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Lower bounds for the minimax risk using
f -divergences and applications

Adityanand Guntuboyina

Abstract—A new lower bound involving f -divergences between
the underlying probability measures is proved for the minimax
risk in estimation problems. The proof just uses the convexity
of the function f and is extremely simple. Special cases and
straightforward corollaries of our bound include well known
inequalities for establishing minimax lower bounds such as
Fano’s inequality, Pinsker’s inequality and inequalities based
on global entropy conditions. Two applications are provided:
a new minimax lower bound for the reconstruction of convex
bodies from noisy support function measurements and a different
proof of a recent minimax lower bound for the estimation of a
covariance matrix.

Index Terms—Minimax lower bounds; f -divergences; Fano’s
inequality; Pinsker’s inequality; Reconstruction from support
functions.

I. I NTRODUCTION

CONSIDER an estimation problem in which we want
to estimateθ ∈ Θ based on an observationX from

{Pθ, θ ∈ Θ} where eachPθ is a probability measure on a
sample spaceX . Suppose that estimators are allowed to take
values inA ⊇ Θ and that the loss function is of the form
w(ρ) whereρ is a metric onA andw : [0,∞) → [0,∞) is a
nondecreasing function. The minimax risk for this problem is
defined by

R := inf
θ̂
sup
θ∈Θ

Eθw(ρ(θ, θ̂(X))),

where the infimum is over all measurable functionsθ̂ : X → A
and the expectation is with respect toX ∼ Pθ.

In this article, we are concerned with the problem of
obtaining lower bounds for the minimax riskR. Such bounds
are useful in assessing the quality of estimators forθ. The
standard approach to these bounds is to obtain a reduction
to the more tractable problem of bounding from below the
minimax risk of a multiple hypothesis testing problem. More
specifically, one considers a finite subsetF of the parameter
spaceΘ and a real numberη such thatρ(θ, θ′) ≥ η for
θ, θ′ ∈ F, θ 6= θ′ and employs the inequalityR ≥ w(η/2)r,
where

r := inf
T

sup
θ∈F

Pθ {T 6= θ} , (1)

the infimum being over all estimatorsT taking values inF .
The proof of this inequality relies on the triangle inequality
satisfied by the metricρ and can be found, for example, in
[1], [2].
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The next step is to note thatr is bounded from below by
Bayes risks. Letw be a probability measure onF . The Bayes
risk r̄w corresponding to the priorw is defined by

r̄w := inf
T

∑

θ∈F

wθPθ {T 6= θ} , (2)

wherewθ := w {θ} and the infimum is over all estimatorsT
taking values inF . Whenw is the discrete uniform probability
measure, we simply writēr for r̄w. We shall also writeβw for
1− r̄w andβ for 1− r̄. The trivial inequalityr ≥ r̄w implies
that lower bounds for̄rw are automatically lower bounds for
r.

The main result of this paper (Theorem II.1) provides a new
lower bound for r̄w (or an upper bound forβw) involving
f -divergences of the probability measuresPθ, θ ∈ F . The
f -divergences ([3]–[6]) are a general class of divergences
between probability measures which include many common
divergences/distances like the Kullback Leibler divergence,
chi-squared divergence, total variation distance, Hellinger dis-
tance etc. For aconvexfunction f : [0,∞) → R satisfying
f(1) = 0, the f -divergence between two probabilitiesP and
Q is given by

Df(P ||Q) :=

∫

f

(

dP

dQ

)

dQ

if P is absolutely continuous with respect toQ and ∞
otherwise.

Our proof of Theorem II.1 presented in section II is ex-
tremely simple. It just relies on convexity of the functionf and
the standard result thatβw has the following exact expression:

βw =

∫

X

max
θ∈F

{wθpθ(x)} dµ(x), (3)

wherepθ denotes the density ofPθ with respect to a common
dominating measureµ (for example, one can takeµ :=
∑

θ∈F Pθ).
We show that Fano’s inequality is a special case (see

Example II.4) of Theorem II.1, obtained by takingf(x) =
x log x. Fano’s inequality is used extensively in the non-
parametric statistics literature for obtaining minimax lower
bounds, important works being [2], [7]–[12]. In the special
case whenF has only two points, Theorem II.1 gives a sharp
inequality relating the total variation distance between two
probability measures tof -divergences (see Corollary II.3).
When f(x) = x log x, Corollary II.3 implies an inequality
due to Topsøe [13] from which Pinsker’s inequality can be
derived. Thus Theorem II.1 can be viewed as a generalization
of both Fano’s inequality and Pinsker’s inequality.

http://arxiv.org/abs/1002.0042v1
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The bound given by Theorem II.1 involves the quantity
Jf := infQ

∑

θ∈F Df (Pθ||Q)/|F |, where the infimum is over
all probability measuresQ and |F | denotes the cardinality
of the finite setF . It is usually not possible to calculate
Jf exactly and in section III, we provide upper bounds for
Jf . These bounds are generalizations of the usual bounds for
Jf when f(x) = x log x ([2], [11], [14]). In section IV,
we use these inequalities to obtain minimax lower bounds
involving only global entropy conditions. One of these bounds
involves the Kullback-Leibler divergence and is due to Yang
and Barron [2]. The other bound involves the chi-squared
divergence and is new. We use this chi-squared divergence
based inequality to observe the somewhat surprising fact that
global entropy conditions provide the optimal minimax lower
bound even in finite dimensional cases.

We shall present two applications of our bounds. In sec-
tion V, we shall prove a new lower bound for the minimax risk
in the problem of estimation/reconstruction of ad-dimensional
convex body from noisy measurements of its support function
in n directions. In section VI, we shall provide a different proof
of a recent result by Cai, Zhang and Zhou [15] on covariance
matrix estimation.

II. M AIN RESULT

We shall prove a lower bound for̄rw defined in (2) in
terms off -divergences. We shall assume that theN := |F |
probability measuresPθ, θ ∈ F are all dominated by a sigma
finite measureµ with densitiespθ, θ ∈ F . The quantity
βw := 1− r̄w has the exact expression given in (3).

Theorem II.1. Let w be a probability measure onF . Define
T : X → F byT (x) := argmaxθ∈F {wθpθ(x)}, wherewθ :=
w {θ}. For every convex functionf : [0,∞) → R and every
probability measureQ on X , we have

∑

θ∈F

wθDf (Pθ||Q) ≥ Wf

(

βw

W

)

+ (1 −W )f

(

1− βw

1 −W

)

(4)
whereW :=

∫

X wT (x)dQ(x). The same inequality holds if we
replaceβw by 1− r̄w or by 1− r. In particular, takingw to
be the uniform probability measure, we get that

∑

θ∈F

Df (Pθ||Q) ≥ f (N(1− r̄)) + (N − 1)f

(

Nr̄

N − 1

)

(5)

Moreover, the same inequality also holds ifr̄ is replaced by
r.

The proof of this theorem relies on a simple application of
the convexity off and it is presented below.

Proof: We may assume that all the weightswθ are strictly
positive and that the probability measureQ has a densityq
with respect toµ. We start with a simple inequality for non-
negative numbersaθ, θ ∈ F with τ := argmaxθ∈F (wθaθ).
We first write
∑

θ∈F

wθf(aθ) = wτf(aτ ) + (1− wτ )
∑

θ 6=τ

wθ

1− wτ
f(aθ)

and then use the convexity off to obtain that the quantity
∑

θ wθf(aθ) is bounded from below by

wτf(aτ ) + (1− wτ )f

(
∑

θ∈F wθaθ − wτaτ

1− wτ

)

.

We now fixx ∈ X such thatq(x) > 0 and apply the inequality
just derived toaθ := pθ(x)/q(x). Note that in this caseτ =
T (x). We get that

∑

θ∈F

wθf

(

pθ(x)

q(x)

)

≥ A(x) +B(x), (6)

where

A(x) := wT (x)f

(

pT (x)(x)

q(x)

)

and

B(x) := (1− wT (x))f

(
∑

θ∈F wθpθ(x) − wT (x)pT (x)(x)

(1− wT (x))q(x)

)

.

Integrating inequality (6) with respect to the probabilitymea-
sureQ, we get that the term

∑

θ∈F wθDf(Pθ||Q) is bounded
from below by

∫

X

A(x)q(x)dµ(x) +

∫

X

B(x)q(x)dµ(x).

Let Q′ be the probability measure onX having the density
q′(x) := wT (x)q(x)/W with respect toµ. Clearly

∫

X

A(x)q(x)dµ(x) = W

∫

X

f

(

pT (x)

q(x)

)

q′(x)dµ(x),

which is bounded byWf(βw/W ) from below by Jensen’s
inequality. It follows similarly that

∫

X

B(x)q(x)dµ(x) ≥ (1−W )f

(

1− βw

1−W

)

.

This completes the proof of inequality (4). The convexity off
now implies that the right hand side of (4) is non-decreasing
as a function ofβw and hence (4) also holds ifβw is replaced
by 1 − r. Whenw is the uniform probability measure of the
discrete setF , it is obvious thatW equals1/N and this leads
to inequality (5).

Inequality (5) gives an implicit lower bound for the minimax
risk r. It can be turned into into an explicit lower bound.
This is the content of the following corollary. We assume
differentiability for convenience.

Corollary II.2. Let f : [0,∞) → R be a differentiable convex
function and letg : [0, 1] → R be defined as

g(a) := f(Na) + (N − 1)f

(

N(1− a)

N − 1

)

. (7)

Then for everya ≥ 1/N , we have

r ≥ r̄ ≥ 1− infQ
∑

θ∈F Df (Pθ||Q) + ag′(a)− g(a)

g′(a)
(8)

where the infimum is over all probability measuresQ.

Proof: Fix a probability measureQ. We first note that
inequality (5) gives that

∑

θ∈F Df (Pθ||Q) ≥ g(β). The
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convexity of f implies thatg is also convex and hence we
can write

g(β) ≥ g(a) + g′(a)(β − a) for everya ∈ [0, 1].

Also,
g′(a)

N
= f ′(Na)− f ′

(

N(1− a)

N − 1

)

.

Becauseg is convex, we haveg′(a) ≥ g′(1/N) = 0 for a ≥
1/N . Therefore, for eacha ≥ 1/N , we get that

β ≤
∑

θ∈F Df (Pθ||Q) + ag′(a)− g(a)

g′(a)
.

The proof is complete.
Theorem II.1 implies the following corollary which provides

sharp inequalities between total variation distance andf -
divergences. The total variation distance between two prob-
ability measures is defined ashalf the L1 distance between
their densities.

Corollary II.3. LetP1 andP2 be two probability measures on
a spaceX with total variation distanceV . For every convex
functionf : [0,∞) → R, we have

inf
Q

[Df (P1||Q) +Df (P2||Q)] ≥ f (1 + V ) + f (1− V ) (9)

where the infimum is over all probability measuresQ. More-
over this inequality is sharp in the sense that for every
V ∈ [0, 1], the infimum of the left hand side of(9) over all
probability measuresP1 andP2 with total variation distance
V equals the right hand side of(9).

Proof: In the setting of Theorem II.1, suppose that
F = {1, 2} and that the two probability measures areP1 and
P2 with densitiesp1 andp2 respectively. Since2max(p1, p2)
equalsp1 + p2 + |p1 − p2|, it follows that 2β and 2r̄ equal
1 + V and1 − V respectively. Inequality (9) is then a direct
consequence of inequality (5).

The following example shows that (9) is sharp. FixV ∈
[0, 1]. Consider the spaceX = {1, 2} and define the probabil-
itiesP1 andP2 byP1 {1} = P2 {2} = (1+V )/2 and of course
P1 {2} = P2 {1} = (1 − V )/2. Then the total variation dis-
tance betweenP1 andP2 equalsV . Also if we takeQ to be the
uniform probability measureQ {1} = Q {2} = 1/2, then one
sees thatDf(P1||Q)+Df(P2||Q) equalsf(1+V )+f(1−V )
which is same as the right hand side in (9).

Remark II.1. There exist many inequalities in the literature
relating the f -divergence of probability measures to the to-
tal variation distance. We refer the reader to [16] for the
sharpest results in this direction and for earlier references.
Inequality (9) does appear to be new however.

In the reminder of this section, we shall apply Theorem II.1
and Corollary II.3 to specificf -divergences.

Example II.4 (Kullback Leibler Divergence). Let f(x) :=
x log x. Then Df (P ||Q) becomes the Kullback-Leibler
divergence D(P ||Q) between P and Q. The quan-
tity

∑

θ∈F D(Pθ||Q) is minimized whenQ = P̄ :=
(
∑

θ∈F Pθ)/N . This is a consequence of the following identity

which is sometimes referred to as the compensation identity,
see for example [13, Page 1603]:

∑

θ∈F

D(Pθ ||Q) =
∑

θ∈F

D(Pθ ||P̄ ) +ND(P̄ ||Q).

Using inequality(5) withQ = P̄ := (
∑

θ∈F Pθ)/N , we obtain

1

N

∑

θ∈F

D(Pθ ||P̄ ) ≥ (1− r̄) log(N(1− r̄))+ r̄ log

(

Nr̄

N − 1

)

.

The quantity on the left hand side is known as the Jensen-
Shannon divergence. The above inequality is stronger than the
version of Fano’s inequality commonly used in nonparametric
statistics. It is implicit in [17, Proof of Theorem 1] and is
explicitly stated in a slightly different form in [18, Theorem
3]. The proof in [17] is based on the Fano’s inequality from
information theory [19, Theorem 2.10.1]. To obtain the usual
form of Fano’s inequality as used in statistics, we turn to
inequality (8). For a0 := N/(2N − 1) ≥ 1/N and the
function g in (7), it can be checked thatg′(a0) = N logN
anda0g′(a0)−g(a0) ≤ N log 2. It follows from inequality(8)
that

r ≥ r̄ ≥ 1− log 2 + 1
N

∑

θ∈F D(Pθ||P̄ )

logN
, (10)

which is the commonly used version of Fano’s inequality.
By takingf(x) = x log x in Corollary II.3, we get that

D(P1||P̄ )+D(P2||P̄ ) ≥ (1+V ) log(1+V )+(1−V ) log(1−V ).

This inequality relating the Jensen-Shannon divergence be-
tween two probability measures (also known as capacitory
discrimination) to their total variation distance is due to
Topsøe [13, Equation (24)]. Our proof is slightly simpler
than Topsøe’s. Topsøe [13] also explains how to use this
inequality to deduce the sharp constant Pinsker’s inequality:
D(P1||P2) ≥ 2V 2. Thus, Theorem II.1 can be considered
as a generalization of both Fano’s inequality and Pinsker’s
inequality tof -divergences.

Example II.5 (Chi-Squared Divergence). Let f(x) = x2 −
1. Then Df (P ||Q) becomes the chi-squared divergence
χ2(P ||Q) :=

∫

p2/q − 1. Invoking inequality(5), we get that

r ≥ r̄ ≥ 1− 1√
N

√

infQ
∑

θ∈F χ2(Pθ||Q)

N
− 1

N
. (11)

Also it follows from Corollary II.3 that for every two proba-
bility measuresP1 andP2,

inf
Q

(

χ2(P1||Q) + χ2(P2||Q)
)

≥ 2V 2. (12)

The weaker inequalityχ2(P1||P̄ ) +χ2(P2||P̄ ) ≥ 2V 2 can be
found in [13, Equation (11)].

Example II.6 (Hellinger Distance). Let f(x) = 1 − √
x.

Then Df (P ||Q) = 1 −
∫ √

pqdµ = H2(P,Q)/2, where
H2(P,Q) =

∫

(
√
p − √

q)2dµ is the square of the Hellinger
distance betweenP and Q. In this case, it can be shown
using the Cauchy-Schwarz inequality that

∑

θ∈F Df (Pθ||Q)
is minimized whenQ has a density with respect toµ that is
proportional to (

∑

θ∈F

√
pθ)

2. Applying inequality(5) with
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this Q and after some simplification, we get the following
minimax lower bound

r ≥ r̄ ≥ 1− 1

N
− h2

2
− h

√
2− h2

√
N

,

whereh2 :=
∑

θ,θ′ H2(Pθ, Pθ′)/N2.
Similar calculations can be carried out to deduce from

Corollary II.3 that for every two probability measuresP1 and
P2,

V ≤ H(P1, P2)

√

1− H2(P1, P2)

4
.

This inequality is usually attributed to Le Cam [20].

Example II.7 (Total Variation Distance). Letf(x) = |x−1|/2.
ThenDf (P ||Q) becomes the total variation distance between
P andQ. Inequality(5) results in the lower bound

r ≥ r̄ ≥ 1− infQ
∑

θ∈F Vθ

N
− 1

N

whereVθ denotes the total variation distance betweenPθ and
Q.

Example II.8. Let f(x) = xl − 1 where l > 1. The case
l = 2 has already been considered in Example II.5. Using
inequality (5), we get the following bound:

inf
Q

∑

θ∈F

Df (Pθ||Q) ≥ N l(1− r̄)l −N,

which gives us the following inequality

r ≥ r̄ ≥ 1−
(

1

N l−1
+

infQ
∑

θ∈F Df (Pθ||Q)

N l

)1/l

(13)

Whenl = 2, inequality(13) results in a bound that is weaker
than inequality(11) although for largeN , the two bounds are
almost the same.

Example II.9 (”Reverse” Kullback Leibler divergence). Let
f(x) = − logx so thatDf (P ||Q) = D(Q||P ). Then from
Corollary II.3, we get that for every two probability measures
P1 andP2,

inf
Q

{D(Q||P1) +D(Q||P2)} ≥ log

(

1

1− V 2

)

.

This can be rewritten to get

V ≤
√

1− exp

(

− inf
Q

{D(Q||P1) +D(Q||P2)}
)

. (14)

Unlike Example II.4, it is not true thatD(Q||P1)+D(Q||P2)
is minimized whenQ = P̄ . This is easy to see because
D(P̄ , P1) + D(P̄ , P2) is finite only whenP1 << P2 and
P2 << P1. By takingQ = P1 andQ = P2, we get that

V ≤
√

1− exp (−min (D(P1||P2), D(P2||P1))).

The above inequality, which is clearly weaker than inequal-
ity (14), can also be found in [21, Proof of Lemma 2.6].

III. B OUNDS FORJf

In order to apply the minimax lower bounds of the previous
section in practical situations, we must be able to bound the
quantity Jf := infQ

∑

θ∈F Df (Pθ||Q)/N from above. We
shall provide such bounds in this section. It should be noted
that for some functionsf , it may be possible to calculate the
Jensen-Shannon divergence directly. For example, the quantity
infQ

∑

θ∈F H2(Pθ, Q) can be written in terms of pairwise
Hellinger distances (Example II.6) and may be calculated
exactly for certain probability measuresPθ. This is not the
case for most functionsf however.

The following is a simple upper bound forJf :

Jf ≤ 1

N

∑

θ∈F

Df (Pθ||P̄ )

≤ 1

N2

∑

θ,θ′∈F

Df(Pθ ||Pθ′) ≤ max
θ,θ′∈F

Df(Pθ||Pθ′).

In the case of Kullback-Leibler divergence, this inequality has
been frequently used in the literature (see for example [11]
and [14]). Again, in the case of Kullback-Leibler divergence,
Yang and Barron [2] provided an improved bound forJf . They
showed that for any finite set{Qα : α ∈ G} of probability
measures, the following inequality holds

1

N

∑

θ∈F

D(Pθ||P̄ ) ≤ log |G|+max
θ∈F

min
α∈G

D(Pθ||Qα) (15)

An important aspect of inequality (15) is that it can be used to
obtain lower bounds forR depending only on global metric
entropy properties of the parameter spaceΘ and the space
of probability measures{Pθ, θ ∈ Θ}(see section IV). On the
other hand, the evaluation of inequalities resulting from the
use ofJf ≤ maxθ,θ′ D(Pθ ||Pθ′) requires knowledge of both
metric entropy and the existence of certain special localized
subsets. We refer the reader to [2] for a detailed discussionof
these issues.

In the following theorem, we shall generalize inequality (15)
to f -divergences. In section IV, we shall use this theorem
along with the results of the previous section to come up with
minimax lower bounds involving global entropy properties.

Theorem III.1. Let Qα, α ∈ G be M := |G| probability
measures having densitiesqα, α ∈ G with respect toµ and
let j : F → G be a mapping fromF to G. For every convex
functionf : [0,∞) → R, the following inequality holds

Jf ≤ 1

N

∑

θ∈F

∫

X

qj(θ)

M
f

(

Mpθ
qj(θ)

)

dµ+

(

1− 1

M

)

f(0). (16)

Proof: Let Q̄ :=
∑

α∈G Qα/M and q̄ :=
∑

α∈G qα/M .
Clearly for eachθ ∈ F , we have

Df(Pθ||Q̄) =

∫

X

q̄

[

f

(

pθ
q̄

)

− f(0)

]

dµ+ f(0).

The convexity off implies that the mapy 7→ y[f(a/y)−f(0)]
is non-increasing for every nonnegativea. Using this and the
fact that q̄ ≥ qj(θ)/M , we get that for everyθ ∈ F ,

Df(Pθ||Q̄) ≤
∫

X

qj(θ)

M

[

f

(

Mpθ
qj(θ)

)

− f(0)]

]

dµ+ f(0).
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Inequality (16) now follows as a consequence of the inequality
Jf ≤∑θ∈F Df(Pθ ||Q̄)/N .

We shall now apply this result to specificf -divergences.

Example III.2 (Kullback-Leibler divergence). Let f(x) =
x log x. In this case,Jf equals

∑

θ∈F D(Pθ||P̄ )/N and
invoking inequality(16), we get that

1

N

∑

θ∈F

D(Pθ||P̄ ) ≤ logM +
1

N

∑

θ∈F

D(Pθ||Qj(θ)).

Inequality (15) would now follow if we choosej(θ) :=
argminα∈GD(Pθ ||Qα). Hence Theorem III.1 is indeed a
generalization of(15).

Example III.3. Let f(x) = xl − 1 for l > 1. Applying
inequality (16), we get that

Jf ≤ M l−1

(

1

N

∑

θ∈F

Df(Pθ||Qj(θ)) + 1

)

− 1

By choosingj(θ) = argminα∈GDf (Pθ||Qα), we get that

Jf ≤ M l−1

{

max
θ∈F

min
α∈G

Df (Pθ||Qα) + 1

}

− 1. (17)

In particular, in the case of the chi-squared divergence i.e.,
when l = 2, the quantityJf = infQ

∑

θ∈F χ2(Pθ ||Q)/N is
bounded from above by

M

{

max
θ∈F

min
α∈G

χ2(Pθ||Qα) + 1

}

− 1. (18)

Example III.4 (Hellinger distance). Let f(x) = (
√
x − 1)2

so thatDf (P ||Q) = H2(P,Q), the square of the Hellinger
distance betweenP andQ. Using inequality(16), we get that

Jf ≤ 2− 1√
M

{

2− 1

N

∑

θ∈F

H2(Pθ , Qj(θ))

}

.

If we now choosej(θ) := argminα∈G H2(Pθ, Qα), then we
get

Jf ≤ 2− 1√
M

{

2−max
θ∈F

min
α∈G

H2(Pθ, Qα)

}

.

IV. B OUNDS INVOLVING GLOBAL ENTROPY

In this section, we shall apply the results of the previous
two sections to obtain lower bounds for the minimax riskR
depending only on global metric entropy properties of the
parameter space. The theorem is stated below, but we shall
need to establish some notation first.

1) Forη > 0, let N(η) be a positive real number for which
there exists a finite subsetF ⊆ Θ with cardinality ≥
N(η) satisfyingρ(θ, θ′) ≥ η wheneverθ, θ′ ∈ F and
θ 6= θ′. In other words,N(η) is a lower bound on the
η-packing number of the metric space(Θ, ρ).

2) For a convex functionf : [0,∞) → R satisfying
f(1) = 0, a subsetS ⊆ Θ and a positive real
number ǫ, let Mf (ǫ;S) be a positive real number
for which there exists a finite setG with cardinality
≤ Mf (ǫ;S) and probability measuresQα, α ∈ G such
that supθ∈S minα∈G Df (Pθ||Qα) ≤ ǫ2. In other words,

Mf(ǫ;S) is an upper bound on theǫ-covering number
of the space{Pθ : θ ∈ S} when distances are measured
by the square root of thef -divergence. For purposes of
clarity, we writeMKL(ǫ;S),MC(ǫ;S) andMl(ǫ;S) for
Mf(ǫ;S) when the functionf equalsx log x, x2−1 and
xl − 1 and respectively.

Theorem IV.1. The minimax riskR satisfies the inequality
R ≥ supη>0,ǫ>0 w(η/2)(1− ⋆) where⋆ stands for any of the
following quantities

log 2 + logMKL(ǫ; Θ) + ǫ2

logN(η)
(19)

1

N(η)
+

√

(1 + ǫ2)MC(ǫ,Θ)

N(η)
(20)

and for l > 1, l 6= 2,
{

1

(N(η))l−1
+

(1 + ǫ2)(Ml(ǫ,Θ))l−1

(N(η))l−1

}1/l

. (21)

In the sequel, by inequality (20), we mean the inequalityR ≥
supη>0,ǫ>0w(η/2)(1− ⋆) with ⋆ representing (20). Similarly
for inequalities (19) and (21).

Proof: We shall give the proof of inequality (20). The
remaining two inequalities are proved in a similar manner. Fix
η > 0. By the definition ofN(η), one can find a finite subset
F ⊂ Θ with cardinality |F | ≥ N(η) such thatρ(θ, θ′) ≥ η
for θ, θ′ ∈ F and θ 6= θ′. We then employ the inequality
R ≥ w(η/2)r, wherer is defined as in (1). Inequality (11)
can now be used to obtain

r ≥ 1− 1
√

|F |

√

infQ
∑

θ∈F χ2(Pθ ||Q)

|F | − 1

|F | .

We now fix ǫ > 0 and use the definition ofMC(ǫ, F ) to get
a finite setG with cardinality ≤ MC(ǫ;F ) and probability
measuresQα, α ∈ G such thatsupθ∈S minα∈G χ2(Pθ||Qα) ≤
ǫ2. We then use inequality (18) to get that

inf
Q

1

|F |
∑

θ∈F

χ2(Pθ||Q) ≤ MC(ǫ;F )
(

1 + ǫ2
)

− 1.

The proof is complete by the trivial observationMC(ǫ;F ) ≤
MC(ǫ; Θ).

The inequality (19) is due to Yang and Barron [2, Proof
of Theorem 1]. In their paper, Yang and Barron mainly
considered the problem of estimation fromn independent
and identically distributed observations. However their method
results in inequality (19) which applies to every estimation
problem. Inequalities (20) and (21) are new.

Note that the lower bounds forR given in Theorem IV.1
all depend only on the quantitiesN(η) andMf(ǫ,Θ), which
describe packing/covering properties of the entire parame-
ter spaceΘ. Consequently, these inequalities only involve
global metric entropy properties. This is made possible by
the use of inequalities in Theorem III.1. In applications
of Fano’s inequality (10) with the standard boundJf ≤
maxθ,θ′∈F D(Pθ||Pθ′) as well as in the application of other
popular methods for obtaining minimax lower bounds like Le
Cam’s method or Assouad’s lemma, one needs to construct the
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finite subsetF of the parameter space in a very special way:
the parameter values inF should be reasonably separated in
the metricρ and also, the probability measuresPθ, θ ∈ F
should be close in some probability metric. On the other
hand, the application of Theorem IV.1 does not require the
construction of such a special subsetF .

Yang and Barron [2] have successfully applied inequal-
ity (19) to obtain minimax lower bounds of the optimal rate
for many nonparametric density estimation and regression
problems whereN(η) andMKL(ǫ; Θ) can be deduced from
standard results in approximation theory for function classes.
We refer the reader to [2] for examples. In some of these
examples, inequality (20) can also be applied to get optimal
lower bounds. In section V, we shall apply inequality (20)
to obtain a new minimax lower bound in the problem of
reconstructing convex bodies from noisy support function
measurements.

Although inequality (19) works well in nonparametric prob-
lems, fornot very richparameter spaces like finite dimensional
spaces and analytical densities, inequality (19) only results in a
sub-optimal lower bound, as observed by Yang and Barron [2,
Page 1574]. This can be seen as follows: In typical estimation
problems of a one-dimensional parameter, restricted to be
in a bounded parameter spaceΘ, from n independent and
identically distributed observations with squared error loss,
one hasN(η) = c1/η andMKL(ǫ; Θ) = c2

√
n/ǫ for positive

constantsc1 andc2. Thus, in this case, by (19), the minimax
risk Rn satisfies the inequality

Rn ≥ sup
η>0,ǫ>0

η2

4

(

1− log 2 + log(c2
√
n/ǫ) + ǫ2

log(c1/η)

)

.

This inequality is optimized whenǫ = 1/
√
2 and then we get

Rn ≥ sup
η>0

η2

4

(

1− log(
√
2c2

√
n) + 1/2 + log 2

log(c1/η)

)

. (22)

We now note that whenη = c/
√
n for a constantc, the

quantity inside the parantheses on the right hand side of (22)
converges to 0 asn goes to∞. This means that inequality (19)
only gives lower bounds of inferior order forRn, the optimal
order being, of course,1/n.

On the other hand, we shall show below that inequality (20)
givesRn ≥ c/n for a positive constantc. Typically, one has
MC(ǫ,Θ) = c3

√
n/
√

log(1 + ǫ2) for a positive constantc3.
Inequality (20) then gives that

Rn ≥ sup
η>0,ǫ>0

η2

4

(

1− η

c1
−
√

c3
c1

√

η
√
n

√

1 + ǫ2
√

log(1 + ǫ2)

)

.

Taking ǫ = 1 andη = c4/
√
n, we get

Rn ≥ c24
4n

(

1− c4
c1
√
n
−
√

2c3c4

c1
√
log 2

)

(23)

Hence by choosingc4 small, we get thatRn ≥ c/n for all
largen.

We have thus demonstrated that inequality (20) works even
for finite dimensional parameter spaces, a scenario in which
inequality (19) fails. Of course, obtaining optimal minimax

rates in finite dimensional problems is quite easy in most
situations. Often even two point priors give the optimal rate.
But the point here is that even in finite dimensional situations,
global metric entropy conditions are enough for obtaining
optimal minimax lower bounds. This goes against the usual
claim that one needs more than the global entropy condition
in order to come up with optimal lower bounds for parametric
problems [2, Page 1574].

V. RECONSTRUCTION OF CONVEX BODIES FROM NOISY

SUPPORT FUNCTION MEASUREMENTS

In this section, we shall present a novel application of the
global minimax lower bound (20). Letd ≥ 2 and letK be a
convex body inRd, i.e.,K is compact, convex and has a non-
empty interior. The support function ofK, hK : Sd−1 → R,
is defined by

hK(u) := sup {〈x, u〉 : x ∈ K} for u ∈ Sd−1,

whereSd−1 :=
{

x ∈ R
d :
∑

i x
2
i = 1

}

is the unit sphere. We
direct the reader to [22, Section 13] for basic properties of
support functions. An important property is that the support
function uniquely determines the convex body i.e.,hK = hL

if and only if K = L.
Let {ui, i ≥ 1} be a sequence ofd-dimensional unit vectors.

Gardner, Kiderlen and Milanfar [23] (see their paper for
earlier references) considered the problem of reconstructing
an unknown convex bodyK from noisy measurements ofhK

in the directionsu1, . . . , un. More precisely, their problem was
to estimateK from observationsY1, . . . , Yn drawn according
to the modelYi = hK(ui)+ ξi, i = 1, . . . , n whereξ1, . . . , ξn
are independent random variables with mean zero and fi-
nite variance. They constructed a convex body (estimator)
K̂n = K̂n(Y1, . . . , Yn) having the property that, fornice
sequences{ui, i ≥ 1}, theL2 norm ||hK − hK̂n

||2 (see (24)
below) converges to zero at the raten−2/(d+3) for dimensions
d = 2, 3, 4 and at a slower rate for dimensionsd ≥ 5 (see [23,
Theorem 6.2]).

We shall show here that when the errorsξ1, . . . , ξn are
gaussian, it is impossible in a minimax sense to construct
estimators forK converging at a rate faster thann−2/(d+3).
This implies that the least squares estimator in [23] is rate
optimal for dimensionsd = 2, 3, 4. We shall need some
notation to describe our result.

Let Kd denote the set of all convex bodies inRd and for
R > 0, let Kd(R) denote the set of all convex bodies inRd

that are contained in the closed ball of radiusR centered at the
origin. Note that estimatingK is equivalent to estimating the
functionhK because the support function uniquely determines
the convex body. Thus we shall focus on the problem of
estimatinghK . An estimator forhK is allowed to be a bounded
function onSd−1 that depends on the dataY1, . . . , Yn. The loss
functions that we shall use are theLp norms forp ∈ [1,∞]
defined by

||hK − ĥ||p :=

(
∫

Sd−1

(hK(u)− ĥ(u))pdu

)1/p

(24)
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for p ∈ [1,∞) and||hK− ĥ||∞ := supu∈Sd−1 |hK(u)− ĥ(u)|.
We shall consider the minimax risk of the problem of esti-
matinghK from Y1, . . . , Yn whenK is assumed to belong to
Kd(R) i.e., we are interested in the following quantity

rn(p,R) := inf
ĥ

sup
K∈Kd(R)

EK ||hK − ĥ(Y1, . . . , Yn)||p

The following is the main theorem of this section.

Theorem V.1. Fix p ∈ [1,∞) andR > 0. Suppose the errors
ξ1, . . . , ξn are independent normal random variables with
mean zero and varianceσ2. Then the minimax riskrn(p,R)
satisfies

rn(p,R) ≥ cσ4/(d+3)R(d−1)/(d+3)n−2/(d+3), (25)

for a constantc that is independent ofn.

Remark V.1. Gardner, Kiderlen and Milanfar [23] showed
that the least squares estimator converges at the rate given
by the right hand side of(25) for dimensionsd = 2, 3, 4.
Thus the lower bound given by(25) is optimal for dimensions
d = 2, 3, 4.

We shall use inequality (20) to prove (25). First, let us put
the support function estimation problem in the general estima-
tion setting of the last section. LetΘ :=

{

hK : K ∈ Kd(R)
}

and letA be the collection of all bounded functions on the
unit sphereSd−1. The metricρ on A is just theLp norm.

Finally, let X = R
n and forf ∈ Θ, let Pf be then-variate

normal distribution with mean vector(f(u1), . . . , f(un)) and
variance-covariance matrixσ2In, where In is the identity
matrix of ordern.

In order to apply inequality (20), we need to determine
N(η) andMC(ǫ,Θ). The quantityN(η) is a lower bound on
the η-packing number of the setKd(R) under theLp norm.
When p = ∞, Bronshtein [24, Theorem 4 and Remark 1]
proved that there exist positive constantsc′ andη0 depending
only ond such thatexp

(

c′(η/R)(1−d)/2
)

is a lower bound for
the η-packing number ofΘ for η ≤ η0. It is a standard fact
that p = ∞ corresponds to the Hausdorff metric onKd(R).

It turns out that Bronshtein’s result is actually true for
every p ∈ [1,∞] and not just forp = ∞. However, to the
best of our knowledge, this has not been proved anywhere in
the literature. By modifying Bronshtein’s proof appropriately
and using Varshamov-Gilbert’s lemma (see for example [25,
Lemma 4.7]), we provide, in Theorem VII.1, a proof of this
fact. Therefore from Theorem VII.1, we can take

logN(η) = c′
(

R

η

)(d−1)/2

for η ≤ η0, (26)

wherec′ andη0 are constants depending only ond andp.
Now let us turn toMC(ǫ,Θ). Forf, g ∈ Θ, the chi-squared

divergence betweenPf andPg can be easily computed (be-
cause they are normal distributions with the same covariance
matrix) to be

χ2(Pf ||Pg) = exp

[

1

σ2

n
∑

i=1

(f(ui)− g(ui))
2

]

− 1

≤ exp

[

n||f − g||2∞
σ2

]

− 1.

It follows that

||f − g||∞ ≤ ǫ′ =⇒ χ2(Pf ||Pg) ≤ ǫ2. (27)

whereǫ′ := σ
√

log(1 + ǫ2)/
√
n. Let Wǫ′ be the smallestW

for which there exist setsK1, . . . ,KW in Kd(R) having the
property that for every setK ∈ Kd(R), there exists aKj

such that the Hausdorff distance betweenK andKj is less
than or equal toǫ′. It must be clear from (27) thatMC(ǫ,Θ)
can be taken to be a number larger thanWǫ′ . Bronshtein [24,
Theorem 3 and Remark 1] showed that there exist positive
constantsc′′ andǫ0 depending only ond such that

logWǫ′ ≤ c′′
(

R

ǫ′

)(d−1)/2

for ǫ′ ≤ ǫ0.

Hence for allǫ such thatlog(1 + ǫ2) ≤ nǫ20/σ
2, we can take

logMC(ǫ,Θ) = c′′

(

R
√
n

σ
√

log(1 + ǫ2)

)(d−1)/2

. (28)

We are now ready to prove inequality (25). We shall define
two quantities

η(n) := cσ4/(d+3)R(d−1)/(d+3)n−2/(d+3)

and

u(n) :=

(

R
√
n

σ

)(d−1)/(d+3)

.

wherec = c(d, p) will be specified shortly. Also letǫ(n) be
such thatlog(1+ǫ2(n)) = u2(n). Clearly asn → ∞, we have
η(n) → 0, u(n) → ∞ and u(n)/

√
n → 0. It can be easily

checked that the quantity
√

(1 + ǫ2(n))MC(ǫ(n),Θ)

N(η(n))

equals

exp

(

u2(n)

2

(

1 + c′′ − c′

c(d−1)/2

))

.

Inequality (25) now follows if we choosec sufficiently small,
say such thatc(d−1)/2 = c′/(2 + 2c′′).

VI. A COVARIANCE MATRIX ESTIMATION EXAMPLE

In the previous section, we have used the global minimax
lower bound (20). However, in some situations, the global
entropy numbers might be difficult to bound. In such cases,
inequalities (19) and (20) are, of course, not applicable and we
are unaware of the use of inequality (15) in conjuction with
Fano’s inequality (10) in the literature. The standard examples
use (10) with the boundJf ≤ minθ,θ′∈F D(Pθ||Pθ′) while the
examples in [2] all deal with the case when global entropies are
available. In this section, we shall demonstrate how a recent
minimax lower bound due to Cai, Zhang and Zhou [15] can
also be proved using inequalities (10) and (15).

Cai, Zhang and Zhou [15] consideredn independentp× 1
random vectorsX1, . . . , Xn distributed according toNp(0,Σ).
Suppose that the entries of thep × p covariance matrix
Σ = (σij) decay at a certain rate as we move away from the
diagonal. Specifically, let us suppose that for a fixed positive
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constantα > 0, the entries(σij) of Σ satisfy the inequality
σij ≤ |i − j|−α−1 for i 6= j. Cai, Zhang and Zhou [15]
showed that whenp is large compared ton, it is impossible
to estimateΣ from X1, . . . , Xn in the spectral norm at a rate
faster thann−α/(2α+1). More precisely, they showed that when
p ≥ Cn1/(2α+1),

Rn(α) := inf
Σ̂

sup
Σ∈Θ

EΣ||Σ̂− Σ|| ≥ c n−α/(2α+1) (29)

wherec andC denote positive constants depending only on
α. HereΘ denotes the collection of all covariance matrices
Σ = (σij) satisfyingσij ≤ |i − j|−α−1 for i 6= j and the
norm ||.|| is the spectral norm (largest eigenvalue).

Cai, Zhang and Zhou [15] used Assouad’s lemma for the
proof of the inequality (29). We shall use inequalities (10)
and (15). Moreover, the choice of the finite subsetF that we
use is different from the one used in [15, Equation (17)]. This
makes our approach different from the general method, due to
Yu [1], of replacing Assouad’s lemma by Fano’s inequality.

Throughout,K denotes a constant depending onα alone.
The value of the constant might vary from place to place.

Consider the matrixA = (aij) with aij = 1 for i = j and
aij = 1/(K|i − j|α+1) for i 6= j. For K sufficiently large
(depending onα alone),A is positive definite and belongs to
Θ. Let us fix a positive integerk ≤ p/2 and partitionA as

A =

[

A11 A12

AT
12 A22

]

,

whereA11 is k × k andA22 is (p − k) × (p − k). For each
τ ∈ R

k, we define the matrix

A(τ) :=

[

A11 A12(τ)

(A12(τ))
T

A22

]

,

whereA12(τ) is thek × (p− k) matrix obtained by premul-
tiplying A12 with the k × k diagonal matrix with diagonal
entries τ1, . . . , τk. Clearly, A(τ) ∈ Θ for all τ ∈ {0, 1}k.
We shall need the following two lemmas in order to prove
inequality (29).

Lemma VI.1. For τ, τ ′ ∈ {0, 1}k , τ 6= τ ′, the following
inequality holds

||A(τ) −A(τ ′)|| ≥ 1

Kkα

√

ξ(τ, τ ′)

k
, (30)

where ξ(τ, τ ′) :=
∑k

r=1 {τr 6= τ ′r} denotes the hamming
distance betweenτ and τ ′.

Proof: Fix τ, τ ′ ∈ {0, 1}k with τ 6= τ ′. Let v denote the
p × 1 vector (0k, 1k, 0p−2k)

T , where0k denotes thek × 1
vector of zeros etc. Clearly||v||2 = k and (A(τ) − A(τ ′))v
will be a vector of the form(u, 0)T for somek × 1 vector
u = (u1, . . . , uk)

T . Moreoverur =
∑k

s=1(τr − τ ′r)ar,k+s and
hence

|ur| =
{τr 6= τ ′r}

K

k
∑

s=1

1

|r − k − s|α+1

≥ {τr 6= τ ′r}
K

2k−1
∑

i=k

1

iα+1
≥ {τr 6= τ ′r}

K

1

kα

Therefore,

|| (A(τ) −A(τ ′)) v||2 ≥
k
∑

r=1

u2
r ≥ 1

K2k2α
ξ(τ, τ ′).

The proof is complete because||v||2 = k.

Lemma VI.2. Let 1 ≤ m < k, τ ∈ {0, 1}k and τ ′ :=
(0, . . . , 0, τm, . . . , τk). Then

D (N(0, A(τ))||N(0, A(τ ′))) ≤ K

(k −m)2α
.

Proof: The key is to note that one has the inequality
D (N(0, A(τ))||N(0, A(τ ′))) ≤ K||A(τ) − A(τ ′)||2F , where

||A||F :=
(

∑

i,j a
2
ij

)1/2

denotes the Frobenius norm. The
proof of this assertion can be found in [15, Proof of Lemma
6]. We can now bound

||A(τ) −A(τ ′)||2F ≤ 2

m−1
∑

r=1

τ2r

p−k
∑

j=1

a2r,k+j

≤ K

m−1
∑

r=1

p−k
∑

j=1

1

|r − k − j|2α+2

≤ K

m−1
∑

r=1

∞
∑

j=1

1

|k − r + j|2α+2

≤ K

m−1
∑

r=1

1

(k − r)2α+1
≤ K

(k −m)2α
.

The proof is complete.
Varshamov-Gilbert’s lemma (see for example [25, Lemma

4.7]) asserts the existence of a subsetW of {0, 1}k with |W | ≥
exp(k/8) such thatξ(τ, τ ′) ≥ k/4 for all τ, τ ′ ∈ W with
τ 6= τ ′. Let F := {A(τ) : τ ∈ W}. From inequality (10) and
Lemma VI.1, we get that

Rn(α) ≥
1

K

1

kα

(

1−
log 2 + 1

|W |

∑

A∈F D(PA||P̄ )

k/8

)

(31)

wherePA denotes then-fold product of theN(0, A) prob-
ability measure andP̄ :=

∑

A∈F PA/|W |. Now for 1 ≤
m < k and for t ∈ {0, 1}k−m+1, let Qt denote then-
fold product of theN(0, A(0, . . . , 0, t1, . . . , tk−m+1)) prob-
ability measure. Applying inequality (15), we get the quantity
∑

A∈F D(PA||P̄ )/|W | is bounded from above by

(k −m+ 1) log 2 + max
A∈F

min
t∈{0,1}k−m+1

D(PA||Qt).

Now we use Lemma VI.2 to obtain

1

|W |
∑

A∈F

D(PA||P̄ ) ≤ K

[

(k −m) +
n

(k −m)2α

]

.

Using the above in (31), we get

Rn(α) ≥
1

K

1

kα

[

1− K

k

{

(k −m) +
n

(k −m)α

}]

.

Note that the above lower bound forRn(α) depends onk and
m, which are constrained to satisfy2k ≤ p and1 ≤ m < k.
To get the best lower bound, we need to optimize the right
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hand side of the above inequality overk and m. It should
be obvious that in order to prove (29), it is enough to take
k − m = n1/(2α+1) and k = 4Kn1/(2α+1). The condition
2k ≤ p will be satisfied ifp ≥ Cn1/(2α+1) for a large enough
C. It is elementary to check that with these choices ofk and
m, inequality (29) is established.

VII. A PACKING NUMBER LOWER BOUND

In this section, we shall prove that for everyp ∈ [1,∞]
the η-packing numberN(η; p,R) of Kd(R) under theLp

metric is at leastexp
(

c(η/R)(1−d)/2
)

for a positivec and
sufficiently small η. This means that there exist at least
exp

(

c(η/R)(1−d)/2
)

sets inKd(R) separated by at leastη
in the Lp metric. This result was needed in the proof of
Theorem V.1. Bronshtein [24, Theorem 4 and Remark 1]
proved this forp = ∞ (the case of the Hausdorff metric).

Theorem VII.1. Fix p ∈ [1,∞]. There exist positive constants
η0 and C depending only ond and p such that for every
η ≤ η0, we have

N(η; p,R) ≥ exp

(

C

(

R

η

)(d−1)/2
)

. (32)

Proof: Observe that by scaling, it is enough to prove for
the caseR = 1. We loosely follow Bronshtein [24, Proof
of Theorem 4]. We writed(x, y) for the Euclidean distance
between two pointsx and y in R

d. Fix ǫ ∈ (0, 1). For each
pointx ∈ Sd−1, letSx denote the supporting hyperplane to the
unit ball B at x and letHx be the hyperplane intersecting the
sphere that is parallel toSx and at a distance ofǫ from Sx. Let
H+

x andH−
x denote the two halfspaces bounded byHx where

we assume thatH+
x contains the origin. LetTx := Sd−1∩H−

x

andAx := B ∩Hx, whereB stands for the unit ball. It can
be checked that the (euclidean) distance betweenx and every
point in Tx (andAx) is less than or equal to

√
2
√
ǫ. It follows

that if x andy are two points inSd−1 with d(x, y) > 2
√
2
√
ǫ,

then the setsTx andTy are disjoint.
By standard results, there exist positive constantsC1, de-

pending only ond, and ǫ0 such that for everyǫ ≤ ǫ0, there
exist N ≥ C1(

√
ǫ)1−d pointsx1, . . . , xN in Sd−1 such that

d(xi, xj) > 2
√
2
√
ǫ if i 6= j. From now on, we assume that

ǫ ≤ ǫ0. We then consider a mappingΦ : {0, 1}N → Kd(B),
which is defined, forw = (w1, . . . , wN ) ∈ {0, 1}N , by

Φ(w) := B ∩D1(w1) ∩D2(w2) ∩ · · · ∩DN (wN ),

where fori = 1, . . . , N ,

Di(0) := H+
xi

andDi(1) := B.

It must be clear that the Hausdorff distance betweenΦ(w)
and Φ(w′) is not less thanǫ (in fact, it is exactly equal to

ǫ) if w 6= w′. Thus,
{

Φ(w) : w ∈ {0, 1}N
}

is an ǫ-packing

set forKd(B) under the Hausdorff metric. However, it isnot
an ǫ-packing set under theLp metric. Indeed, theLp distance
betweenΦ(w) and Φ(w′) is not larger thanǫ for all pairs
(w,w′), w 6= w′. TheLp distance betweenΦ(w) andΦ(w′)
depends on the Hamming distanceρ(w,w′) betweenw and

w′ defined asρ(w,w′) :=
∑

i {wi 6= w′
i}. We make the claim

that

δp (Φ(w),Φ(w
′)) ≥ C2ǫ

(√
ǫ
)(d−1)/p

(ρ(w,w′))
1/p

, (33)

whereC2 depends only ond andp. The claim would be proved
later. Assuming it is true, we can apply Varshamov-Gilbert’s
lemma (see for example [25, Lemma 4.7]). This lemma asserts
the existence of a subsetW of {0, 1}N with |W | ≥ exp(N/8)
such thatρ(w,w′) ≥ N/4 for all w,w′ ∈ W with w 6= w′.
BecauseN ≥ C1(

√
ǫ)1−d, we get from (33) that for all

w,w′ ∈ W with w 6= w′, we have

δp (Φ(w),Φ(w
′)) ≥ C3ǫ whereC3 := C2

(

C1

4

)1/p

.

Takingη := C3ǫ, we have obtained, for eachη ≤ η0 := C3ǫ0,
an η-packing subset ofKd(B) with sizeM , where

logM ≥ N/8 ≥ C1

8

(

1√
ǫ

)d−1

= C4

(

1√
η

)d−1

.

The constantC4 only depends ond andp thereby proving (32).
It remains to prove the claim (33). Fix a pointx ∈ Sd−1

andǫ ∈ (0, 1). We first observe that it is enough to prove that

(δp(Ax, Tx))
p ≥ C5ǫ

p
(√

ǫ
)d−1

, (34)

for a constantC5 depending on justd andp, whereAx andTx

are as defined in the beginning of the proof. This is because
of the fact that for everyw,w′ ∈ W with w 6= w′, we can
write

(δp (Φ(w),Φ(w
′)))

p
=
∑

i∈I

(δp(Axi
, Txi

))p , (35)

where I := {1 ≤ i ≤ N : wi 6= w′
i}. The equality (35) is a

consequence of the fact that the pointsx1, . . . , xN are chosen
so thatTx1

, . . . , TxN
are disjoint.

We shall now prove the inequality (34) which will complete
the proof. Letu0 denote the point inAx that is closest to the
origin. Also letu1 be a point inAx ∩Sd−1. Let α denote the
angle betweenu0 andu1. Clearly,α does not depend on the
choice ofu1 and cosα = 1 − ǫ. Now let u be a fixed unit
vector and letθ be the angle between the vectorsu andu0.
By elementary geometry, we deduce that

hTx
(u)− hAx

(u) =

{

1− cos (α− θ) if 0 ≤ θ ≤ α,

0 otherwise.

Because the difference of support functions only depends on
the angleθ, we can write, for a constantC6 depending only
on d, that

(δp(Ax, Tx))
p
= C6

∫ α

0

(1− cos(α− θ))
p
(sin θ)

d−2
dθ

Now supposeβ is such thatcos(α−β) = 1− ǫ/2. Then from
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above, we get that

(δp(Ax, Tx))
p ≥ C6

∫ β

0

(1− cos(α− θ))
p
(sin θ)

d−2
dθ

≥ C6

( ǫ

2

)p
∫ β

0

(sin θ)d−2 dθ

≥ C6

( ǫ

2

)p
∫ β

0

(sin θ)
d−2

cos θdθ

=
C6

d− 1

( ǫ

2

)p

(sinβ)
d−1

We shall show thatsinβ ≥ (
√
ǫ) /(2

√
2) which would

prove (34). Recall thatcosα = 1− ǫ. Thus

1− ǫ

2
= cos(α− β)

≤ cosα+ sinα sinβ

= 1− ǫ+
√

1− (1− ǫ)2 sinβ

≤ 1− ǫ+
√
2
√
ǫ sinβ,

which when rearranged would givesinβ ≥ (
√
ǫ) /(2

√
2). The

proof is complete.

VIII. C ONCLUSION

By a simple application of convexity, we proved an in-
equality relating the minimax risk in multiple hypothesis
testing problems tof -divergences of the probability measures
involved. This inequality is an extension of Fano’s inequality.
As another corollary, we obtained a sharp inequality between
total variation distance andf -divergences. We also indicated
how to control the quantityJf which appears in our lower
bounds. This leads to important global lower bounds for the
minimax risk. Two applications of our bounds are presented.
In the first application, we used the bound (20) to prove a new
lower bound (which turns to be rate-optimal) for the minimax
risk of estimating a convex body from noisy measurements of
the support function inn directions. In the second application,
we employed inequalities (10) and (15) to give a different
proof of a recent lower bound for covariance matrix estimation
due to Cai, Zhang and Zhou [15].
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