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Lower bounds for the minimax risk using
f-divergences and applications

Adityanand Guntuboyina

Abstract—A new lower bound involving f-divergences between  The next step is to note thatis bounded from below by

the underlying probability measures is proved for the minimax Bayes risks. Letv be a probability measure ofi. The Bayes

risk in estimation problems. The proof just uses the convexy .| - ; o i .
of the function f and is extremely simple. Special cases and risk 7, corresponding to the priav is defined by

straightforward corollaries of our bound include well known R
inequalities for establishing minimax lower bounds such as fw u%wa@Pg {r+0}, 2)
Fano’s inequality, Pinsker's inequality and inequalities based

on global entropy conditions. Two applications are provide: \yherew, := w {#} and the infimum is over all estimatoffs

a new minimax lower bound for the reconstruction of CONVeX  aying values inF". Whenuw is the discrete uniform probability
bodies from noisy support function measurements and a diffient

proof of a recent minimax lower bound for the estimation of a Measure, we simply write for r,,. We shall also write3,, for
covariance matrix. 1 -7, andg for 1 — 7. The trivial inequalityr > 7,, implies
Index Terms—Minimax lower bounds; f-divergences: Fano's that lower bounds foF,, are automatically lower bounds for
inequality; Pinsker’'s inequality; Reconstruction from support -
functions. The main result of this paper (TheorémlI.1) provides a new
lower bound for7,, (or an upper bound fop3,,) involving
f-divergences of the probability measurés, 0 € F. The
f-divergences [([3]:][6]) are a general class of divergences
ONSIDER an estimation problem in which we wanbetween probability measures which include many common
to estimated € © based on an observatioN from divergences/distances like the Kullback Leibler divexgen
{Ps,0 € ©} where eachPy is a probability measure on achi-squared divergence, total variation distance, Hg#lindis-
sample spacet’. Suppose that estimators are allowed to tak@nce etc. For aonvexfunction f : [0,00) — R satisfying
values inA O © and that the loss function is of the formf (1) = 0, the f-divergence between two probabilitiés and
w(p) wherep is a metric ond andw : [0,00) — [0,00) is @ () is given by
nondecreasing function. The minimax risk for this problem i

0cF

I. INTRODUCTION

defined by Ds(PIQ) = [ f (%) e
Ri= I%figgE"w(p(e’e(X)))’ if P is absolutely continuous with respect 9§ and oo
o ) . otherwise.
where the infimum is over all measurable functiénst — A Our proof of Theorenf [l presented in sectioh Il is ex-
and the expectation is with respectid~ Fp. tremely simple. It just relies on convexity of the functiand

In this article, we are concerned with the problem o standard result that, has the following exact expression:
obtaining lower bounds for the minimax rigk. Such bounds

are useful in assessing the quality of estimators &oiThe Buw :/ max {wype(z)} dp(z), (3)
standard approach to these bounds is to obtain a reduction x 0er
to the more tractable problem of bounding from below thgherep, denotes the density d? with respect to a common
minimax risk of a multiple hypothesis testing problem. Morgiominating measure: (for example, one can takg :=
specifically, one considers a finite subgetof the parameter Socr Po).
space© and a real number such thatp(6,6") > n for  we show that Fano's inequality is a special case (see
0,0' € F,0 # 0" and employs the inequalit® > w(n/2)r, Example[I.4) of TheoreniIl]1, obtained by taking(z) =
where xlogx. Fano's inequality is used extensively in the non-
r = infsup Py {T' # 0}, (1) parametric statistics literature for obtaining minimaés
ber bounds, important works bein@![2].1[7]=[12]. In the special
the infimum being over all estimatoff taking values inF’.  case wherF has only two points, Theorem 1].1 gives a sharp
The proof of this inequality relies on the triangle ineqtyali inequality relating the total variation distance betweem t
satisfied by the metrip and can be found, for example, inprobability measures tgf-divergences (see Corollafy_11.3).
(1], [21. When f(z) = zlogz, Corollary[IL.3 implies an inequality
o - . due to Topsge [13] from which Pinsker’s inequality can be
A. Guntuboyina is with the Department of Statistics, Yale i-Un . . o
versity, 24 Hillhouse Avenue, New Haven, CT 06511, USA. éma derived. Thus Theoreml.1 can be viewed as a generalization
adityanand.guntuboyina@yale.edu of both Fano’s inequality and Pinsker’s inequality.
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The bound given by Theorein1l.1 involves the quantitand then use the convexity ¢f to obtain that the quantity
Jp=infq ) 4 p Dy(Po]|Q)/|F|, where the infimum is over , wy f(ag) is bounded from below by
all probability measures) and |F'| denotes the cardinality
of the finite setF. It is usually not possible to calculate wr flar) + (1 —wr)f<
J; exactly and in sectiof]ll, we provide upper bounds for
J¢. These bounds are generalizations of the usual bounds @& now fixa € X such thayy(z) > 0 and apply the inequality
Jy when f(z) = zlogz ([2], [11], [14]). In section[1V, just derived toag := pg(z)/q(x). Note that in this case =
we use these inequalities to obtain minimax lower bOUﬂd‘E(x)_ We get that
involving only global entropy conditions. One of these bdsin
involves the Kullback-Leibler divergence and is due to Yang Z we f <p9(x)> > A(z) + B(x), (6)
and Barron [[2]. The other bound involves the chi-squared 0cF q(x)
divergence and is new. We use this chi-squared diverger\INCﬁzere
based inequality to observe the somewhat surprising fatt th
global entropy conditions provide the optimal minimax lowe A(z) = wr@) f <
bound even in finite dimensional cases.

We shall present two applications of our bounds. In sednd
tion[\] we shall prove a new lower bound for the minimax risk Yo r Wope(T) — Wr(x)Pr(x)(T)
in the problem of estimation/reconstruction of-aimensional B(z) = (1~ wre)f ( (1 — wr))q(x) ) :

convex body from noisy measurements of its support function o ] ) N
in 1 directions. In sectiofLVI, we shall provide a different prooNtegrating inequalityl(6) with respect to the probabilitea-

of a recent result by Cai, Zhang and Zhoul[15] on covarianSd'€@: We get that the term) ;. wo D (14[|Q) is bounded
matrix estimation. from below by

/ A(x)qg(z)dp(z) + / B(x)q(x)dp(x).
X X

- _ ) ~ Let Q' be the probability measure ot having the density
We shall prove a lower bound for, defined in [(R) in ¢ () := wreg(x)/W with respect tou. Clearly
terms of f-divergences. We shall assume that fhie.= |F|

probability measure®y, 0 € F' are all dominated by a sigma - Pr)\
finite measurey with densitiespy,0 € F. The quantity /XA(I)Q(:C)CIM(:C) N W/Xf < q(z) > ¢ (@)dp(x),
Bu =117, has the exact expression given i (3). which is bounded byW f(3,,/W) from below by Jensen’s
Theorem II.1. Let w be a probability measure of. Define inequality. It follows similarly that
T:X — FbyT(z) := argmaxgpecr {weps(x)}, wherewy := 1-8
w {#}. For every convex functioff : [0,00) — R and every / B(z)q(z)dpu(z) > (1 - W)f (1 I/;/U) :
probability measure&) on X', we have x B
8 g This completes the proof of inequalilyl (4). The convexityfof
Pw _ — Puw now implies that the right hand side &f] (4) is non-decreasing
Z we Dy (F]|Q) = Wf (W) =W (1 - W) as a function of3,, and hencel{4) also holds f, is replaced
(4) by 1—r. Whenw is the uniform probability measure of the
whereW := [, wr()dQ(z). The same inequality holds if wediscrete sef’, it is obvious thaii¥” equalsl /N and this leads
replaces,, by 1 —#, or by 1 — r. In particular, takingw to to inequality [®). [ ]
be the uniform probability measure, we get that Inequality [$) gives an implicit lower bound for the minimax
risk r. It can be turned into into an explicit lower bound.

_ N7 is i -
ZDf(PBHQ) > F(N1=F)+ (N —1)f (N 1) (5) This is the content of the following corollary. We assume
bcr - differentiability for convenience.

Moreover, the same inequality also holdsrifs replaced by Corollary 11.2. Let f : [0,00) — R be a differentiable convex
. function and letg : [0, 1] — R be defined as

D per Wodp — wTaT)
1—w;,

q(z) >

II. MAIN RESULT

0cF

The proof of this theorem relies on a simple application of g(a) := f(Na)+ (N = 1)f (M) ) (7)
the convexity off and it is presented below. N -1
Proof: We may assume that all the weights are strictly Then for every, > 1/N, we have
ositive and that the probability measufehas a densit i
\F/Jvith respect tou. We sriart with)::\ simple inequality for r)z)n— r>F>S1— infQ > per D (P]|Q) + ag'(a) — g(a) @)
negative numbersy, 6 € F with 7 := argmaxgcr (wgas). - g'(a)
We first write where the infimum is over all probability measu@s

Z wg fag) = wyflar) + (1 — wy) Z f(ag) Proof: Fix a probability measuré). We first note that
b by L T Wr inequality [B) gives thaty, . Ds(Ps||Q) > g(B). The

W
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convexity of f implies thatg is also convex and hence wewhich is sometimes referred to as the compensation identity

can write see for example [13, Page 1603]:
9(B) = g(a) + ¢'(a)(B — a) for everya € [0, 1]. > D(R||Q) =Y D(Py||P)+ ND(P||Q).
0cF 0cF
Also,
g'(a)

= F/(Na)— f' (%) . Ulsing inequality®) with Q = P := (3, Po)/N, W;?btain
N > D(P||[P) > (1—7)log(N(1—7))+7log (—T> ,

Becausey is convex, we have’(a) > ¢'(1/N) = 0 for a > = N -1
1/N. Therefore, for eaclh > 1/N, we get that
, The quantity on the left hand side is known as the Jensen-
B < >ocr Dy (P||Q) + ag'(a) — g(a). Shannon divergence. The above inequality is stronger than t
B g'(a) version of Fano’s inequality commonly used in nonpararoetri
The proof is complete. m statistics. It is implicit in [17, Proof of Theorem 1] and is

TheorenfIL.1 implies the following corollary which provigle explicitly statgd in_a _slightly different form in_ [18, T_hemm
sharp inequalities between total variation distance gad 3] The proof in [17] s based on the Fano’s inequality from
divergences. The total variation distance between two prdpformation theory([19, Theorem 2.10.1]. To obtain the Usua

ability measures is defined &slf the L' distance between form of Fano’s inequality as used in statistics, we turn to
their densities. inequality (8). For ap := N/(2N — 1) > 1/N and the

3 function g in (@), it can be checked thag'(ag) = Nlog N
Corollary I1.3. Let P, and P, be two probability measures onand aqg’(ao) — g(ao) < N log 2. It follows from inequality)
a spaceX with total variation distancé/. For every convex that

function f : [0,00) — R, we have

f[Dy(A[1Q) + Dy (RflQ) = f(L+ V) + £ (1= V) (9)

log2 + & Yger D(Ps||P)
log N ’

which is the commonly used version of Fano’s inequality.

where the infimum is over all probability measu@sMore- By taking f(z) = 2 log z in Corollary[[l.3, we get that

over this inequality is sharp in the sense that for ever _ _

V € [0,1], the infimum of the left hand side @) over all %(H”P)—'—D(P?HP) > (1+V) log(14+V)+(1-V) log(1-V).

probability measures, and P, with total variation distance This inequality relating the Jensen-Shannon divergence be
V equals the right hand side o). tween two probability measures (also known as capacitory

Proof: In the setting of Theoreni 1, suppose th(,igiscrimination) to their total variation distance is due to

F = {1,2} and that the two probability measures @gand Topsge [[18, ’Equation 3(24)]. Our proof_is slightly simpler_
P, with densitiesp; andps respectively. Sinc@ max(pi, p2) than Topsge’s. Topsgé [13] also explains how to use this

equalsp; + ps + |p1 — pa|, it follows that 23 and 27 equal inequality to deduce the sharp constant Pinsker's inedyali

1+V and1 — V respectively. Inequality19) is then a direct? (F1/112) = 2V2. Thus, Theore@l can be considered
consequence of inequalitifl(5). as a ggnerahzaﬁmn of both Fano’s inequality and Pinsker’s
The following example shows thdtl(9) is sharp. RBix € inequality to f-divergences.
[0, 1]. Consider the spac& = {1,2} and define the probabil- Example 11.5 (Chi-Squared Divergence) et fla) = 2% —
ities Py and P by Py {1} = P, {2} = (1+V)/2and of course 1. Then D;(P||Q) becomes the chi-squared divergence
P {2} = P, {1} = (1 — V)/2. Then the total variation dis- X2(P||Q) = pr/q — 1. Invoking inequality(®), we get that
tance betweer’, and P, equalsV/. Also if we take@ to be the
uniform probability measure) {1} = Q {2} = 1/2, thenone ., 1 /infg 2oer X(]1Q) 1 (1)
sees thaD (P ||Q) + Dy (P»]|Q) equalsf(1+V)+ f(1-V) == '

VN N N
which is same as the right hand side i (9). B Also it follows from Corollanf1[B that for every two proba-

Remark I.1. There exist many inequalities in the literaturedility measuresP; and P,

relating the f-divergence of probability measures to the to- . 2 2 2
tal variation distance. We refer the reader to [16] for the Héf (X (PflQ) +x (P2||Q)) 2 V" (12)

f::rsgﬁ: gudltje;natmsesrlrg ngnneel\r/]vdhg)v:/e?/?arr“er referesc The weaker inequality?(P||P) 4+ x?(P||P) > 2V? can be
q y PP ' found in [13, Equation (11)].

I%xample 1.6 (Hellinger Distance) Let f(z) = 1 — /a.
Then Dy(P||Q) = 1 — [/pgdp = H?*(P,Q)/2, where
Example 1.4 (Kullback Leibler Divergence)Let f(z) := H?*(P,Q) = [(\/p — /q)*du is the square of the Hellinger
zlogz. Then Dy(P||Q) becomes the Kullback-Leiblerdistance betweer® and Q. In this case, it can be shown
divergence D(P||Q) between P and Q. The quan- using the Cauchy-Schwarz inequality thal, . D (F%||Q)
tity > pcr D(P||Q) is minimized whenQ = P := is minimized wher@) has a density with respect {o that is
(>yer Po)/N. This is a consequence of the following identitproportional to (3", - v/P9)?. Applying inequality(5) with

r>r>1-—

(10)

In the reminder of this section, we shall apply Theofem 1.
and Corollany1.B to specifi¢f-divergences.
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this @ and after some simplification, we get the following I1l. BOUNDS FORJ;
minimax lower bound In order to apply the minimax lower bounds of the previous
1 K We—IZ section in practical situations, we must be able to bound the
r>r>1- N 2 uv quantity J; := infg >, Dy(P||Q)/N from above. We
shall provide such bounds in this section. It should be noted
whereh? := Ze o H?(Py, Py/) /N2 that for some functiong, it may be possible to calculate the

Similar calculations can be carried out to deduce frondénsen-Shannon divergence directly. For example, thetiguan
Corollary I3 that for every two probability measurdd and infq >-gcx H?(Fp, Q) can be written in terms of pairwise

P,, Hellinger distances (Example_11.6) and may be calculated
H2(P,, Py) exactly for certain probability measurd%. This is not the
V <H(P,P) 41’ 2 case for most functiong however.

The following is a simple upper bound fofy:

This inequality is usually attributed to Le Cam [20]. 1 ~
Jr< o > Dys(P||P)

Example 1.7 (Total Variation Distance)Let f (z) = |z—1|/2.

OEF

ThenDy(P||Q) becomes the total variation distance between

P and Q. Inequality () results in the lower bound < N2 > Dy(B||Py) < oA Dy(Pol|Pyr).
0,0/cF

r>r>1- M _ 1 In the case of Kullback-Leibler divergence, this inequyatias

N N been frequently used in the literature (see for examplé [11]
whereVj, denotes the total variation distance betwe@nand and [14]). Again, in the case of Kullback-Leibler divergenc
Q. Yang and Barrori [2] provided an improved bound Jor They

. showed that for any finite sefQ, : « € G} of probability
Example I1.8. Let f(z) = = -1 Whe_zrel > 1. The CaS€ aasures, the following inequality holds
I = 2 has already been considered in Examjple]ll.5. Using

) . ) 1 _
inequalit , we get the following bound: — < ;
quality &), we g 9 v O D(Po||P) < log|G| + max min D(Fy||Qa)  (15)

0
inf 37 D (Py]Q) > N'(1 - 7)! — N, <

= An important aspect of inequality (IL5) is that it can be used t

obtain lower bounds folR depending only on global metric

which gives us the following inequality entropy properties of the parameter sp&eand the space

. i of probability measure$ Py, 6 € ©}(see sectiof V). On the

>1_ < 1 infQ > per Df(P9||Q)) (13) other hand, the evaluation of inequalities resulting frdma t

= Ni-1 Nt use of J; < maxg ¢ D(Py||Py) requires knowledge of both

metric entropy and the existence of certain special loedliz

subsets. We refer the reader to [2] for a detailed discugsion
these issues.

In the following theorem, we shall generalize inequalitg)(1
Example 1.9 ("Reverse” Kullback Leibler divergencelet to f-divergences. In section 1V, we shall use this theorem
f(z) = —logz so thatD;(P||Q) = D(Q||P). Then from along with the results of the previous section to come up with
Corollary[[I.3, we get that for every two probability measar minimax lower bounds involving global entropy properties.

Py and P, Theorem .1, Let Q,, a0 € G be M := |G| probability
1 measures having densities,a € G with respect toy and
igf {D(QI[P1) + D(Q||P2)} = log (m) : let j : F — G be a mapping from¥F to G. For every convex
function f : [0, 00) — R, the following inequality holds

9;/ %) <Mp9>d +<1_%> £(0). (16)

Proof: Let Q := > . Qa/M andq := > . qa/M.
Clearly for eachy € F, we have

r>r

When! = 2, inequality (I3) results in a bound that is weaker
than inequality(XT) although for largeN, the two bounds are
almost the same.

This can be rewritten to get

V< \/1 — exp (—igf {D@IIP1) + D(QHPz)})- (14)

Unlike Examplé IL4, it is not true thab(Q||P1) + D(Q|| P2)

is minimized when) = P. This is easy to see because D(P]|Q) = / {f (Pe) —f(O)} i+ (0).
D(P,P)) + D(P, P,) is finite only whenP, << P, and x q
P, << Py. By taking@Q = P, and Q = P», we get that The convexity off implies that the mag — y[f(a/y)— f(0)]

is non-increasing for every nonnegatiweUsing this and the
fact thatg > ¢;9)/M, we get that for every < F,

) - 1) au+ 100

V < /1 —exp (—min (D(P,||P2), D(P:||P)))).

The above inequality, which is clearly weaker than inequal- _ (o) Mpy
ity (I4), can also be found in[21, Proof of Lemma 2.6]. (PollQ) < /X M a0
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Inequality [16) now follows as a consequence of the ineguali M;y(e; S) is an upper bound on thecovering number
Jr <3 per Dr(Po]|Q)/N. [ | of the spaceg Py : § € S} when distances are measured
We shall now apply this result to speciffedivergences. by the square root of thé¢-divergence. For purposes of

clarity, we write M, (¢; S), Mc(e; S) and M, (e; S) for
M;¢(€; S) when the functiory equalsr log z, 2* —1 and
2! — 1 and respectively.

Example 111.2 (Kullback-Leibler divergence)lLet f(z) =
zlogz. In this case,J; equals >, . D(F||/P)/N and
invoking inequality(18), we get that

Theorem IV.1. The minimax riskR satisfies the inequality

1 _ 1
N > D(Py||P) <log M + N > D(Pol|Qjs))- R > sup, ... w(1/2)(1 — *) wherex stands for any of the
oeF oeF following quantities
Inequality (I5) would now follow if we choo_sg’(@) = log 2 + log Mycr,(€;©) + €2
argmingee D(Py||Qa). Hence Theoreni 1M1 is indeed a log N () (19)
generalization of(15).
Example 1ll.3. Let f(z) = zt — 1 for I > 1. Applying 1 + \/(1+62)MC(6’9) (20)
inequality (I8), we get that N(n) N(n)
(1 and forl > 1,1 # 2,
Jp <M= = ST Dp(Py||Qie) +1) — 1
' v 2 i L aseoneey )Y,
(N ()1 (N ()=t '

By choosingj(#) = argmin,cq D (Ps]|Qq), We get that
In the sequel, by inequality (20), we mean the inequality
Jp < MT! {max min Dy (P|Qa) + 1} —1. (17)  sup,~g.c=0w(n/2)(1 —*) with x representing (20). Similarly
el act for inequalities [(ID) and(21).
In particular, in the case of the chi-squared divergence, i.e Proof: We shall give the proof of inequality_(20). The
whenl = 2, the quantityJ; = infg >, » x*(P]|Q)/N is  remaining two inequalities are proved in a similar mannix. F

bounded from above by n > 0. By the definition ofN (), one can find a finite subset
F c O with cardinality |F'| > N(n) such thatp(0,0’) > n
M{I;lea}(IIggx2(P9||Qa) + 1} -1 (18) for 6,6/ € F and @ # 6'. We then employ the inequality

R > w(n/2)r, wherer is defined as in[{1). Inequality (1L1)
Example 11l.4 (Hellinger distance)Let f(x) = (v/x — 1) can now be used to obtain

so thatD¢(P||Q) = H?(P,Q), the square of the Hellinger - 5
distance betweef® and Q. Using inequality(I6), we get that r> 1 infQ Y per X*(0[1Q) 1

{ } - \/|1F_|\/ 7] IE

1 1
Jp<2-— iTi 2 — N Z H?(Py,Qjs)) We now fix e > 0 and use the definition od/c (¢, F') to get
0cF a finite setG with cardinality < M¢(e; F) and probability
If we now choosg(f) := argminaeg H2(Ps, Qa), then we MeASUres),, a € G such thasupye g minaeg X*(Pol|Qa) <
9 : )
get €?. We then use inequality_(118) to get that
. 1
Jf<2_i 2—H1aXH1iHH2(P9 Qa) . lIQlfWZXQ(PSHQ)SMC(E;F) (1+52)_1.
- VM 0cF acl ’ 0eF

The proof is complete by the trivial observatidid (e; F) <
Mc(€;©). [ |
In this section, we shall apply the results of the previous The inequality [(ID) is due to Yang and Barrdn [2, Proof
two sections to obtain lower bounds for the minimax r8k of Theorem 1]. In their paper, Yang and Barron mainly
depending only on global metric entropy properties of theéonsidered the problem of estimation from independent
parameter space. The theorem is stated below, but we skl identically distributed observations. However theétimod
need to establish some notation first. results in inequality[{19) which applies to every estimatio
1) Forn > 0, let N(n) be a positive real number for whichproblem. Inequalitied (20) anf{21) are new.
there exists a finite subsdét C © with cardinality > Note that the lower bounds faR given in Theoreni IV.IL
N(n) satisfying p(6,6’) > n whenever§, ¢’ € F and all depend only on the quantiti€g(n) and M(e, ©), which
6 # 6. In other words,N(n) is a lower bound on the describe packing/covering properties of the entire parame
n-packing number of the metric spa¢®, p). ter space®. Consequently, these inequalities only involve
2) For a convex functionf : [0,00) — R satisfying global metric entropy properties. This is made possible by
f(1) = 0, a subsetS C © and a positive real the use of inequalities in Theorem 1ll.1. In applications
number ¢, let My(e; S) be a positive real numberof Fano’s inequality [(1I0) with the standard boung <
for which there exists a finite set with cardinality maxg ¢.cr D(Py||Ps) as well as in the application of other
< Mjy(¢; S) and probability measureQ,,« € G such popular methods for obtaining minimax lower bounds like Le
thatsupye g minge Dy (Ps]|Qa) < €2. In other words, Cam’s method or Assouad’s lemma, one needs to construct the

IV. BOUNDS INVOLVING GLOBAL ENTROPY
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finite subsetF” of the parameter space in a very special wayates in finite dimensional problems is quite easy in most

the parameter values iR’ should be reasonably separated isituations. Often even two point priors give the optimakrat

the metricp and also, the probability measuré%,f € F  But the point here is that even in finite dimensional situaijo

should be close in some probability metric. On the otheglobal metric entropy conditions are enough for obtaining

hand, the application of Theorelm 1V.1 does not require thgptimal minimax lower bounds. This goes against the usual

construction of such a special subget claim that one needs more than the global entropy condition
Yang and Barron[[2] have successfully applied inequah order to come up with optimal lower bounds for parametric

ity (I9) to obtain minimax lower bounds of the optimal rat@roblems|[[2, Page 1574].

for many nonparametric density estimation and regression

problems whereV(n) and Mk (e; ©) can be deduced from

standard results in approximation theory for function stess V. RECONSTRUCTION OF CONVEX BODIES FROM NOISY

We refer the reader td [[2] for examples. In some of these SUPPORT FUNCTION MEASUREMENTS

examples, inequality_(20) can also be applied to get optimaljn this section, we shall present a novel application of the

lower bounds. In sectioh 1V, we shall apply inequality](20yi0bal minimax lower bound(20). Let > 2 and letK be a

to obtain a new minimax lower bound in the problem o¢onvex body inR, i.e., K is compact, convex and has a non-

reconstructing convex bodies from noisy support functiogmpty interior. The support function dt, i : S4=! — R,

measurements. is defined by
Although inequality[(ZP) works well in nonparametric prob-
lems, fornot very richparameter spaces like finite dimensional hi(u) :=sup {{z,u) : z € K} forue §471,

spaces and analytical densities, inequality (19) onlyltesua

sub-optimal lower bound, as observed by Yang and Bafron [ghereS? ! := {z € R : 3, z7 = 1} is the unit sphere. We
Page 1574]. This can be seen as follows: In typical estimatigirect the reader to_[22, Section 13] for basic properties of
problems of a one-dimensional parameter, restricted to Bépport functions. An important property is that the suppor
in a bounded parameter spa€e from n independent and function uniquely determines the convex body ifeg; = hr
identically distributed observations with squared erross| if and only if K = L.

one hasN (1) = ¢1/n and Mk, (e; ©) = cav/n /€ for positive Let {u;,7 > 1} be a sequence @kdimensional unit vectors.
constants:; andc,. Thus, in this case, by (19), the minimaxGardner, Kiderlen and Milanfari_[23] (see their paper for

risk R,, satisfies the inequality earlier references) considered the problem of recongtgict
an unknown convex bodi from noisy measurements bfs
2 2
R,> sup L (1 _ log2+log(eav/n/e) + ¢ ) _ in the directionsus, . . . , u,. More precisely, their problem was
n>0,e>0 log(c1/m) to estimateK” from observationd7,...,Y,, drawn according

to the modelY; = hx (u;) +&,i=1,...,n wherey, ... &,

are independent random variables with mean zero and fi-

R, > sup 77_2 {— log(v/2cav/n) +1/2 + log 2 (22) nite variance. They constr_ucted a convex body (est_imator)
"= S0 log(c1/n) : K, = K,(11,...,Y,) having the property that, fonice

sequencegu;,i > 1}, the L? norm ||hx — hi |l2 (see [(2H)

We now note that whem = c¢/\/n for a constantc, the pelow) converges to zero at the rate?/(4+3) for dimensions

quantity inside the parantheses on the right hand side_9f (22— 2.3, 4 and at a slower rate for dimensioids> 5 (see [23,

converges to 0 as goes toco. This means that inequality (19) Theorem 6.2]).

only gives lower bounds of inferior order fdt,,, the optimal We shall show here that when the err@s..., &, are

order being, of course,/n. gaussian, it is impossible in a minimax sense to construct
On the other hand, we shall show below that inequdlty (2@ktimators fork converging at a rate faster thau2/(d¢+3),

gives R, > c¢/n for a positive constant. Typically, one has This implies that the least squares estimator[in [23] is rate

Mc(e,0) = c3v/n//log(1 + €2) for a positive constants.  gptimal for dimensionsd = 2,3,4. We shall need some

Inequality [20) then gives that notation to describe our result.

This inequality is optimized whea= 1//2 and then we get

9 - 1 e Let K¢ denote the set of all convex bodiesitf and for
R,> sup L (1 - \/E\/n\/ﬁ 7> R > 0, let K¢(R) denote the set of all convex bodies it
n>0,>0 4 @ @ V9Ieg(1+¢€) J that are contained in the closed ball of radiisentered at the
Taking e = 1 andn = c4//n, we get origin. Note that estimatind< is equivalent to estimating the
functionh i because the support function uniquely determines
2 Cyq 2c3¢4 the convex body. Thus we shall focus on the problem of
Ry 2 4n 1- cvn - c1v/10g 2 (23) estimatingh k. An estimator forh i is allowed to be a bounded

function onS¢~! that depends on the daka, . ..,Y;,. The loss
Hence by choosing, small, we get that?,, > c/n for all functions that we shall use are tii&@ norms forp € [1, o]
largen. defined by
We have thus demonstrated that inequalityl (20) works even
for finite dimensional parameter spaces, a scenario in which -
o = lly = [ et -

. 1/p
inequality [19) fails. Of course, obtaining optimal minirma h(u))pdu) (24)
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for p € [1,00) and||hkx —h||oo := SUp,cga-1 | (w) —h(w)|. It follows that
We shall consider the minimax risk of the problem of esti-

matinghx from Yi,...,Y, whenK is assumed to belong to 1f = glloc <€ = X*(Pr[[Py) < € (27)
K%(R) i.e., we are interested in the following quantity wheree’ := o\/log(1 + €2)/y/n. Let W, be the smallestV’
ra(p,R) :=1inf sup Ex|lhx —h(Ya, ..., )|l for which there exist set¥, ..., Ky in K4(R) having the

h KeK4(R) property that for every sekk € K?(R), there exists akK;

The following is the main theorem of this section. such that the Hausdorff distance betweknand K is less

_ than or equal ta’. It must be clear from[{27) tha/c (e, ©)
Theorem V.1. Fix p € [1,00) and & > 0. Suppose the errors can pe taken to be a number larger th&h . Bronshtein[[24,

1,00, & are independgnt normal random variables withrheorem 3 and Remark 1] showed that there exist positive
satisfies

(d—1)/2
ra(p, R) > 604/(d+3)R(d_l)/(d+3)n_2/(d+3), (25) log W < ! (Ei) for ¢ < .

€

for a constantc that is independent of.
Remark V.1. Gardner, Kiderlen and Milanfar[[23] showed

Hence for alle such thatlog(1 + €%) < ne/o?, we can take

d—1)/2
that the least squares estimator converges at the rate given log Mo(c. ©) — ¢ R\/n =/ o8
by the right hand side of25) for dimensionsd = 2,3, 4. og Mc(e,0) = | — Tog(1 + &) - (28)
Thus the lower bound given fg5) is optimal for dimensions

d=2,3,4. We are now ready to prove inequalify {25). We shall define
) ) . two quantities
We shall use inequality (20) to provie {25). First, let us put
the support function estimation problem in the generahesti n(n) = cot/(HH3) RUA=D/(dH3)y, =2/ (d+8)
tion setting of the last section. L& := {hx : K € K*(R)} and
and let A be the collection of all bounded functions on the Rn (d—1)/(d+3)
unit sphereS?—1. The metricp on A is just the L? norm. (n) == (—) :

Finally, let ¥ = R™ and for f € ©, let P; be then-variate o

normal distribution with mean vectdif (u1), ..., f(u,)) and wherec = ¢(d, p) will be specified shortly. Also le¢(n) be

variance-covariance matrix2I,, where I,, is the identity such thatog(1+¢?(n)) = u?(n). Clearly asn — oo, we have

matrix of ordern. n(n) = 0, u(n) — oo andu(n)/v/n — 0. It can be easily
In order to apply inequality[{20), we need to determinehecked that the quantity

N(n) and M¢ (e, ©). The quantityN (n) is a lower bound on

the n-packing number of the seé€¢(R) under theL? norm. (1+€*(n))Mc(e(n), ©)

When p = oo, Bronshtein [[24, Theorem 4 and Remark 1] N(n(n))

proved that there exist positive constaat@andrn, depending s
only ond such thatxp (¢’(n/R)(*~%/2) is a lower bound for w2 (n) o
exp ( (1 +c’ )) )

the n-packing number o for n < 7. It is a standard fact 9 D]

that p = oo corresponds to the Hausdorff metric &i¥(R).
It turns out that Bronshtein's result is actually true fotnequality [25) now follows if we choose sufficiently small,

everyp € [1,00] and not just forp = co. However, to the Say such thae(?=1/2 = ¢/ /(2 + 2¢").

best of our knowledge, this has not been proved anywhere in

the literature. By modifying Bronshtein’s proof appropeisy VI. A COVARIANCE MATRIX ESTIMATION EXAMPLE

and using Varshamov-Gilbert's lemma (see for example [25, | the previous section, we have used the global minimax

Lemma 4.7]), we provide, in Theorefn VI).1, a proof of thigower bound [(ZD). However, in some situations, the global

fact. Therefore from Theorei VII.1, we can take entropy numbers might be difficult to bound. In such cases,
LR\ D2 inequalities[(IP) and (20) are, of course, not applicabtevae

log N(n) =c¢ m for n < no, (26)  are unaware of the use of inequalify(15) in conjuction with
. Fano's inequality[(T0) in the literature. The standard eplas
wherec’ andn, are constants depending only drandp. use [ID) with the bound < ming ¢rc » D(Py||Py) while the

di Now let uzturn t?éwc(efp' Forft;g € 9’.|the ch|-squdar(;d examples in[[2] all deal with the case when global entropies a
ivergence betwee; and P, can be easily computed ( €-available. In this section, we shall demonstrate how a ftecen

cause they are normal distributions with the same covaeia%inimax lower bound due to Cai, Zhang and Zhbul [15] can
matrix) to be also be proved using inequalitids [10) ahd] (15).

9 1 « 9 Cai, Zhang and Zhou [15] consideredindependenp x 1
X (Pl Py) = exp 52 Z (f(ui) = g(ui))”| =1 random vectors(y, . .., X,, distributed according tv, (0, 2).
=1 9 Suppose that the entries of the x p covariance matrix
< exp {M} _1. ¥ = (0i;) decay at a certain rate as we move away from the
o diagonal. Specifically, let us suppose that for a fixed pasiti
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constanto > 0, the entrie(o;;) of ¥ satisfy the inequality Therefore,

oij < |i —j|7* ! for i # j. Cai, Zhang and Zhou [15] K

showed that whem is large compared ta, it is impossible I (A(T) — A(7) v|]? > Zug > 1 &(r, 7).

to estimateX from X1,..., X,, in the spectral norm at a rate T =TT K2k
—a/(2a+1) i

]fga;te(;;r}%maﬂ), . More precisely, they showed that when]_he proof is complete becausie]|? = k. -

. k VA
R (Q) := inf sup Eg||S — || > ¢ n~=o/(a+D) (29) Lemma VI.2. Let1 < m < k,7 € {0,1}" and 7’ :=

5 seo (0,...,0,Tm,...,Tk). Then
wherec and C' denote positive constants depending only on N0, A K
«. Here © denotes the collection of all covariance matrices (N0, A(m)IIN( (') < (k —m)2’

Y = (o0y;) satisfyingo,;; < |i — j|7*~! for i # j and the

4 : Proof: The key is to note that one has the inequality
norm ||.|| is the spectral norm (largest eigenvalue).

/ AYIPA
Cai, Zhang and Zhou_[15] used Assouad’s lemma for th% (N0, A(7))[IN(0, A(r))) < K[|A(r) — A(7')l[}r, where

1/2

proof of the inequality [(29). We shall use inequalities] (10)A||r := (ZM ay; / denotes the Frobenius norm. The
and [15). Moreover, the choice of the finite subBethat we proof of this assertion can be found in [15, Proof of Lemma
use is different from the one used [n_[15, Equation (17)]sTh&]. We can now bound
makes our approach different from the general method, due to ok
Yu [1], of replacing Assouad’s lemma by Fano’s inequality. |A(T) — A(T)|[% < 2 Z -2 Zaz "

Throughout, K denotes a constant depending @ralone. - " nET
The value of the constant might vary from place to place.

m—1 k
Consider the matrixd = (a;;) with a;; =1 f_or_ i=j and <K pz:
ai; = 1/(K|i — j|**1) for i # j. For K sufficiently large o et |r —k —j|20‘+2
(depending onx alone), A is positive definite and belongs to me1 oo
O. Let us fix a positive integek < p/2 and partitionA as <K Z 1
) = g
An | Az r=1j=1
= y m—1
Afy | Az <K ! < K .
] . = (k — )20t = (k —m)2
where A;; is k x k and Aas is (p — k) x (p — k). For each r=1
7 € R¥, we define the matrix The proof is complete. u
A | Ara(7) Varshamov-Gilbert's lemma (see for examglel[25, Lemma

A(r) = T , 4.7]) asserts the existence of a sugeof {0, 1}* with [1W| >

(Ar2(7)) ‘ Az exp(k/8) such thaté{(r,7") > k/4 for all 7,7/ € W with
where A15(7) is thek x (p — k) matrix obtained by premul- 7 # 7'. Let I := {A(7) : 7 € W}. From inequality[(ID) and
tiplying A1 with the k x k diagonal matrix with diagonal LemmaVL1, we get that

entriest,..., 7. Clearly, A(t) € © for all 7 € {0,1}". 1 P
We shall need the following two lemmas in order to proveR, («) > 11 (1 — g2+ L ZAEFD(PAHP)) (32)
inequality [29). K ke k/8
Lemma VI1. For r,7 € {0,1}* .7 # 7/, the following Where P, denotes the:-fold product of theN (0, A) prob-
inequality holds ability measure and® := _ ,_, Pa/|[W/|. Now for 1 <
/ m < k and fort € {0,1}* ™", let Q, denote then-
|A(T) — A(T))|| > &, 7 )7 (30) fold product of theN (0, A(0,...,0,t1,. .., tx—mt1)) prob-
Kka k ability measure. Applying inequality_(IL5), we get the quignt

where £(r,7') = Y.F_ {7, #7} denotes the hamming>_ . D(Pal|P)/|W| is bounded from above by

H !
distance between and ’. (k—m+1)log2 + ma mlkn . D(Pal|Qy).
Proof: Fix r,7/ € {0,1}" with 7 # 7/. Let v denote the cFefon

p x 1 vector (0O, 1k,0p_2k)T, where (0, denotes thet x 1 Now we use LemmpaVII2 to obtain

vector of zeros etc. Clearlyv||> = k and (A(1) — A(7))v n
will be a vector of the form(u,0)” for somek x 1 vector |W| Z D(P4||P) < K [(k m) + m} :
u = (u1,...,u;)’. Moreoveru, = Z’jzl(n —7))ay ks and AEF
hence Using the above in(31), we get
k
{r #£7/} 1 11 K n
- r Ro(o) > —— [1— = (k— — 1.
fur] K Z|r—k—s|0‘+1 (@) 2 %5 A RO o v
{T ) 21 {T 7)1 Note that the above lower bound f&, (o) depends ort and
- > =2 g r = m, which are constrained to satist < p and1 < m < k.

i=k To get the best lower bound, we need to optimize the right
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hand side of the above inequality overand m. It should w’ defined ap(w,w’) := >, {w; # w;}. We make the claim
be obvious that in order to prove (29), it is enough to takbat

kE—m = nY/CetD) and k = 4Kn'/(>+1), The condition

2k < p will be satisfied ifp > Cn!/2+D for a large enough &, (®(w), ®(w')) > Cae (ve) " (p(w,w))/?, (33)
C. It is elementary to check that with these choices: @ind

m, inequality [29) is established. whereC, depends only od andp. The claim would be proved
later. Assuming it is true, we can apply Varshamov-Gillsert’
VIl. A PACKING NUMBER L OWER BOUND lemma (see for example [R5, Lemma 4.7]). This lemma asserts

. _ the existence of a subsBt of {0,1}" with [IW| > exp(N/8)
In this section, we shall prove that for evepyec [1,00] gych thatp(w, w') > N/4 for all w,w' € W with w # w'.

the n-packing numberN (n; p, R) of K%(R) under theL? BecauseN > Ci(y/e)'~¢, we get from [(3B) that for all
metric is at leasixp (c(n/R)~%/?) for a positivec and ;v ¢ W with w + w’, we have

sufficiently small . This means that there exist at least
exp (c(n/R)1~9/?) sets inK%(R) separated by at least o\ /P
in the L metric. This result was needed in the proof of &, (®(w), ®(w')) > Cse whereCs := Cy (Zl) :
Theorem[ V1. Bronshtein_[24, Theorem 4 and Remark 1]

proved this forp = co (the case of the Hausdorff metric). Takingn := Cs¢, we have obtained, for eagh< 7o := Cseo,

Theorem VII.1. Fix p € [1, 0c]. There exist positive constantsa" 77-Packing subset ok?(B) with size M, where
1o and C' depending only ond and p such that for every

< 19, we have G (AN Ly
N < No, logM > N/8 > — [ — =Cy | — .
R\ (412 8 Ave Vi
N(n;p, R) > exp (C (ﬁ) ) : (32)  1he constan€'; only depends od andp thereby proving((32).

It remains to prove the claini(B3). Fix a poiate S9!

Proof: Observe that by scaling, it is enough to prove fogng. e (0, 1). We first observe that it is enough to prove that
the caseR = 1. We loosely follow Bronshtein[[24, Proof

of Theorem 4]. We writed(z, y) for the Euclidean distance p » d—1
between two pointg: andy in RY. Fix ¢ € (0,1). For each (9 (Az, )" 2 Coe® (VE) ™, (34)
pointz € S9!, let S, denote the supporting hyperplane to th?or a constants
unit ball B at z and letH, be the hyperplane intersecting th
sphere that is parallel t8, and at a distance effrom S,,.. Let
H; andH denote the two halfspaces boundediby where
we assume thalf contains the origin. LeT, := S~ 'NH
and A, := BN H,, whereB stands for the unit ball. It can NSV p
be checked that the (euclidean) distance betweand every (9 (@ (w), ()" = Z 0p(Asis Te )", (39)
pointinT,, (and A,) is less than or equal t¢/2\/e. It follows
that if  andy are two points inS?~! with d(z,y) > 2v2\/6, whereT := {1 <i< N :w; # w!}. The equality [3b) is a
then the setd, andT), are disjoint. consequence of the fact that the points. ..,z are chosen
By standard results, there exist positive constdiitsde- so that7,,,...,T,, are disjoint.
pending only ond, and ey such that for every < o, there  \ve shall now prove the inequality (84) which will complete
exist N > Ci(ye)' ™ pointszy,...,ay in S such that the proof. Letu, denote the point iM,, that is closest to the
d(z;,x;) > 2v/2\/€if i # j. From now on, we assume thalorigin. Also letu; be a point inA, NS¢ . Let o denote the
e < €. We then consider a mapping : {0,1}" — K%(B), angle between, andu,. Clearly,a does not depend on the
which is defined, fors = (wr, ..., wy) € {0,1}", by choice ofu; andcosa = 1 — e. Now let u be a fixed unit
vector and letd be the angle between the vectarsand uy.
®(w) := BN Dy(wr) N Da(wz) N0 Dy (wy), By elementary geometry, we deduce that

depending on jusf andp, whereA, andT,

re as defined in the beginning of the proof. This is because
of the fact that for everyw,w’ € W with w # w’, we can
write

icl

where fori =1,..., N,
1—cos(a—0) if0<H<a,
. — gt . L h —h — >V
D;(0) := H, andD;(1) := B. 7. (u) = ha, () {0 otherwise.
It must be clear that the Hausdorff distance betwégn) ) )
and ®(w') is not less thare (in fact, it is exactly equal to Because the difference of support functions only depends on

O if w# . Thus,{@(w) cw e {0, 1}1\/} is an e-packing the angle, we can write, for a constarfs depending only

) o ond, that
set for K¢(B) under the Hausdorff metric. However, it it
an e-packing set under thé? metric. Indeed, thd.? distance
between®(w) and ®(w’) is not larger thare for all pairs
(w,w'),w # w'. The L? distance betwee®(w) and ®(w’)
depends on the Hamming distang@w, w') betweenw and Now suppose’ is such thatos(a— 3) = 1 —¢/2. Then from

(0,(As, Tp))’ = Cs /O ’ (1 — cos(a — 0))" (sin6)* > db
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above, we get that

B
(0p(Az, Ty))* > Cﬁ/o (1 — cos(a — ) (sin@)d_2 de

We shall show thatsin

prove [34). Recall thatosa = 1 — €. Thus

€
1—§=cos(a—ﬁ)

< cosa + sinasin 3

=1l—e++/1—(1—¢)?sing
<1—e++V2yesing,

which when rearranged would gisen 3 > (1/€) /(2v/2). The

proof is complete.

VIII. CONCLUSION

> (v/€) /(2v/2) which would

(4
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