from and including 1, 2, . . . , r we set

[S] = n−r
n∑

i1=1

. . .
n∑

ir=1

wλ1

i1
. . . wλr

ir
[S]i1...ir ,

where λj is the number of times j occurs in S.

In Appendix B we derive the following expressions for the cumulant coefficients needed
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for the Edgeworth-Cornish-Fisher expansions of T (F̂ ) to O(n−3/2):

a10 = T (F ), a21 = {12}, (2.1)

a11 = {11}/2 and a32 = {13}+ 3{1, 2, 12}, (2.2)

a22 = {1, 11} + {122}/2 + {1, 122}, (2.3)

a43 = {14} − 3{12, 12}+ 12{1, 22, 12} + 12{1, 2, 13, 23} + 4{1, 2, 3, 123}, (2.4)

where

{1r} = n−1
n∑

i=1

w2
i µr(TF (Xi))

=





n−1
∑n

i=1 w
2
i ([1

2]i − [1]2i ), if r = 2,

n−1
∑n

i=1 w
3
i {[1

3]i − 3[1]i[1
2]i + 2[1]3i }, if r = 3,

n−1
∑n

i=1 w
4
i {[1

4]i − 4[1]i[1
3]i[1

3]i + 6[1]2i [1
2]i − 3[1]4i }, if r = 4,

{11} = [11] − n−1
n∑

i=1

w2
i [12]ii = n−1

n∑

i=1

w2
i {[11]i − [12]ii},

{1, 2, 12} = n−2
n∑

i,j=1

w2
iw

2
j ([1, 2, 12]ij − 2[1]j [1, 12]ij + [1]i[1]j [12]ij),

{1, 11} = n−1
n∑

i=1

w3
i ([1, 11]i − [1]i[11]i − 2[1, 12]ii + 2[1]i[12]ii),

{122} = n−2
n∑

i,j=1

w2
iw

2
j ([12

2]ij − 2[12, 13]ijj + [12]2ij),

{1, 122} = n−2
n∑

i,j=1

w2
iw

2
j ([1, 122]ij − [1, 123]ijj − [1]i[122]ij + [1]i[123]ijj),

{12, 12} = n−1
n∑

i=1

w4
i µ2(TF (Xi))

2 = n−1
n∑

i=1

w4
i ([1

2]i − [1]2i )
2,

{1, 22, 12} = n−2
n∑

i,j=1

w2
iw

3
j

(
[1, 22, 12]ij − [12]j[1, 12]ij − [1]j [1, 2, 12]ij

+2[1]2j [1, 12]ij − [1]iτij
)
,

τij = [12, 12]ji − [12]j[12]ij − [1]j [1, 12]ji + 2[1]2j [12]ij ,

{1, 2, 13, 23} = n−3
n∑

i,j,k=1

w2
iw

2
jw

2
k([1, 2, 13, 23]ijk − [1]k[1, 12, 23]ijk

−[1, 12]ij [1, 12]kj + 2[1]k[12]jk[1, 12]ij − [1]i[1]k[12]ij [12]jk),

{1, 2, 3, 123} = n−3
n∑

i,j,k=1

w2
iw

2
jw

2
k([1, 2, 3, 123]ijk − 3[1]k[1, 2, 123]ijk

+3[1]j [1]k[1, 123]ijk − [1]i[1]j [1]k[123]ijk).

In addition the following coefficient is useful for the calculation of the second order bias:

a12 = {111}/6 + {1122}/8, (2.5)
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where

{111} = n−1
n∑

i=1

w3
i ([111]i − 3 [122]ii + 2 [123]iii)

and

{1122} = n−2
n∑

i,j=1

w2
iw

2
j

(
[1122]ij − 2 [1233]iij + [1234]iijj

)
.

Typically a21 is bounded away from 0 if and only if W2 is bounded away from 0.

For iid observations, (2.1)–(2.5) reduce to

a10 = T (F ), a21 = [12] = W2[1
2]1,

a11 = [11]/2 = W2[11]1/2,

a32 = [13] + 3[1, 2, 12] = W3[1
3]1 + 3W 2

2 [1, 2, 12]11,

a22 = [1, 11] + [122]/2 + [1, 122]

= W3[1, 11]1 +W 2
2 [12

2]11/2 +W 2
2 [1, 122]11 ,

a43 = [14]− 3W4[1
2]21 + 12[1, 12, 22 ] + 12[1, 2, 23, 31] + 4[1, 2, 3, 123]

= W4{
[
14
]
1
− 3

[
12
]2
1
}+ 12W2W3

[
1, 12, 22

]
11

+4W 3
2 {3 [1, 2, 23, 31]111 + [1, 2, 3, 123]111},

a12 = [111] /6 + [1122] /8 = W3 [111]1 /6 +W 2
2 [1122]11 /8,

where Wr is given by (1.8). This follows from the above results and (1.4). For win ≡ 1
these reduce to the expressions of Theorem 3.1 of Withers (1983).

3 Two Simple Examples

If T (F ) is a polynomial in F of degree r, (for example, µr(F )), then derivatives of order
greater than r are zero. Let us work through two simple examples: the mean and the
variance.

Example 3.1 Suppose that T (F ) = µ(F ) = µ say, and s = 1. Then Tx = x − µ, and
higher derivatives are zero. Then

ar,r−1 = n−1
n∑

i=1

wr
i κr(Xi)

and other cumulant coefficients are 0. If the observations are iid, then ar,r−1 = Wrκr(X).

Now suppose that {wi, Fi(x)} can be parameterised as win = w(i/n), Fin(x) = F (x, i/n)
for some smooth functions w(t), F (x, t). That is, Xin has distribution Gθ(i/n)(x) say, and
F (x, t) = Gθ(t)(x). Then we can write

E Xr
in = mr(i/n), where mr(t) =

∫
xrF (dx, t),

κr(Xin) = κr(i/n), where κ1(t) = m1(t), κ2(t) = m2(t)−m(t)2, · · ·

ar,r−1 = n−1
n∑

i=1

kr(i/n), where kr(t) = w(t)rκr(t). (3.1)
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That is, mr(t) and κr(t) are the rth moment and cumulant of Gθ(t)(x). By the Euler-
McLaurin expansion (Abramowitz and Stegun, 1964, Equation (23.1.30), page 806),

n−1
n∑

i=1

g(i/n) =

∞∑

k=0

αk(g)n
−k, where

α0(g) =

∫ 1

0
g(t)dt,

α1(g) = {g(1) − g(0)} /2,

αk(g) =
{
g(k−1)(1)− g(k−1)(0)

}
Bk/k! for k = 2, 3, . . .

and Bk is the kth Bernoulli number, given by Abramowitz and Stegun (1964, page 809, last
column): B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, · · · and Bk = 0 for k = 3, 5, 7, · · · .
Applying this to g = kr of (3.1), we see that the rth cumulant of µ(F̂ ) satisfies the basic
expansion (1.7) with the new coefficients a′rj = αj+1−r(kr). So, the leading coefficients are

a′r,r−1 =

∫ 1

0
kr(t)dt, a′rr = (kr(1)− kr(0))/2.

In particular

a′10 =

∫ 1

0
w(t)dt

∫
xF (dx, t), a′21 =

∫ 1

0
w(t)2κ2(t)dt.

So, for the unweighted case w(t) = 1,

a′10 =

∫ 1

0
dt

∫
xF (dx, t), a′21 =

∫ 1

0
κ2(t)dt.

Example 2.1.1 Suppose that Gθ(x) = 1− e−x/θ on (0,∞), the scaled exponential distribu-
tion. Then

κr(t) = (r − 1)!θ(t)r, kr(t) = (r − 1)!η(t)r ,where η(t) = w(t)θ(t),

a′r,r−1 = (r − 1)!

∫ 1

0
η(t)rdt, a′rr = (r − 1)![η(1)r − η(0)r]/2.

So, to this degree of approximation, weighting the observations amounts to weighting the
scale parameter, θ(t).

Since µ(F ) is linear in F , the last example did not need the machinery of functional
differentiation. But as pointed out in Example 1.1, this is not the case for the next example,
the variance.

Example 3.2 Suppose that s = 1 and T (F ) = µ2(F ) = µ2 say. Then Tx = µ2
x − µ2,

where µx = x − µ, Txy = −2µxµy, and higher derivatives are zero. We give the cumulant
coefficients in terms of

Mk
rs··· = n−1

n∑

i=1

wk
i µriµsi · · · , (3.2)
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where µri = Eµr
Xi

= E (Xi − µ)r. Since

{1r} = n−1
n∑

i=1

wr
i µr(µ

2
Xi
),

we have a21 = {12} = M2
4 −M2

22, {1
3} = M3

6 − 3M3
24 + 2M3

222 and {14} = M4
8 − 4M4

26 +
6M4

224 − 3M4
2222. Also [11]i = −2E µ2

Xi
= −2µ2i, [12]ij = −2µ1iµ1j, so that

a11 = −M2
2 +M2

11.

Also [1]i = µ2i−µ2, [1, 12]ij = −2(µ3i−µ2µ1i)µ1j , [1, 2, 12]ij = −2(µ3i−µ2µ1i)(µ3j−µ2µ1j),
giving {1, 2, 12} = −2(M2

3 −M2
12)

2, so that

a32 = M3
6 − 3M3

24 + 2M3
222 − 6(M2

3 −M2
12)

2.

Also {1, 11} = −2(M3
4 − 2M3

13 −M3
22 + 2M3

112), {12
2} = 4(M2

2 −M2
11)

2, {1, 122} = 0, so
that

a22/2 = (M2
2 −M2

11)
2 −M3

4 +M3
22 + 2M3

13 − 2M3
112.

Similarly writing (2.4) as a43 = b1 − 3b2 + 12b3 + 12b4 + 4b5, one obtains

b1 = M4
8 − 4M4

26 + 6M4
224 − 3M4

2222,

b2 = M4
44 − 2M4

224 +M4
2222,

b3 = 2M3
3 (−M3

5 +M3
14 +M3

23 − 4M3
122 + µ2M

3
3 + 5µ2

2M
3
1 )

+2M2
12[2M

3
5 −M3

23 + 2M3
122 − 3µ2(M

3
3 +M3

12) + 3µ2
2M

3
1 ]

−2M2
1µ2[M

3
5 +M3

14 − 2M3
122 − 2µ2(M

3
3 +M3

12) + 8µ2
2M

3
1 ],

b4 = 4(M2
3 − µ2M

2
1 )(M

2
3 −M2

12)(M
2
2 −M2

11),

b5 = 0.

Specialising to the iid case gives µri = µr,

[12]1 = µ4 − µ2
2, [11]1 = −2µ2, [13]1 = µ6 − 3µ2µ4 + 2µ3

2,

[1, 2, 12]11 = −2µ2
3, [1, 11]1 = −2(µ4 − µ2

2),

[122]11 = 4µ2
2, [14]1 = µ8 − 4µ2µ6 + 6µ2

2µ4 − 3µ4
2,

[1, 12, 22 ]11 = −2µ3(µ5 − 2µ2µ3), [1, 2, 23, 31]111 = 4µ2µ
2
3,

[1, 2, 3, 123]111 = [1, 122]11 = [111]1 = [1122]11 = 0,

so that

a21 = W2(µ4 − µ2
2), a11 = −W2µ2,

a32 = W3(µ6 − 3µ2µ4 + 2µ3
2)− 6W 2

2 µ
2
3,

a22 = −2W3(µ4 − µ2
2) + 2W 2

2 µ
2
2,

a43 = W4[µ8 − 4µ2µ6 + 6µ2
2µ4 − 3µ4

2 − 3(µ4 − µ2
2)

2]− 24W2W3µ3(µ5 − 2µ2µ3)

+48W 3
2 µ2µ

2
3.

For the unweighted case, these cumulant coefficients {ari}, reduce to those of Example 2 of
Withers (1983).
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4 A Chain Rule for More Complex Examples

When T (F ) is a function of moments (for example, the coefficient of variation or correlation),
the following chain rule is very useful.

Suppose that f : Rp → R is a smooth function and that S(F ) is a smooth functional in
Rp. For 1 ≤ a ≤ p, let Sa·x1···xr denote the rth derivatives of Sa(F ). Then by an extension
of the chain rule for differentiating a function of a function, the first three derivatives of
T (F ) = f(S(F )) are

Tx = faSax, Tx1x2
= faSa·x1x2

+ fabSa·x1
Sb·x2

,

Tx1x2x3
= faSa·x1x2x3

+ fab

3∑

123

Sa·x1
Sb·x2x3

+ fabcSa·x1
Sb·x2

Sc·x3
,

where fa = fa1···ar = ∂rf(s)/∂s1 · · · ∂sr|s=S(F ), we use the tensor summation convention

of implicit summation of pairs of a, b, · · · , and
∑3

123 sums over all 3 permutations of 1,2,3
giving distinct terms. Set

νab···i = E SaXi
SbXi

· · · and Mk(ab · · · , cd · · · , · · · ) = n−1
n∑

i=1

wk
i ν

ab···
i νcd···i · · · .

Then

[1]i = faν
a
i , [12]i = fafbν

ab
i ,

[13]i = fafbfcν
abc
i ,

[11]i = fabν
ab
i + faE SaXiXi

,

[12]ij = fabν
a
i ν

b
j + faE

ind SaXiXj
,

[1, 12]ij = fc(fabν
ac
i νbj + faE

ind ScXi
SaXiXj

),

[1, 2, 12]ij = fafb(fcdν
ac
i νbdj + fcE

ind SaXi
SbXj

ScXiXj
).

Set

C(ab) = µ(SaXi
, SbXi

) = M2(ab)−M2(a, b),

C(abc) = n−1
n∑

i=1

w3
i µ(SaXi

, SbXi
, ScXi

) = M3(abc)−
3∑

abc

M3(ab, c) + 2M3(a, b, c)

since

µ(SaXi
, SbXi

, ScXi
) = νabci −

3∑

abc

νabi νci + 2νai ν
b
i ν

c
i .

Then

a21 = fafbC(ab),

2a11 = fabC(ab) + fa n−1
n∑

i=1

w2
i (E SaXiXi

− Eind SaXiXj
|j=i).
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Also a32 is given by (2.2) in terms of

{13} = fafbfcC(abc),

{1, 2, 12} = fafbfc n
−2

n∑

i,j=1

w2
iw

2
jE

ind SaXiXj
(SbXi

ScXj
− 2νbjScXi

+ νbi ν
c
j )

+fafbfcd C(ad)C(bc).

For the iid case these reduce to

a21 = W2fafbν
ab
1 ,

a11 = W2(fabν
ab
1 + faE SaXX)/2,

a32 = fafbfc(W3ν
abc
1 + 3W 2

2E
ind SaX1X2

SbX1
ScX2

) + 3fafbfcdW
2
2 ν

ad
1 νbc1 .

Example 4.1 Suppose that s = 1, p = 2, S1(F ) = µ, S2(F ) = µ2. After some simplifica-
tion one obtains

a21 = fafbC(ab) = f2
1C(11) + 2f1f2C(12) + f2

2C(22),

2a11 = fabC(ab)− 2f2C(11) = (f11 − 2f2)C(11) + 2f12C(12) + f22C(22),

a32 = {13}+ 3{1, 2, 12},

where

{13} = f3
1C(111) + 3f2

1 f2C(112) + 3f1f
2
2C(122) + f3

2C(222),

{1, 2, 12} = D2
1(f11 − f2) + 2D1D2f12 +D2

2f12, Dj = faC(ja).

Also, in the notation of (3.2), C(ab), C(abc) reduce to

C(ab) = M2
a+b −M2

ab;

C(abc) = M2
a+b+c −

3∑

abc

M2
a+b,c + 2M2

a,b,c :

C(111) = M3
3 , C(112) = M3

4 −M3
22 − 2M3

13 + 2M3
112,

C(122) = M3
5 −M3

14 − 2M3
23 + 2M3

122, C(222) = M3
6 − 3M3

24 + 2M3
222.

For the iid case,

C(11) = W2µ2, C(12) = W2µ3, C(22) = W2(µ4 − µ2
2),

C(111) = W3µ3, C(112) = W3(µ4 − µ2
2),

C(122) = W3(µ5 − 2µ2µ3), C(222) = W3(µ6 − 3µ2µ4 + 2µ3
2).

We now give two applications of this example, the Studentised mean and the coefficient

of variation. Set σ = σ(F ) = µ
1/2
2 and λr = µr/µ

r/2
2 .

Example 4.2 The Studentized mean. Take s = 1, T (G) = [µ(G)− µ(F )]/σ(G). Then
in terms of C(ab), C(abc) of Example 2.4,

T (F ) = f2 = f11 = f22 = 0, f1 = σ−1, f12 = −σ−3/2,

a21 = C(11)/µ2, a11 = −σ−3C(12)/2,

a32 = C(111)σ−3 − 3C(11)C(12)σ−5.
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For the iid case, a21 = W2, a11 = −W2λ3/2, a32 = (W3 − 3W2)
2λ3. For the unweighted

case, this gives a21 = 1, a11 = −λ3/2, a32 = −2λ3, in agreement with Withers (1989,
Example 1.2, page 300).

Example 4.3 The inverse of the coefficient of variation. Suppose that s = 1 and
T (F ) = µ/σ. Using the notation of the previous two examples, we obtain

a21 = C(11)/µ2 − C(12)µ/µ2
2 + C(22)µ2/4µ3

2,

2a11 = (C(11)µ − C(12))σ−3 + 3C(22)µσ−5/4,

a32 = {13}+ 3{1, 2, 12},

where

{13} = C(111)σ−3 − 3C(112)µσ−5/2 + 3C(122)µ2σ−7/4− C(222)µ3σ−9/8,

{1, 2, 12} = (D2
1µ−D1D2)σ

−3 + 3D2
2µσ

−5/4,

D1 = [C(11) −C(12)µ/2µ2]σ
−1, D2 = [C(12) − C(22)µ/2µ2]σ

−1.

For the iid case,

D1 = W2σα1, where α1 = 1− λ3T (F )/2,

D2 = W2σ
2α2, where α2 = λ3 − (λ4 − 1)T (F )/2,

and

a21 = W2[1− λ3T (F ) + (λ4 − 1)T (F )2/4],

2a11 = W2[T (F )(1 + 3λ4)/4 − λ3],

{13}/W3 = λ3 − 3T (F )(λ4 − 1)/2 + 3T (F )2(λ5 − 2λ3)/4 − T (F )3(λ6 − 3λ4 + 2)/8,

{1, 2, 12}/W 2
2 = α2

1T (F )− α1α2 + 3α2
2T (F ),

a32 = {13}+ 3{1, 2, 12}.
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Appendix A: Edgeworth-Cornish-Fisher Expansions

Since the cumulants of T (F̂ ) satisfy the expansion (1.7), it follows by Withers (1984) that

its standardized version, Yn = n1/2a
−1/2
21 {T (F̂ )−T (F )}, has the Edgeworth-Cornish-Fisher

expansions

Pn(x) = P (Yn ≤ x) ≈ Φ(x)− φ(x)
∞∑

r=1

hr(x)n
−r/2,

P (|Yn| ≤ x) ≈ 2Φ(x)− 1− 2φ(x)

∞∑

r=1

h2r(x)n
−r,

Φ−1(Pn(x)) ≈ x−
∞∑

r=1

fr(x)n
−r/2,

P−1
n (Φ(x)) ≈ x+

∞∑

r=1

gr(x)n
−r/2,

where Φ and φ are the distribution and density of a unit normal random variable and
{hr, fr, gr} are certain polynomials given by (4.1) of Withers (1984) in terms of the stan-

dardized cumulant coefficients Ari = a
−r/2
21 ari. In terms of the Hermite polynomialHei(x) =

φ(x)−1(−d/dx)iφ(x), the first few are given by

h1 = f1 = g1 = A11 +A32He2/6,

h2 = (A2
11 +A22)He1/2 + (4A11A32 +A43)He3/24 +A2

32He5/72,

h3 = A12 + (A3
11 + 3A11A22 +A33)He2/6

+(10A2
11A32 + 5A11A43 + 10A22A32 +A54)He1/120

+(2A11A
2
32 +A32A43)He6/144 +A32He8/1296,

f2(x) = (ℓ2/2− ℓ1ℓ3/3)x+ ℓ4(x
3 − 3x)/24 − ℓ23(4x

3 − 7x)/36,

f3(x) = −ℓ2ℓ2/2 + ℓ21ℓ3/6− ℓ2ℓ3(5x
2 − 3)/12 − ℓ1ℓ4(x

2 − 1)/8

+ℓ5(x
4 − 6x2 + 3)/120 + ℓ1ℓ

2
3(12x

2 − 7)/36 − ℓ3ℓ4(11x
4 − 42x2 + 15)/144

+ℓ33(69x
4 − 187x2 + 52)/648 +A12 +A33(x

2 − 1)/6,

g2(x) = ℓ2x/2 + ℓ4(x
3 − 3x)/24 − ℓ23(2x

3 − 5x)/36,

g3(x) = −ℓ2ℓ3(x
2 − 1)/6 + ℓ5(x

4 − 6x2 + 3)/120 − ℓ3ℓ4(x
4 − 5x2 + 2)/24

+ℓ33(12x
4 − 53x2 + 17)/324 +A12 +A33(x

2 − 1)/6,

where ℓ1 = A11, ℓ2 = A22, ℓ3 = A32, ℓ4 = A43 and ℓ5 = A54. The coefficients given in §2
give {hr, fr, gr, 1 ≤ r ≤ 2} and so give the distribution and quantiles of Yn to O(n−3/2).
The same is true of its density, since we can write

hr(x) =
∑

i=1

{hriHei(x) : r + i odd },

so

Pn(x) ≈ Φ(x)−
∞∑

r=1

n−r/2
3r−1∑

i=1

hri(−∂/∂x)iφ(x),
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giving density

pn(x) ≈ φ(x){1 +
∞∑

r=1

n−r/2hr(x)},

where

hr(x) =
3r−1∑

i=1

{hriHei+1(x) : r + i odd}.

So, h1 = A11He1 + A32He3/6, h2 = (A2
11 + A22)He2/2 + (4A11A32 + A43)He4/24 +

A2
32He6/72, and so on.

Suppose T (F ) is q-variate and the weights p-variate. Then the distribution and density
of Yn = n1/2{T (F̂ )− T (F )} have the multivariate Edgeworth expansions for x in Rq

Pn(x) = P (Yn ≤ x) ≈
∞∑

r=0

n−r/2P̃r(−∂/∂x)ΦV (x)

and

pn(x) = (∂/∂x1) . . . (∂/∂xq)P (Yn ≤ x) ≈
∞∑

r=0

n−r/2P̃r(−∂/∂x)φV (x),

where ΦV (x) and φV (x) are the distribution and density of N (0, V ), V = (aαβ1 ),

P̃0(t) = 1,

P̃1(t) = aα1 tα + aαβγ1 tαtβtγ/6,

P̃2(t) = aαβ2 tαtβ/2 + aαβγδ3 tαtβtγtδ/24 + P̃1(t)
2,

and so on, again using implicit summation over repeated pairs of indices.
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Appendix B: Proofs for Section 2

Here we derive the results of Section 2. By the von Mises expansion (1.3) and (1.4),

T (F̂ )− T (F ) =
∞∑

r=1

T(r)/r!,

where T(r) = Tr(F̂ , F ) = Op(n
−r/2) for T (F ) regular. We may express the moments of

T (F̂ ) − T (F ) in terms of αrs... = E T(r)T(s) . . . = O(n−ν), where ν = R/2 for R even,
ν = (R+ 1)/2 for R odd and R = r + s+ . . .. Since

T(r) = n−r
n∑

i1,...,ir=1

wi1 . . . wir

∫
. . .

∫
Tx1...xrdIi11 . . . dIirr,

where Iir = I(Xi ≤ xr) − Fi(xr), to simplify αrs... we need expressions for Di1...r =
E Ii1 . . . Iir. Set

δij . . . = I(i = j = . . .),

δij...,kℓ... = I(i = j = . . . 6= k = ℓ = . . .),

δij,kℓ,mn = I(i = j, k = ℓ,m = n all three distinct),

and so on. Then

E Ii1Ij2 = δijDi12,

E Ii1Ij2Ik3 = δijkDi123,

E Ii1Ij2Ik3Iℓ4 = δi...ℓDi1234 +

3∑
δij,kℓDi12Dk34

for

3∑
δij,kℓDi12Dk34 = δij,kℓDi12Dk34 + δik,jℓDi13Dj24 + δiℓ,jkDi14Dj23,

E Ii1 . . . Im5 = δi...mDi1...5 +

10∑
δij,kℓmDi12Dk345,

E Ii1 . . . In6 = δi...nDi1...6 +

15∑
δij,k...nDi12Dk3456

+
10∑

δijk,ℓmnDi123Dℓ456 +
15∑

δij,kℓ,mnDi12Dk34Dm56

and
∑10 and

∑15 defined similarly. Setting Fir = Fi(xr) and Fi1∧2∧... = Fi(min(x1, x2, . . .)),
we have

Di1 = 0,

Di12 = Fi1∧2 − Fi1Fi2,

Di123 = Fi1∧2∧3 −
3∑

123

Fi1Fi2∧3 + 2Fi1Fi2Fi3,

Di1...4 = Fi1∧...∧4 −
4∑

1234

Fi1Fi2∧3∧4 +
6∑

1234

Fi1Fi2Fi3∧4 − 3Fi1 . . . Fi4,
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and so on, where
∑m

1...r g1...r =
∑

gπ summed over all m permutations of 1 . . . r giving
distinct terms. So, writing T1...r = Tx1...xr ,

α1 = E T(1) = n−1
∑

i

wi

∫
T1dDi1 = 0,

α2 = E T(2) = n−2
∑

ij

wiwj

∫ ∫
T12dE Ii1Ij2

= n−2
∑

i

w2
i

∫ ∫
T12dDi12

= n−2
∑

w2
i {[11]i − [12]ii} = n−1{11},

α3 = E T(3) = n−3
∑

ijk

wiwjwk

∫ ∫ ∫
T123dE Ii1Ij2Ik3

= n−3
∑

i

w3
i

∫ ∫ ∫
T123dDi123 = n−2{111},

α4 = E T(4) = n−4
∑

i...ℓ

wi . . . wℓ

∫
. . .

∫
dE Ii1 . . . Iℓ4

= n−3α4·1 + 3n−2α4·2

for

α4·1 = n−1
∑

i

w4
i

∫
. . .

∫
T1...4dDi1...4 = O(1)

and

α4·2 = n−2
′∑

ik

w2
iw

2
k

∫
. . .

∫
T1...4dDi12dDk34,

where
∑′

ij... sums over distinct i, j . . . in 1, . . . , n. So, α4.2 = α′
4.2 + O(n−1), where α′

4.2

replaces
∑′

ik by
∑

ik. So, α′
4.2 = {1122}. The expressions for a10, a11, a12 follow since

a′1i = a1i. Also

E {T (F̂ )− T (F )}2 = α11 + α12 + α13/3 + α22/4 +O(n−3),

where

α11 = n−2
∑

ij

wiwj

∫ ∫
T1T2dE Ii1Ij2 = n−2

∑

i

w2
i

∫ ∫
T1T2dDi12

= n−1{12},

α12 = n−3
∑

ijk

wiwjwk

∫ ∫ ∫
T1T23dE Ii1Ij2Ik3

= n−3
∑

i

w3
i

∫ ∫ ∫
T1T23dDi123 = n−2{1, 11},

α13 = n−4
∑

i...ℓ

wi . . . wℓ

∫
. . .

∫
T1T234dE Ii1 . . . Iℓ4 = α13.1 + α13.2,

α22 = α22.1 + α22.2
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for

α13.1 = n−4
∑

i

w4
i

∫
. . .

∫
T1T234dDi1234 = O(n−3),

α13.2 = n−4
′∑

ik

w2
iw

2
k

∫
. . .

∫
T1T234d(Di12Dk34) = α′

13.2 +O(n−3),

α22.1 = n−4
∑

i

w4
i

∫
. . .

∫
T12T34dDi1...4 = O(n−3),

α22.2 = α22.21 + 2α22.22 +O(n−3),

α22.21 = n−4
∑

ij

w2
iw

2
j

∫ ∫
T12T34d(Di12Dj34) = n−2{11}2,

α22.22 = n−4
∑

ij

w2
iw

2
j

∫ ∫
T12T34d(Di13Dj24) = n−2{122},

where α′
13.2 replaces

∑′
ik by

∑
ik, so α′

13.2 = n−2{1, 122}. So, a′21 = {12} and a′22 =
{1, 11} + {1, 122} + {11}2/4 + {122}/2. Now use a21 = a′21 and a22 = a′22 − a211. Also

E {T (F̂ )− T (F )}3 = α111 + 3α112/2 +O(n−3),

where

α111 = n−3
∑

ijk

wiwjwk

∫ ∫ ∫
T1T2T3dE Ii1Ij2Ik3

= n−3
∑

i

w3
i

∫ ∫ ∫
T1T2T3dDi123 = n−2{13}

and

α112 = n−4
∑

i...ℓ

wi . . . wℓ

∫
. . .

∫
T1T2T34dE Ii1 . . . Iℓ4

= α112.1 + α112.2 + 2α112.3

for

α112.1 = n−4
∑

i

w4
i

∫
. . .

∫
T1T2T3dDi1...4 = O(n−3),

α112.2 = n−4
′∑

ij

w2
iw

2
j

∫
. . .

∫
T1T2T34d(Di12Dj34)

= n−2{12}{11} +O(n−3),

α112.3 = n−4
′∑

ij

w2
iw

2
j

∫
. . .

∫
T1T2T34d(Di13Dj24)

= n−2{1, 2, 12} +O(n−3).
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So, a′32 = {13} + 3{12}{11}/2 + 3{1, 2, 12}. Now use a32 = a′32 − 3a21a11 to obtain a32
above. Also

E {T (F̂ )− T (F )}4 = α1111 + 2α1112 + 2α1113/3 + 3α1122/2 +O(n−4),

α1111 = α1111.1 + 3α1111.2,

α1112 = α1112.1 + 3α1112.2 + 6α1112.3 + α1112.4,

α1113 = α1113.1 +O(n−4),

α1122 = α1122.1 +O(n−4)

for

α1111.1 = n−4
∑

i

w4
i

∫
. . .

∫
T1T2T3T4dD1234 = n−3{14},

α1111.2 = n−4
′∑

ij

w2
iw

2
j

∫
. . .

∫
T1 . . . T4d(Di12Dj34)

= n−2{12}2 − n−3{12, 12},

α1112.1 = n−5
∑

i

w5
i

∫
. . .

∫
T1T2T3T45dDi1...5 = O(n−4),

α1112.2 = n−5
′∑

ij

w2
iw

3
j

∫
. . .

∫
T1T2T3T45d(Di12Dj345)

= n−3{12}{1, 11} +O(n−4),

α1112.3 = n−5
′∑

ij

w2
iw

3
j

∫
. . .

∫
T1T2T3T45d(Di14Dj235)

= n−3{1, 12, 22}+O(n−4),

α1112.4 = n−5
′∑

ij

w2
iw

3
j

∫
. . .

∫
T1T2T3T45d(Di45Dj123)

= n−3{13}{11} +O(n−4),

α1113.1 = n−6
∑

ijk

w2
iw

2
jw

2
k

∫
. . .

∫
T1T2T3T456d

15∑
Di12Dj34Dk56

= 9α1113.2 + 6α1113.3,

α1113.2 = n−6
∑

ijk

w2
iw

2
jw

2
k

∫
. . .

∫
T1T2T3T456d(Di12Dj34Dk56)

= n−3{12}{1, 122},

α1113.3 = n−6
∑

ijk

w2
iw

2
jw

2
k

∫
. . .

∫
T1T2T3T456d(Di14Dj25Dk36)

= n−3{1, 2, 3, 123},

α1122.1 = n−6
∑

ijk

w2
iw

2
jw

2
k

∫
. . .

∫
T1T2T34T56d

15∑
Di12Dj34Dk56

= n−3(γ1 + 4γ2 + 8γ3 + 2γ4),
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where

γ1 = n−3
∑

ijk

w2
iw

2
jw

2
k

∫
. . .

∫
T1T2T34T56d(Di12Dj34Dk56)

= {12}{11}2,

γ2 = n−3
∑

ijk

w2
iw

2
jw

2
k

∫
. . .

∫
T1T2T34T56d(Di13Dj24Dk56)

= {11}{1, 2, 12},

γ3 = n−3
∑

ijk

w2
iw

2
jw

2
k

∫
. . .

∫
T1T2T34T56d(Di13Dj45Dk26)

= {1, 13, 32, 2},

γ4 = n−3
∑

ijk

w2
iw

2
jw

2
k

∫
. . .

∫
T1T2T34T56d(Di12Dj35Dk46)

= {12}{122}.

So, a′42 = 3{12}2 and a′43 = a43 + 4a11a32 + 6a21a
′
22 for a43 as above. Now use a43 =

a′43 − 4a11a32 − 6a21a
′
22.

Note B.1 An alternative method better for obtaining these expressions for the cumulant
coefficients ari, is to use the parametric approach of Withers (1988). This is possible since

κ(F̂ (x1), . . . , F̂ (xr)) = n1−rk(x1 . . . xr),

where

k(x1 . . . xr) = n−1
r∑

i=1

wr
i k(x1 . . . xrFi)

and k(x1 . . . xrFi) = κ(I(Xi ≤ x1), . . . , I(Xi ≤ xr)).

20


	1 Introduction and Summary
	2 Moment and Cumulant Expansions for Estimates
	3 Two Simple Examples
	4 A Chain Rule for More Complex Examples

