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February 19, 2010

Abstract

We propose an ℓ1-penalized estimation procedure for high-dimensional lin-
ear mixed-effects models. The models are useful whenever there is a grouping
structure among high-dimensional observations, i.e. for clustered data. We
prove a consistency and an oracle optimality result and we develop an algo-
rithm with provable numerical convergence. Furthermore, we demonstrate the
performance of the method on simulated and a real high-dimensional dataset.

1 INTRODUCTION

In recent years, high-dimensional linear regression problems have been exten-
sively studied. The underlying assumption that all observations are independent
is not always appropriate. We model high-dimensional data using a clustering
structure such that observations between clusters are independent, but within each
cluster they are dependent. This can be incorporated using mixed-effects models
with high-dimensional, low sample size data. Mixed-effects models are an extension
of linear models including random effects in addition to fixed effects. For exam-
ple, many applications concern longitudinal data where the random effects vary
between clusters and thereby induce a dependence structure within the clusters. It
is a crucial and important question how to cope with high-dimensional mixed-effects
models. Surprisingly, there is no established procedure for this problem which is well
understood in terms of statistical properties. Difficulties arising from non-convexity
of the likelihood may be a reason why high-dimensional linear mixed-effects models
have not been approached so far. Besides methodology and theory, we will also
empirically illustrate that there is a striking prediction improvement if we take into
account the dependence structure in the data.
To deal with high-dimensionality, we suggest a Lasso-type procedure (Tibshirani,
1996). Assuming that the number of potential fixed effects is large and that the
underlying true fixed-effects vector is sparse, we propose an ℓ1-penalization on the
fixed effects to achieve sparsity. Due to the presence of random effects, the maxi-
mum likelihood approach leads to the problem of a non-convex loss function whereas
the main focus in high-dimensional computation and theory is devoted to convex
loss functions. From an algorithmic point of view, we develop a coordinate gradient
descent method and prove its numerical convergence to a stationary point. Regard-
ing statistical properties, we establish consistency and an oracle optimality result.
Most of the existing literature in high-dimensional statistics deals with linear mod-
els. Greenshtein and Ritov (2004) prove that the Lasso consistently estimates the
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regression function under a sparsity condition in terms of the ℓ1-norm of the regres-
sion parameter. More generally, van de Geer (2008) studies the prediction error
for Lipschitz loss functions in the context of ℓ1-penalized generalized linear models.
Meinshausen and Bühlmann (2006) show that under the so-called neighborhood sta-
bility condition the Lasso does consistent variable selection. This condition is equiv-
alent to the irrepresentable condition used in Zhao and Yu (2006). Both conditions
are sufficient and (essentially) necessary for consistent model selection. Further-
more, assuming different conditions on the design, Bunea et al. (2007), van de Geer
(2008), Zhang and Huang (2008), Meinshausen and Yu (2009), Bickel et al. (2009)
study the behaviour of the Lasso for the estimation error between the estimated and
true high-dimensional coefficient vectors. Similarly, Candes and Tao (2007) propose
the Dantzig selector and derive estimation error bounds, and Bickel et al. (2009)
show equivalent theoretical behaviour of the Lasso and the Dantzig selector.
Apart from the statistical properties, there has been a substantial interest in de-
veloping fast algorithms for solving problems with convex loss function and ℓ1-
type constraints. Efron et al. (2004) present the lars algorithm, but coordinate
descent methods have outperformed the lars algorithm with respect to speed. Such
optimization methods are used by Meier et al. (2008), Wu and Lange (2008) and
Friedman et al. (2009). In fact, the entire regularization path can now be computed
extremely fast even for datasets with thousands of covariates.
This paper is organised as follows. In Section 2 we define the ℓ1-penalized lin-
ear mixed-effects model. In Section 3, we present the theoretical results for the
ℓ1-penalized estimator before describing the details of the algorithm in Section 4.
After some simulations in Section 5 we apply the procedure to a real dataset. The
technical proofs are deferred to the Appendix.

2 LINEAR MIXED-EFFECTS MODELS AND

ℓ1-PENALIZED ESTIMATION

In this article, we restrict ourselves to a relatively simple model. The estimation
algorithm as well as the theory can be extended to more general linear mixed-effects
models.

2.1 High-dimensional Model Set-up

We assume that the observations are inhomogeneous in the sense that they are not
independent, but grouped. Let i = 1, . . . , N be the grouping index and j = 1, . . . , ni

the observation index within a group. Denote by NT =
∑N

i=1 ni the total number
of observations. For each observation, we observe a univariate response variable
yij and a p-dimensional covariate xij ∈ R

p. We call xij the fixed-effects regression
variables. Moreover, we have q-dimensional covariates zij ∈ R

q which are called
the random-effects regression variables.
We consider the following model:

yij = xT
ijb+ zT

ijβi + εij i = 1, . . . , N, j = 1, . . . , ni , (1)

assuming that

i) εij ∼ N (0, σ2) and uncorrelated for i = 1, . . . , N and j = 1, . . . , ni,

ii) (βi)k ∼ N (0, τ2) and uncorrelated for i = 1, . . . , N and k = 1, . . . , q,

iii) ε11, . . . , εNnN
are independent of β1, . . . ,βN .

Here we denote by b ∈ R
p the vector of the unknown fixed regression coefficients

and by βi ∈ R
q, i = 1, . . . , N , the random regression coefficients. As indicated by
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the index i, the βi are different among the groups. All observations have the
coefficient b in common whereas the value of βi depends on the group that the
observation belongs to. In other words, for each group there are group-specific
deviations βi from the overall effects b. We assume throughout the paper that the
design variables xij and zij are deterministic, i.e. fixed design.
Using standard notation in mixed-effects models (Pinheiro and Bates, 2000), we
rewrite model (1) in the following notation:

yi = Xib+Ziβi + εi i = 1, . . . , N , (2)

where yi is a ni × 1 vector of responses of the ith group, Xi is a ni × p fixed-
effects design matrix, b is a p × 1 vector of fixed regression coefficients, Zi is a
ni× q random-effects design matrix, βi is a vector of random regression coefficients
with βi ∼ Nq(0, τ

2Iq) and εi is a ni × 1 error term with εi ∼ Nni
(0, σ2Ini

). As
mentioned above, the design matrices Xi and Zi are assumed to be deterministic.
We allow that the number p of fixed-effects regression coefficients may be much
larger than the total number of observations, i.e. NT ≪ p. Furthermore, the
number q of random-effects variables might be as large as q ≤ p. Nevertheless, we
confine ourselves to keep q small, i.e. not larger than the number of observations
per group. We aim at estimating the fixed regression parameter vector b, the
random effects βi and the variance parameters σ2 and τ2. From model (2) we
deduce that y1, . . . ,yN are independent with the following distributions: yi ∼
Nni

(Xib,Λi(σ
2, τ2)) with Λi(σ

2, τ2) = σ2Ini
+ τ2ZiZ

T
i . Hence the negative log-

likelihood function of y1, . . . ,yN is given by

− ℓ(b, σ2, τ2) =
1

2

N
∑

i=1

{

ni log(2π)+ log |Λi|+(yi−Xib)
TΛ−1

i (yi −Xib)

}

. (3)

2.2 ℓ1-penalized Maximum Likelihood Estimator

Due to the possibly large number of covariates (NT ≪ p setting), we cannot use the
classical maximum likelihood or restricted maximum likelihood approach. Assume
that the fixed regression coefficients are sparse in the sense that many parameters
are zero. We then attenuate these difficulties by adding an ℓ1-penalty on the fixed
regression coefficients. By doing so, we achieve a sparse solution with respect to the
fixed effects. This leads us to consider the following objective function:

Qλ(b, σ
2, τ2) :=

1

2

N
∑

i=1

{

log |Λi|+ (yi −Xib)
TΛ−1

i (yi −Xib)

}

+ λ

p
∑

k=2

|bk| , (4)

where b1 is the unpenalized intercept and λ a nonnegative regularization parameter.
Consequently, we estimate the fixed regression coefficient vector b and the variance
parameters σ2 and τ2 by

b̂, σ̂2, τ̂2 = argmin
b,σ2,τ2

Qλ(b, σ
2, τ2) . (5)

For fixed variance parameters σ2, τ2, the minimization with respect to b is a convex
optimization problem. However, over all parameters, we have a non-convex objec-
tive function and hence, we have to deal with a non-convex problem. This requires
a more general framework in theory as well as in computation. In the following
Sections, we show how to address this issue.
Before, let us make some comments concerning the objective function (4): Since we
want to make use of the convexity of Qλ(.) with respect to b (see Section 4), we do
not profile the likelihood function in (3), as usually done in the mixed-effects model
framework (Pinheiro and Bates, 2000), and the objective function (4) is non-convex
only with respect to the variance parameters.

3



2.3 Prediction of the random-effects coefficients

We predict the random-effects coefficients βi, i = 1, . . . , N by the maximum a pos-
teriori (MAP) principle. Denoting by f the density of the corresponding Gaussian
random variable, we define

β∗
i = argmax

βi

f(βi|y1, . . . ,yN , b, σ2, τ2) = argmax
βi

f(βi|yi, b, σ
2, τ2)

= argmax
βi

f(yi|βi) · f(βi)

f(yi)
= argmin

βi

{

1

2

1

σ2
‖yi −Xib−Ziβi‖2 +

1

2τ2
‖βi‖2

}

.

From this we get β∗
i = [ZT

i Zi + σ2/τ2Iq]
−1ZT

i ri where ri = (yi − Xib) is the
(marginal) residual vector. This solution corresponds to the well-known Ridge

Regression with regularization parameter σ2

τ2 . Since the true values of b, σ2 and

τ2 are unknown, the βi’s are predicted by β̂i = [ZT
i Zi + σ̂2/τ̂2Iq]

−1ZT
i r̂i with

r̂i = (yi −Xib̂), using the estimates from (5).

2.4 Selection of the regularization parameter

Estimation and selection of the fixed-effects coefficients require to choose the optimal
regularization parameter λ. We propose to use the Bayesian Information Criterion
(BIC) defined by

− 2ℓ(b̂, σ̂2, τ̂2) + logNT · d̂f , (6)

where d̂f = |{1 ≤ j ≤ p; b̂j 6= 0}| is the number of the nonzero fixed regression

coefficients. The use of d̂f as a measure of the degrees of freedom is motivated by the
work of Zou et al. (2007) who show that the expected number of degrees of freedom
for the Lasso in a linear model is given by the number of nonzero coefficients.
Obviously, there are other tuning parameter selection methods, for example cross-
validation and AIC-type criteria, among others. Advocating the BIC as selection
criterion is based on our experience that it performs best in both simulations and
real data examples (see Section 5).

2.5 Adaptive ℓ1-penalized Maximum Likelihood Estimator

Due to the bias of the Lasso, Zou (2006) proposed the adaptive Lasso. The bias
problem occurs more severely in the mixed-effects model setting than in linear re-
gression. To be more specific, let us assume that the penalized kth covariate has
a fixed- and a random-effects coefficient, i.e. bk and (βi)k, respectively. If λ is

too large, b̂k is shrunken too strongly towards zero. Thereby, the estimate of the
variance parameter τ̂2 is too large and also (β̂i)k gets a bias related to the amount

of shrinkage of b̂k.
To overcome this problem, we suggest employing an adaptive procedure. The adap-
tive ℓ1-penalized maximum likelihood estimator uses the following objective function
instead of (4):

Q
w2,...,wp

λ (b, σ2, τ2) :=
1

2

N
∑

i=1

{

log(|Λi|)+(yi−Xib)
TΛ−1

i (yi−Xib)

}

+λ

p
∑

k=2

wk|bk|

and hence
b̂, σ̂2, τ̂2 = argmin

b,σ2,τ2

Q
w2,...,wp

λ (b, σ2, τ2) (7)

It is vital to use an adaptive ℓ1-penalty if there is at least one penalized variable
having both a fixed and a random effect. The weights w2, . . . , wp can be derived from
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an initial estimation in (5) with wk = 1/|b̂init,k(λ)| for k = 2, . . . , p. In the empirical

examples of this paper, we employ the simple weights wk = 1/|b̂init,k(λ = 0+)| for
k = 2, . . . , p where we choose λ = 0+ sufficiently small such that many variables
are selected.

3 CONSISTENCY AND ORACLE

INEQUALITY

In the high-dimensional setting with p ≫ NT , the theory for penalized estimation
based on convex loss functions with an ℓ1-penalty is well studied, see for example
van de Geer (2008). From (4) and (5) we see that we are dealing with a non-
convex loss function, due to the parameters σ2 and τ2, and a convex ℓ1-penalty. We
build here upon the theory for non-convex ℓ1-penalized smooth likelihood problems,
presented in Städler et al. (2009).
We use the following framework and notation. Let i = 1, . . . , N as before and ni ≡ n
the same for all i. Denote by yi ∈ Y ⊂ R

n the response variable. Let Xi be the
fixed covariates in some space Xn ⊂ R

n×p and Zi ⊂ Xi. The latter can be assumed
without loss of generality, since we can assign to every variable a fixed effect being
equal to zero. Define the parameter θT := (bT , 2 logσ, 2 log τ) = (bT ,ηT ) ∈ R

p+2

and denote by θ0 the true parameter vector. For the remaining part of the paper, we
are using this parametrization. Furthermore, for a constant 0 < K < ∞, consider
the parameter space to be

Θ ⊂ {θT = (bT ,ηT ); sup
x∈X

|xTb| ≤ K, ‖η‖∞ ≤ K} ∈ R
p+2 , (8)

where ‖η‖∞ = maxl=1,2 |ηl|. We modify the estimator in (5) by restricting the
solution to lie in the compact parameter space Θ:

θ̂λ := argmin
θ∈Θ

{

1

2

N
∑

i=1

{

log(|Λi|)+(yi−Xib)
TΛ−1

i (yi−Xib)
}

+λ

p
∑

k=2

|bk|
}

. (9)

Now, let {fθ,Xi,Zi
, θ ∈ Θ} be the Gaussian density for yi with respect to the above

parametrization. Since we use the negative log-likelihood as loss function, the excess
risk coincides with the Kullback-Leibler distance:

EX,Z(θ|θ0) =

∫

log

(

fθ0,X,Z

fθ,X,Z

)

fθ0,X,Zdµ , (10)

and we define the average excess risk as

EX1,...,XN ,Z1,...,ZN
(θ|θ0) =

1

N

N
∑

i=1

EXi,Zi
(θ|θ0) .

In the sequel, we drop the indices X,Z and X1,...,XN ,Z1,...,ZN
, respectively.

3.1 Consistency

We require two conditions for consistency. The first assumption concerns the design
matrix of the fixed-effects regression matrices Xi. Write XT

i = (xi
1, . . . ,x

i
n) and

let ς2max(.) be the largest eigenvalue of a square matrix.
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Assumption 1 The largest eigenvalue of

ΣN,n :=
1

N

N
∑

i=1

n
∑

j=1

xi
j(x

i
j)

T ∈ R
p×p

is bounded, i.e. there exist a constant L which does not depend on N , n and p such
that ς2max(ΣN,n) ≤ L < ∞.

The second assumption is a condition on the random-effects design matrices Zi.

Assumption 2 Let
(

ω
(i)
j

)n

j=1
be the eigenvalues of ZiZ

T
i for i = 1, . . . , N .

(a) The
(

ω
(i)
j

)n

j=1
are bounded: ω

(i)
j ≤ K < ∞ for all i and j, with K from (8).

(b) At least two eigenvalues are different, i.e. for all i ∃j1 6= j2 ∈ {1, . . . , n} such

that ω
(i)
j1

6= ω
(i)
j2
.

We consider a triangular scheme (Greenshtein and Ritov, 2004) of observations
from (2):

yi = XibN +Ziβi + εi i = 1, . . . , N , (11)

where the parameters bN and ηN are allowed to depend onN . We study consistency
as N → ∞ but the group size n is fixed. Moreover, let us use the notation a ∨ b :=
max{a, b}.

Theorem 1 - Consistency. Consider model (11) and the estimator (9). Under
Assumptions 1 and 2 (a) and assuming

‖b0,N‖1 = o

(√

N

log4(N) log(p ∨N)

)

, λN = C

√

log4(N) log(p ∨N)

N
for some C > 0 ,

any global minimizer θ̂λN
as in (9) satisfies E(θ̂λN

|θ0) = oP (1) for N → ∞.

A proof is given in the Appendix. The condition on ‖b0,N‖1 is a sparsity condi-
tion on the true underlying fixed-effects coefficients.

3.2 Oracle Inequality

We now present an oracle optimality result in non-asymptotic form. Preliminary,
we introduce some notation and present another assumption. Let S(b) = {1 ≤
j ≤ p|bj 6= 0} be the active set of b, i.e. the set of non-zero coefficients, and
bJ = {bj |j ∈ J} for J ⊂ {1, . . . , p}. We denote by S0 = S(b0) the true active set
and by s0 = |S0| its cardinality.

Assumption 3 - Restricted Eigenvalue Condition. There exists a constant
κ ≥ 1, such that for all b ∈ R

p satisfying ‖bSc
0
‖1 ≤ 6‖bS0

‖1 it holds that ‖bS0
‖22 ≤

κ2bTΣN,nb.

A discussion of this assumption can be found in Bickel et al. (2009) and van de Geer and Bühlmann
(2009). Define

λ0 = MN logN

√

log(p ∨N)

N
, (12)

where MN is of order logN and an exact definition is given in the proof of Theorem
1. For any T ≥ 1, let J be a set defined by the underlying empirical process. It is
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shown in the proof of Theorem 1 that the set J has large probability,

P[J ] ≥ 1− a1 exp
[

− T 2 log2 N log(p ∨N)

a22

]

− ρ

logN

1

N1−2ε

for N sufficiently large and some constants a1, a2, ε, ρ > 0, see Lemma 2 and 3 in
the Appendix.

Theorem 2 - Oracle result. Consider the estimator (9). Under Assumptions 2
and 3, and for λ ≥ 2Tλ0, then, on J , for the average excess risk,

Ē(θ̂λ|θ0) + 2(λ− Tλ0)‖b̂Sc
0
‖1 ≤ 8(λ+ Tλ0)

2c20κ
2s0

for a constant c0 (which is independent of N , n, p and the design).

A proof is given in the Appendix. Since (λ − Tλ0) > 0, we deduce from

Theorem 2 that Ē(θ̂λ|θ0) ≤ 8(λ + Tλ0)
2c20κ

2s0. This means that the average

Kullback-Leibler risk is of order O(s0λ
2
0) = O(s0

log4 N log(p∨N)
N ). Thus, up to a

factor log4 N log(p ∨ N), the optimal convergence rate if one knew the s0 non-

zero coefficients, is achieved. Moreover, because Ē(θ̂λ|θ0) ≥ 0, we conclude that

‖b̂Sc
0
‖1 ≤ 4(λ + Tλ0)c

2
0κ

2s0. This says that ‖b̂Sc
0
‖1 = O(s0λ0) and therefore, the

noise variables from Sc
0 have small estimated values.

4 COMPUTATIONAL ALGORITHM

The estimation of the regression parameter b and the variance parameters σ2 and
τ2 is based on the Block Coordinate Gradient Descent (BCGD) method from
Tseng and Yun (2009).
The main ideas of our BCGD algorithm are that we cycle through the coordinates
and minimize the objective function Qλ(.) with respect to only one coordinate while
keeping the other parameters fixed (i.e. a Gauss-Seidel algorithm). In each such
step, we approximate Qλ(.) by a strictly convex quadratic function. Then, we cal-
culate a descent direction and we employ an inexact line search to ensure a decrease
in the objective function.
BCGD algorithms are used in Meier et al. (2008) for the grouped Lasso as well as
in Wu and Lange (2008) and Friedman et al. (2009) for the ordinary Lasso. We
remark that Meier et al. (2008) have a block structure due to the grouped variables
whereas we only focus on ungrouped covariates. Thus the word ”block” has no
meaning in our context and consequently, we omit it in the subsequent discussion.
Furthermore, the ordinary Lasso has only regression parameters to cycle through
in contrast to our problem involving two kinds of parameters: fixed regression and
variance parameters.
First, we introduce the notation and give an overview of the algorithm. Second, we
focus on the details as well as on computational issues. And third, we show that
our optimization problem achieves numerical convergence.
Let θT = (bT ,η) ∈ R

p+2 be the parametrization introduced in the previous Section.
Define the functions

P (θ) :=

p
∑

k=2

|bk| and g(θ) :=
1

2

N
∑

i=1

{

log |Λi(η)|+(yi−Xib)
TΛ(η)−1

i (yi−Xib)
}

.

Then, (9) can be written as θ̂λ = argminθ∈Θ Qλ(θ) := g(θ) + λP (θ) .
Moreover, let I(θ) be the Fisher information of g(θ) and ej be the jth unit

vector. For k = 1, 2, 3, . . ., let Sk be the index cycling through the coordinates {1},
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{2},. . . , {p}, {p+ 1}, {p+ 2}. Then, the computational algorithm can be summa-
rized in the following way:

Algorithm 1 - Coordinate Gradient Descent.

Step 0. Let θ0 ∈ R
p+2 be an initial value.

For k = 0, 1, 2, . . ., let Sk be the index cycling through the coordinates {1}, {2},. . . ,
{p}, {p+ 1}, {p+ 2}.
Step 1. Choose an approximate Hessian Hk > 0.

Step 2. dk := argmind

{

g(θk) + ∂
∂θSk

g(θk)d+ 1/2d2Hk + λP (θk + deSk
)
}

.

Step 3. Choose a stepsize αk > 0 by the Armijo rule and set θk+1 = θk +αkdkeSk
.

The step length αk is chosen in such a way that in each step, there is an im-
provement in the objective function Qλ(.). The Armijo rule is defined as follows:

Armijo Rule: Choose αk
init > 0 and let αk be the largest element of

{αk
initδ

l}l=0,1,2,.. satisfying

Qλ(θ
k + αkdkeSk

) ≤ Qλ(θ
k) + αk̺△k (13)

where △k := ∂/∂θSk
g(θk)dk + γ(dk)2Hk + λP (θk + dkeSk

)− λP (θk).
The choice of the constants comply with the suggestions in Bertsekas (1999) and
are δ = 0.1, ̺ = 0.001, γ = 0 and αk

init = 1.

We now turn to some details of Algorithm 1.

Initial value θ0: As a starting value, we choose an ordinary Lasso solution by
cross-validation ignoring the grouping structure among the observations. By doing
so, we ensure that we are at least as good (with respect to the objective function)
as an ordinary Lasso in a linear model.

Choice of Hk: For numerical convergence (see Theorem 3 below), we require
that Hk is positive definite and bounded. Hence we use the Fisher information
I(θ) and, as proposed in Tseng and Yun (2009), for constants cmin and cmax we
set Hk = min(max(I(θ)SkSk

, cmin), cmax).

Calculation of dk: We have to distinguish whether the index Sk appears in
P (θ) or not:

dk =















median

(

λ− ∂
∂θSk

g(θk)

Hk
,−bSk

,
−λ− ∂

∂θSk

g(θk)

Hk

)

Sk ∈ {2, . . . , p},

− ∂
∂θSk

g(θk)/Hk Sk ∈ {1, p+ 1, p+ 2}.
(14)

If Hk = I(θ)SkSk
, we take advantage of the fact that g(θ) is quadratic with respect

to b. Using αk
init = 1, the stepsize αk chosen by the Armijo rule (l = 0) leads

to the minimum of g(θk) with respect to bSk
. The update b̂k+1

Sk
(λ) is then given

analytically by

b̂k+1
Sk

(λ) = sign
(

N
∑

i=1

(yi − ỹi)Λ
−1
i x

(i)
Sk

)

(

|∑N
i=1(yi − ỹi)Λ

−1
i x

(i)
Sk
| − λ

)

+
∑N

i=1 x
(i)T
Sk

Λ−1
i x

(i)
Sk

, (15)

where Xi = (x
(i)
1 , . . . ,x

(i)
p ), ỹi = X

(−Sk)
i b̂k(−Sk)

(leaving out the Skth variable),

(.)+ = max(., 0) and sign(.) the signum function.
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Choice of the λ-sequence: We choose a λ1 sufficiently large such that all
penalized coefficients are zero. We calculate a sequence λ1 > λ2 > . . . on a log-scale
until a model with a certain sparsity level is reached. At latest, we stop if the num-
ber of selected fixed-effects variables is larger than the total number of observations.

Active-Set Algorithm: Assuming that the solution is sparse, we can reduce
the computing time by using an active-set algorithm, which is used in Meier et al.
(2008) and Friedman et al. (2009). More specifically, we do not cycle through all

coordinates, but we restrict ourselves to the current active set S(b̂) and update all

coordinates of b̂ only every Dth iteration. This reduces the computational time
remarkably.

Theorem 3 - Convergence of the CGD algorithm. If (θk)k≥0 is chosen ac-
cording to Algorithm 1, then every cluster point of {θk}k≥0 is a stationary point of
Qλ(θ).

Proof. It remains to check that the assumptions in Tseng and Yun (2009) are ful-
filled. More precisely: λ > 0, P (.) = |.|1 is a proper, convex, continuous func-
tion and blockseparable with respect to Sk, g(.) is continuously differentiable on
dom(P ) = {θ|P (θ) < ∞}, cmin ≤ Hk ≤ cmax for k ≥ 1 and 0 < cmin ≤ cmax,.
Moreover, supk α

k > 0 and infk α
k
init > 0.

Due to the non-convexity of the optimization problem, our CGD algorithm is
not finding a global optimum. However, it finds a global optimum for fixed σ2 and
τ2 parameters and hence, a global optimum over all the parameters can be found
by applying our CGD algorithm on a grid for (σ2, τ2).

5 SIMULATION STUDY AND REAL DATA

APPLICATION

In this section, we asses the empirical performance of the adaptive ℓ1-penalized
maximum likelihood estimator (7) in different kinds of examples. We study several
performance measures and make a comparison to other ℓ1-penalization procedures
before illustrating the method on a real dataset.

5.1 Simulation Studies

We will focus on the following characteristics in a series of simulation examples. We
study the variable selection performance and we investigate the estimation accuracy
for the variance and the fixed regression parameters. More specifically, due to
the proposed penalized maximum likelihood approach, we investigate the bias of
the estimated parameters. Moreover, we will differentiate between three types of
fixed-effects regression parameters. The intercept b1 which is not subject to ℓ1-
penalization and for bk, k = 2, . . . , p, we distinguish if the kth variable has a random
effect (βi)k or not.
In all subsequent simulation schemes, we restrict ourselves to the case where all
groups have the same number of observations, i.e. we set n ≡ ni for i = 1, . . . , N .
We assign Zi ⊂ Xi such that the columns of Zi correspond to the first q columns
of Xi. This means that the first q variables have both a fixed-effects coefficient
bk and a random-effects coefficient (βi)k for i = 1, . . . , N and k = 1, . . . , q. For
i = 1, . . . , N and j = 1, . . . , n the covariates are generated according to (xij)(−1) ∼
Np−1(0,Σ) with the pairwise correlation Σll′ = ρ|l−l′| for l, l′ = 2, . . . , p (l, l′ = 1
is the intercept). In the following, b = (b1, ..., bp) comprises the non-penalized
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intercept b1 and the penalized coefficients b2, . . . , bp and we denote by s0 := #{1 ≤
j ≤ p; (b0)j 6= 0} the true number of non-zero coefficients. We also report the
signal-to-noise ratio (SNR). It is defined by

SNR :=
Var (bTxij + βTzij)

Var (ε)
=

qτ2 + bT(−1)Σb(−1)

σ2
. (16)

Firstly, we give an example in the low-dimensional setting. The design is chosen
similar to examples presented in Pinheiro and Bates (2000) and the choice of the
variance parameters to those in Jiang and Rao (2003).

M1: N = 10, p = 10, n = 7, q = 3, σ = 1, τ = 1 and s0 = 4 with b0 =
(1, 1, 2, 1, 0, . . . , 0)T .

Secondly, we study three example in the high-dimensional setting.

M2: N = 15, p = 300, n = 5, q = 4, σ = 1, τ = 1 and s0 = 6 with b0 =
(1, 1, 2, 3, 1, 1, 0, . . . , 0)T .

M3: N = 30, p = 500, n = 6, q = 1, σ = 1, τ = 1 and s0 = 4 with b0 =
(1, 1, 2, 3, 0, . . . , 0)T .

M4: N = 12, p = 1000, n = 6, q = 2, σ = 1, τ = 1 and s0 = 4 with b0 =
(1, 1.5, 1, 1, 0, . . . , 0)T .

We always use the BIC criterion (6) to choose the regularization parameter λ. The
results in the form of means and standard deviations (in parentheses) over 100

simulation runs are reported in Table 1. Therein, |S(b̂)| denotes the cardinality of

the estimated active set, TP is the number of true positives, b̂1 denotes the non-
penalized intercept, b̂2 is the coefficient of the first penalized variable having both
a fixed and random regression coefficient and b̂q+1 is the first penalized covariate
which only has a fixed regression coefficient.

Let us now summarize the results concerning variable selection. The estimated
average active set is sparse and only slightly larger than the cardinality of the true
active set S0 = S(b0). This property might be expected because it is known from
linear regression that on the one hand the BIC selects a sparse model and on the
other hand the adaptive Lasso remarkably reduces the number of false positives
(FP) compared to the ordinary Lasso. The results of the number of true positives
(TP) indicate that the algorithm is mainly able to identify the true fixed-effects
coefficients. As can be seen from model M3, the algorithm mainly misses true fixed
effects if there are variables with both a fixed- and a random-effects coefficient. Al-
though employing an adaptive approach, we are not able to overcome this problem
completely.
To sum up the parameter estimation accuracy, we see that the variance parameter
estimates are biased towards zero. We observe that a maximum likelihood approach
(in contrast to a restricted maximum likelihood approach) gives biased variance es-
timators.
In all models, the (unpenalized) intercept is estimated well although it has a random-
effects coefficient (βi)1 for i = 1, . . . , N . For the (penalized) coefficients, we see a

marked difference between the columns b̂2 and b̂q+1 concerning both means and
standard deviations. In contrast to the (q + 1)th variable, the 2nd variable has a
random-effects coefficient (βi)2. Table 1 suggests that the presence of a random-
effects coefficient increases the bias of the fixed-effects coefficient as well as the
estimation accuracy. To conclude, the reduction of the bias of the ℓ1-penalized
method (not shown) is feasible for coefficients without a random effect by using an
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Table 1: Simulation results for the adaptive ℓ1-penalized maximum likelihood esti-
mator (7).

Model ρ SNR |S(b̂)| TP σ̂ τ̂ b̂1 b̂2 b̂q+1

M1 0.2 10.68 4.28 3.80 0.96 0.94 1.01 0.76 0.95
(s0 = 4) (1.10) (0.43) (0.11) (0.18) (0.38) (0.46) (0.17)

0.5 13.50 4.09 3.72 0.99 0.95 1.04 0.71 0.95
(0.85) (0.45) (0.12) (0.19) (0.36) (0.51) (0.19)

0.8 16.68 4.32 3.63 0.96 0.95 0.96 0.77 0.94
(1.16) (0.54) (0.13) (0.18) (0.33) (0.59) (0.38)

M2 0.2 25.49 11.04 5.72 0.78 0.88 1.03 0.60 0.89
(s0 = 6) (6.13) (0.51) (0.23) (0.21) (0.33) (0.47) (0.27)

0.5 36.88 9.43 5.69 0.83 0.91 1.01 0.62 0.98
(5.81) (0.51) (0.21) (0.23) (0.33) (0.47) (0.34)

0.8 53.33 9.11 5.42 0.84 0.90 1.03 0.72 1.05
(5.72) (0.67) (0.20) (0.19) (0.29) (0.55) (0.62)

M3 0.2 18.44 5.82 4 0.97 0.96 0.98 - 0.96
(s0 = 4) (8.49) (0) (0.11) (0.16) (0.19) - (0.09)

0.5 24.50 5.10 4 0.96 0.96 1.04 - 0.97
(2.49) (0) (0.07) (0.13) (0.22) - (0.11)

0.8 31.64 4.79 4 0.98 0.95 1.01 - 0.92
(1.87) (0) (0.06) (0.16) (0.21) - (0.15)

M4 0.2 5.88 9.97 3.72 0.81 0.85 1.01 0.64 0.92
(s0 = 4) (9.90) (0.45) (0.24) (0.28) (0.38) (0.48) (0.20)

0.5 7.5 9.39 3.72 0.80 0.89 0.98 0.68 0.99
(8.47) (0.47) (0.24) (0.28) (0.35) (0.52) (0.22)

0.8 9.48 9.51 3.77 0.82 0.81 0.99 0.86 1.00
(8.28) (0.45) (0.23) (0.25) (0.35) (0.48) (0.43)

NOTE: Means and standard deviations (in parentheses) for the cardinality of the active
set |S(b̂)|, the number of true positives TP, the variance parameter estimations σ̂ and τ̂

and some selected fixed regression coefficients (b̂1 is the non-penalized intercept ; b̂2 is
the first penalized covariate with both a fixed- and random-effects coefficient (”-”

indicates that there is no such covariate) ; b̂q+1 is the first penalized covariate with no
additional random-effects coefficient).

adaptive Lasso procedure. In contrast, good identification and estimation of vari-
ables with fixed- and random-effects parameters remains challenging in ℓ1-penalized
approaches.

We now turn to consider the performance of the proposed methodology con-
cerning prediction. We compare the predictive performance with the Lasso and the
adaptive Lasso, which both do not consider a grouping structure. In detail, we
make a comparison between four different Lasso procedures. In doing so, denote by
LME-Lasso the adaptive estimator in (7). As before, the best model is determined
by minimizing the BIC on a grid of λ-values. Then denote by BIC-Lasso the lars
algorithm (i.e. the Lasso) which evaluates the BIC at each transition point of the
regularization path. Additionally, we use a cv-Lasso and a cv-adaptive Lasso whose
optimal λ-value is chosen by 10-fold cross-validation. We fix the following scenario:
N = 25, ni ≡ 6 for i = 1, . . . , N , q = 3, s0 = 5 with b0 = (1, 1.5, 1.2, 1, 2, 0, . . . , 0)T ,
σ = 1 and ρ = 0.2. We only alter the number of fixed covariates p and the variance
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parameter τ2. For measuring the quality of prediction, we generate a validation set
with 50 observations per group and calculate the mean squared prediction error.
The three models considered are

M5: p = 10, M6: p = 100 and M7: p = 500.

The results are shown in Table 2.

Table 2: Means squared prediction error for three simulation examples.

Model τ2 LME-Lasso BIC-Lasso cv-Lasso cv-adaptive Lasso
M5 0 1.02 1.00 1.06 1.02

(p=10) 0.25 1.35 1.76 1.88 1.92
1 1.63 3.74 3.78 3.66
2 1.74 5.92 5.85 6.16

M6 0 1.13 1.26 1.24 1.19
(p=100) 0.25 1.38 1.75 1.99 1.67

1 2.25 4.35 4.60 4.22
2 2.12 7.04 7.13 7.04

M7 0 1.08 2.13 1.33 1.66
(p=500) 0.25 1.62 3.58 2.84 3.47

1 2.03 7.97 4.11 4.82
2 2.17 15.59 9.44 11.27

We see that the methods differ slightly for τ2 = 0 which corresponds to no
grouping structure. As τ2 increases, the mean squared prediction error rises less for
the LME-Lasso than for the other three Lasso methods. These results highlight that
we can indeed achieve prediction improvements using the suggested mixed-effects
model approach if the underlying model is given by (2).

5.2 Application: Riboflavin Data

We illustrate the proposed procedure on a real data set which is provided by DSM
(Switzerland). The response variable is the logarithm of the riboflavin production
rate of Bacillus subtilis. There are p = 4088 covariates measuring the gene expres-
sion levels. We take N = 28 samples (groups) with ni ∈ {2, . . . , 6} and NT = 111
observations.
Preliminary, we address the issue of determining those covariates which have both
a fixed and a random regression coefficient. In other words, we have to find the
matrix Zi ⊂ Xi. Fitting first a model with q = p reveals that it is reasonable to
fit a so called random-intercept model wherein only the intercept has an additional
random effect. This model can be written as

yij = xT
ijb+ βi1 + εij i = 1, . . . , N, j = 1, . . . , ni (17)

The resulting variance estimates obtained from the ℓ1-penalized (unweighted) esti-
mator (5) are σ̂ = 0.67 and τ̂ = 0.22. This means that 10% of the total variation is
explained by the variation of the intercept between the N groups. The estimated
active set |S(b̂)| comprises nine covariates. As might have been expected from the
simulation studies, the size of the active set is smaller than that of the Lasso (18
variables) and that of the adaptive Lasso (12 variables). Nevertheless, the variables
with the largest absolute value coincide in all three methods.
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In the next step, we focus on the predictive performance of the ℓ1-penalized esti-
mator (5) in model (17) compared to the ordinary Lasso. By doing so, we reduce
the data further such that ni = 4 for all the remaining samples. This easily allows
for conducting a leave-one-timepoint out cross-validation. As a result, the mean
squared prediction error of the estimator (5) in model (17) is about 13% smaller
than that of the ordinary Lasso.

6 DISCUSSION

We present an ℓ1-penalized maximum likelihood estimator for high-dimensional lin-
ear mixed-effects models. The proposed methodology copes with the difficulty of
combining a non-convex loss function and an ℓ1-penalty. Thereby, we deal with the-
oretical and computational aspects which are substantially more challenging than
in the linear regression setting. We prove theoretical results concerning the consis-
tency of the estimator and we present a non-asymptotic oracle result. Moreover, by
developing a coordinate gradient descent algorithm, we achieve provable numerical
convergence of our algorithm to at least a stationary point. Our simulation studies
and real data example show that the predictive performance can be remarkably
improved when incorporating the knowledge about the cluster structure among ob-
servations.

APPENDIX: TWO TECHNICAL PROOFS

We present here the proofs of the theorems in Section 3.

A.1 Proof of Theorem 1

The proof consists of three parts. Firstly, we need an inequality ensuring that
Lemma 2 holds. Secondly, we show that the probability (A.2) in Lemma 2 is large.
And for completion of our proof, we can then refer to Städler et al. (2009).
From model (2), the log-likelihood function of yi with respect to the parametrization
in (8) is given by

ℓθ(yi) := −n

2
log(2π)−1

2
log |eη2ZiZ

T
i +eη1I|−1

2
(yi−Xib)

T (eη2ZiZ
T
i +eη1I)−1(yi−Xib)

Then, define the score function sθ(yi) := ∂/∂θℓθ(yi).

Lemma 1 Under Assumption 2 (a), there exist constants c1, c2, c3 ∈ R+ such that

sup
θ∈Θ

‖sθ(yi)‖∞ ≤ G1(yi) := c1 + c2‖yi‖2 + c3‖yi‖22 i = 1, . . . , N .

Proof. The proof is straightforward using the Cauchy-Schwarz inequality and the
fact that the induced L2-norm of a square, symmetric matrix A is given by ‖A‖2 =
√

tr (A2), where tr(A) denotes the trace of A.

Now we introduce the empirical process and present a result which controls the
increments of it. The Lemma below gives a lower bound for the probability that
the increments are small. Afterwards, we show that this lower bound is large.

Define the empirical process

VN (θ) :=
1

N

N
∑

i=1

{

ℓθ(yi)− E[ℓθ(yi)]
}
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and

λ0 = MN logN

√

log(p ∨N)

N
. (A.1)

Lemma 2 Assume Assumption 1 and 2 (a). For constants a1, a2 and a3 depending
on L and K and for all T ≥ 1,

sup
θ∈Θ

∣

∣

∣
VN (θ)− VN (θ0)

∣

∣

∣

(‖b− b0‖1 + ‖η − η0‖2) ∨ λ0
≤ a3Tλ0

with probability at least

1− a1 exp
[

− T 2 log2 N log(p ∨N)

a22

]

− P

(

1

N

N
∑

i=1

F (yi) >
Tλ2

0

dK

)

(A.2)

where d := n+ 2 and

F (yi) = G1(yi)1{G1(yi)>MN} + E

[

G1(yi)1{G1(yi)>MN}
]

. (A.3)

The proof of Lemma 2 is given in Städler et al. (2009). Next, we show that the
third term is small in our setting.

Lemma 3 There are constants b1 and b2 depending on K and n, a constant ρ
depending on T , n and K such that for any 0 < ε < 1/2 and MN := b1(2

√
logN +√

b2)
2 we have

P

(

1

N

N
∑

i=1

F (yi) >
Tλ2

0

dK

)

≤ ρ

logN

1

N1−2ε
.

Proof. In the subsequent discussion, if A is a constant, we assume throughout that
N is large enough such that MN − A > 0. From (A.1) we see that it suffices to
show that for a constant a4,

P

(

1

N

N
∑

i=1

F (yi) > a4
logN

N

)

≤ ρ

logN

1

N1−2ε
. (A.4)

The expectation in (A.3) only affects the constants in the remainder of the proof.
Therefore, we omit this term in the sequel. From

P[c1+c2‖yi‖2+c3‖yi‖22 > MN ] ≤ P

[

‖yi‖22 >
(MN − c1

2c2

)2]

+P

[

‖yi‖22 >
MN − c1

2c3

]

,

and the fact that MN → ∞, we deduce that we can reduce ourselves to the analysis
of P[‖yi‖22 > MN ]. For the sake of notational simplicity, we will leave out the index
i and show that for an appropriate definition of MN ,

P[‖y‖22 > MN ] ≤ n

N2
. (A.5)

Denote by χ2
ν(δ) the noncentral χ2 distribution with ν degrees of freedom and

noncentrality parameter δ. The following identity holds (Liu et al., 2008).

Claim 1 If y ∼ Nn(µ,Λ) with µ ∈ R
n and Λ ∈ R

n×n positive definite, then
‖y‖22 = yTy =

∑n
j=1 λjχ

2
1(δj) where {χ2

1(δj)}nj=1 are independent, λj, j = 1, . . . , n

are the eigenvalues of Λ and if Λ = UDUT for an orthonormal matrix U , then
δj = (UTΛ−1/2µ)2j .
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Claim 2

P[χ2
1(δ) > M ] ≤ 1√

M −
√
δ

2√
2π

exp

(

− (
√
M −

√
δ)2

2

)

.

Proof. IfX ∼ N (µ, ζ2), then by definition of the noncentral χ2 distribution: (X/ζ)2 ∼

χ2
ν=1(δ = (µ/ζ)2). Hence

P[χ2
1(δ) > M ] = 2 · P[X

ζ
>

√
M ] = 2 · P[X − µ

ζ
>

√
M −

√
δ] = 2 · S(

√
M −

√
δ) ,

(A.6)

where S(t) := 1√
2π

∫∞
t

exp(−u2/2)du is the survival function of a standard Gaussian

random variable for which the following inequalities holds:

t

1 + t2
1√
2π

exp(−t2/2) < S(t) <
1

t

1√
2π

exp(−t2/2) for t > 0 .

Thus, we conclude

P[χ2
1(δ) > M ] ≤ 1√

M −
√
δ

2√
2π

exp

(

− (
√
M −

√
δ)2

2

)

.

Claim 3 For MN,δ := (2
√
logN +

√
δ)2,

P[χ2
1(δ) > MN,δ] ≤

1

N2
.

Proof. Using Claim 2,

P[χ2
1(δ) > MN,δ] ≤

1
√

MN,δ −
√
δ

2√
2π

exp(− (
√

MN,δ −
√
δ)2

2
)

≤ 1 · exp(− (2
√
logN +

√
δ −

√
δ)2

2
) ≤ 1

N2
.

Claim 4 For the eigenvalues λ := (λ1, . . . , λn) of Λ, δ := (δ1, . . . , δn), MN,n,λ,δj :=

nλmax(2
√
logN +

√

δj)
2 (λmax is the maximal eigenvalue of Λ), define

δ := argmaxδj ,1≤j≤n P[χ
2
1(δj) >

MN,n,λ,δj

nλmax
] and set MN,n,λ,δ = MN,n,λ,δ, then

P[‖y‖22 > MN,n,δ,λ] ≤
n

N2

Proof. For any M > 0, using Claim 1 and 2

P[‖y‖22 > M ] = P[

n
∑

j=1

λjχ
2
1(δj) > M ] ≤

n
∑

j=1

P[χ2
1(δj) >

M

nλj
] ≤

n
∑

j=1

P[χ2
1(δj) >

M

nλmax
]

≤ n · max
1≤j≤n

P[χ2
1(δj) >

M

nλmax
]

Set M = MN,n,λ,δ and using Claim 3:

P[‖y‖22 > MN,n,λ,δ] ≤ n · P[χ2
1(δ) > (2

√

logN +
√
δ)2] ≤ n

N2
.
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At this point, we have proven (A.5). We now use this result to derive formula

(A.4). Due to Assumption 2 (a), λ
(i)
max ≤ eK(1 +K2) := b1 and δ

(i)
j ≤ nKeK := b2

for all i and j. Thereby, we use the value MN = b1(2
√
logN +

√
b2)

2. Moreover,
we use the Markov inequality and the Hölder inequality for any 0 < ε < 1/2.

P

[

1

N

N
∑

i=1

G1(yi)1{G1(yi)>MN} > a4
logN

N

]

= P

[

1

N

N
∑

i=1

[

c1 + c2‖yi‖+ c3‖yi‖22
]

1{c1+c2‖yi‖+c3‖yi‖2

2
>MN} > a4

logN

N

]

≤ 1

a4

1

logN

{

c1

N
∑

i=1

P

[

c1 + c2‖yi‖2 + c3‖yi‖22 > MN

]

+ c2

N
∑

i=1

E

[

‖yi‖21{c1+c2‖yi‖2+c3‖yi‖2

2
>MN}

]

+ c3

N
∑

i=1

E

[

‖yi‖221{c1+c2‖yi‖+c3‖yi‖2

2
>MN}

]

}

≤ 1

a4

1

logN

{

c1

N
∑

i=1

P

[

c1 + c2‖yi‖2 + c3‖yi‖22 > MN

]

+ c2E
[

(‖yi‖2)
1

ε

]ε

P

[

c1 + c2‖yi‖+ c3‖yi‖22 > MN

]1−ε

+ c3

N
∑

i=1

E

[

(‖yi‖22)
1

ε

]ε

P

[

c1 + c2‖yi‖2 + c3‖yi‖22 > MN

]1−ε
}

≤ 1

a4

1

logN

{

c1

N
∑

i=1

P

[

c1 + c2‖yi‖2 + c3‖yi‖22 > MN

]

+ c̃2

N
∑

i=1

P

[

c1 + c2‖yi‖+ c3‖yi‖22 > MN

]1−ε

+ c̃3

N
∑

i=1

P

[

c1 + c2‖yi‖+ c3‖yi‖22 > MN

]1−ε
}

≤ 2

a4

1

logN

{

c1

N
∑

i=1

n

N2
+ c̃2

N
∑

i=1

( n

N2

)1−ε

+ c̃3

N
∑

i=1

( n

N2

)1−ε}

≤ ρ

logN

1

N1−2ε
,

where we used Claim 4. This ends the proof of Lemma 3.

Now, we have shown that the probability (A.2) in Lemma 2 is large. Defining
the set J by

J =

{

sup
θT=(bT ,ηT )∈Θ

∣

∣

∣
VN (θ)− VN (θ0)

∣

∣

∣

(‖b− b0‖1 + ‖η − η0‖2) ∨ λ0
≤ a3Tλ0

}

(A.7)

means that J has large probability. The rest of the proof of Theorem 1 is as in
Städler et al. (2009).

A.2 Proof of Theorem 2

It is sufficient to check Conditions 1− 3 in Städler et al. (2009). Subsequently, each
of these is stated as a Lemma and again for simplicity, we drop the index i.
Let us introduce a slightly different parametrization, which coincides with that
in Städler et al. (2009) and which simplifies the proofs below. For xk ∈ R

p, k =
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1, . . . , n, define XT = (x1, . . . ,xn). Let

φT = φ(X)T = (xT
1 b, . . . ,x

T
nb, 2 logσ, 2 log τ) = ((Xb)T ,ηT ) = (ξ(X)T ,ηT )

= (ξT ,ηT ) ∈ R
n+2

be the parameter vector with dimension d := n + 2. By (8), the parameter space
is bounded by the constant K: Φ ⊂ {φ ∈ R

d : ‖φ‖∞ ≤ K} where ‖φ‖∞ :=
max1≤j≤d |φj |. Let {fφ(y),φ ∈ Φ} be the Gaussian density of y and ℓφ(y) its
log-likelihood function. Moreover, let φ0 be the true parameter vector.

Lemma 4 Under Assumption 2 (a) holds

sup
φ∈Φ

max
(j1,j2,j3)∈{1,...,d}3

∣

∣

∣

∣

∣

∂3

∂φj1∂φj2∂φj3

ℓφ(y)
∣

∣

∣
≤ G3(y) ,

where

sup
X∈Xn

∫

G3(y)fφ0
(y)dµ(y) ≤ C3 < ∞ .

Proof. Set G3(y) := d1+d2‖y‖2+d3‖y‖22 for appropriate constants d1, d2, d3 ∈ R+.
The proof makes use of the same techniques as the proof of Lemma 1 in the Appendix
A.1.

Let A be a symmetric and positive definite matrix. Denote by ς2min(A) its
smallest eigenvalue, by tr(A) its trace and by |A| its determinant.

Lemma 5 Under Assumption 2 (b), the Fisher information matrix I(ξ(X),η) is
strictly positive definite, and in fact infX∈Xn ς2min(I(ξ(X),η)) > 0.

Proof. For y ∼ Nn(ξ,Λ) with Λ = eη1I + eη2ZZT , the Fisher information matrix
is given by

I(ξ,η) =





2Λ−1 0 0
0 1

2
e2η1 tr(Λ−2) 1

2
eη1+η2 tr(Λ−1ZZT

Λ
−1)

0 1
2
eη1+η2 tr(Λ−1ZZT

Λ
−1) 1

2
e2η2 tr(Λ−1ZZT

Λ
−1ZZT )



 .

The upper left part of the matrix is given by D1 := 2Λ−1, which is positive definite.
Hence it remains to prove that the lower right block matrix D2 is also positive definite.
Let (ωj)

n
j=1 be the eigenvalues of ZZT .

tr(Λ−2) =

n
∑

j=1

1

(eη2ωj + eη1)2
, tr(Λ−2

ZZ
T ) =

n
∑

j=1

ωj

(eη2ωj + eη1)2
,

tr(Λ−1
ZZ

T
Λ

−1
ZZ

T ) =

n
∑

j=1

ω2
j

(eη2ωj + eη1)2
.

Then

|D2| =
1

4
e
2(η1+η2)

[

tr(Λ−2) · tr(Λ−1
ZZ

T
Λ

−1
ZZ

T )− tr(Λ−1
ZZ

T
Λ

−1)2
]

=
1

4
e
2(η1+η2)

[

∑

j

∑

j′

1

(eη2ωj + eη1)2
ω2
j′

(eη2ωj′ + eη1)2
−

∑

j

∑

j′

ωjωj′

(eη2ωj + eη1)2(eη2ωj′ + eη1)2

]

=
1

4
e
2(η1+η2)

[

∑

j

∑

j′

1

(eη2ωj + eη1)2(eη2ωj′ + eη1)2

[

ω
2
j′ − ωjωj′

]]

=
1

4
e
2(η1+η2)

[

∑

j<j′

υjj′ [ω
2
j − ω

2
j′ ]

2
]

> 0 .

The last equality holds due to the identity υjj′ = υj′j .
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Lemma 6 Under Assumption 2 (b), for all ǫ > 0, there exists an αǫ > 0, such that

inf
X∈Xn

inf
φ∈Φ,‖φ−φ0‖2>ǫ

E(φ(X)|φ0(X)) ≥ αǫ.

Proof. Let φT = (ξT ,ηT ), φT
0 = (ξT0 ,η

T
0 ), Λ and Λ0 the corresponding covariance

matrices. Then log fφ0
(y)− log fφ(y) =

1
2 log |Λ| − 1

2 log |Λ0|+ 1
2 (y − ξ)TΛ−1(y −

ξ) − 1
2 (y − ξ0)

TΛ−1
0 (y − ξ0). Since E(φ|φ0) := Eφ0

[

log fφ0
(y) − log fφ(y)

]

, it

follows

E(φ|φ0) =
1

2

[

log
|Λ|
|Λ0|

+ tr(Λ−1Λ0) + (ξ0 − ξ)TΛ−1(ξ0 − ξ)− n

]

By definition of the excess risk E(φ|φ0) ≥ 0. Denote by η = (η1, η2) and
η0 = ((η0)1, (η0)2), then we can detail:

log
|Λ|
|Λ0|

= −
n
∑

j=1

log

(

e(η0)2ωj + e(η0)1

eη2ωj + eη1

)

, tr(Λ−1Λ0) =

n
∑

j=1

e(η0)2ωj + e(η0)1

eη2ωj + eη1

Thus, we get

E(φ|φ0) =
1

2

{

(ξ0−ξ)TΛ−1(ξ0−ξ)
}

+
1

2

n
∑

j=1

{

e(η0)2ωj + e(η0)1

eη2ωj + eη1

−log

(

e(η0)2ωj + e(η0)1

eη2ωj + eη1

)

−1

}

The first term is strictly positive if ξ0 6= ξ and zero iff ξ0 = ξ. The second term is
a function of the form u− log(u)− 1 ≥ 0 for u ≥ 0. The second term is only zero if
all terms are exactly zero. Due to Assumption 2 (b), we get the claim.
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