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Random walks describe diffusion processes, where movement at every time step is restricted to only
the neighbouring locations. We construct a quantum random walk algorithm, based on discretisation
of the Dirac evolution operator inspired by staggered lattice fermions. We use it to investigate the
spatial search problem, i.e. finding a marked vertex on a d-dimensional hypercubic lattice. The
restriction on movement hardly matters for d > 2, and scaling behaviour close to Grover’s optimal
algorithm (which has no restriction on movement) can be achieved. Using numerical simulations, we
optimise the proportionality constants of the scaling behaviour, and demonstrate the approach to
that for Grover’s algorithm (equivalent to the mean field theory or the d → ∞ limit). In particular,
the scaling behaviour for d = 3 is only about 25% higher than the optimal d → ∞ value.

PACS numbers: 03.67.Lx

I. SPATIAL SEARCH USING THE

DIRAC OPERATOR

The spatial search problem is to find a marked ob-
ject from a database spread over distinct locations. Its
characteristic is that one can proceed from any loca-
tion to only its neighbours, while inspecting the objects.
The problem is conventionally represented by a graph,
with the vertices denoting the locations of objects and
the edges labeling the connectivity of neighbours. In
this work, we study the specific case of searching for a
marked vertex on a d-dimensional hypercubic lattice with
N = Ld vertices.

The quantum algorithmic strategy for spatial search is
to construct a Hamiltonian evolution, where the kinetic
part of the Hamiltonian diffuses the amplitude distribu-
tion all over the lattice and the potential part of the
Hamiltonian attracts the amplitude distribution towards
the marked vertex [1]. The optimization criterion for the
algorithm is to concentrate the amplitude distribution to-
wards the marked vertex as quickly as possible. Grover
constructed the optimal global diffusion operator, but it
requires movement from any vertex to any other vertex
in just one step. That corresponds to a fully connected
graph, or equivalently the mean field theory limit. When
movements are restricted to be local (i.e. one can go from
a vertex to only its neighbours in one step), the search
algorithm slows down. It is then worthwhile to redesign
the search algorithm by understanding the extent of slow
down due to local movements, and how it depends on the
spatial arrangement of the database. That is the question
we address quantitatively in this article.

On a periodic lattice, spatial propagation modes are

characterized by their wave vectors ~k. Quantum diffu-
sion depends on the energy of these modes according to
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U(~k, t) = exp(−iE(~k)t). The lowest energy mode, ~k = 0,
corresponding to a uniform distribution, is an eigenstate
of the diffusion operator and does not propagate. The
slowest propagating modes are the ones with the small-

est nonzero |~k|. The commonly used diffusion opera-

tor is the Laplacian, with E(~k) ∝ |~k|2. The alternative
Dirac operator, available in a quantum setting, provides

a faster diffusion of the slowest modes with E(~k) ∝ |~k|.
Its quadratically faster spread makes it better suited to
spatial search algorithms [2, 3].
An automatic consequence of the Dirac operator is the

appearance of an internal degree of freedom correspond-
ing to spin, whereby the quantum state becomes a multi-
component spinor. These spinor components can guide
the diffusion process, and be interpreted as the states of
a coin [2, 3]. While this is the only possibility for the
continuum theory, another option is available for a lat-
tice theory, i.e. the staggered fermion formalism [4]. In
this approach, the spinor degrees of freedom are spread in
coordinate space over an elementary hypercube, instead
of being in an internal space. We follow it to construct
a quantum search algorithm on a hypercubic lattice, re-
ducing the total Hilbert space dimension by 2d and elim-
inating the coin toss instruction.

A. Bipartite Decomposition

The free particle Dirac Hamiltonian in d dimensions is

Hfree = −i~α · ~∇+ βm . (1)

On a hypercubic lattice, with the simplest discretization
of the gradient operator,

∇nf(~x) =
1

2
[f(~x+ n̂)− f(~x− n̂)] , (2)

and a convenient choice of basis, the anticommuting ma-
trices ~α, β are spin-diagonalized to location dependent
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signs:

ψ → Tψ, H → THT †, T = αxd

d α
xd−1

d−1 · · ·αx2

2 αx1

1 ,(3)

αn →
n−1
∏

j=1

(−1)xj , β →
d
∏

j=1

(−1)xjβ . (4)

With this choice, translational invariance holds in steps
of 2 (instead of 1), and the squared Hamiltonian,

H2
free = −~∇ · ~∇+m2 . (5)

has eigenvalues
∑

n sin
2(kn)+m

2 on a hypercubic lattice.
Inclusion of a mass term slows down the diffusion process,

but it also regulates the ~k = 0 mode. In the present
article, we set m = 0; in an accompanying article [5], we
investigate the advantage a nonzero mass offers when the
problem has an infrared divergence.
Even when the Hamiltonian H is local, the discrete

time evolution operator U = exp(−iHτ) may connect
arbitrarily separated vertices. To make U also local, we
split H in to block-diagonal Hermitian parts and then
exponentiate each part separately [6]. For a bipartite
lattice, partitioning of H in to two parts (which we label
“odd” and “even”) is sufficient for this purpose [7]:

Hfree = Ho +He . (6)

This partition is illustrated in Fig.1 for d = 1 and d = 2.
Each part contains all the vertices, but only half of the
links attached to each vertex. Each link is associated
with a term in Hfree providing propagation along it, and
appears in only one of the two parts. H thus gets divided
in to a set of non-overlapping blocks of size 2d× 2d (each
block corresponds to an elementary hypercube on the lat-
tice) that can be exactly exponentiated. The amplitude
distribution then evolves according to

ψ(~x; t) =W tψ(~x; 0) , W = UeUo = e−iHeτe−iHoτ . (7)
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FIG. 1: Bipartite decomposition of the hypercubic lattice in
to odd and even parts: (a) for d = 1, (b) for d = 2.

Each block of the unitary matrices Uo(e) mixes ampli-
tudes of vertices belonging to a single elementary hy-
percube, and the amplitude distribution spreads in time
because the two alternating matrices do not commute.
Note that W does not perform evolution according to
Hfree exactly. Instead, W = exp(−iHfreeτ) + O(τ2).
But the truncation is such that W is exactly unitary,
i.e. W = exp(−iH̃τ) for some H̃ .
We adopt the convention where the walk operator W

is real. For d = 1, we set

Ho|x〉 = − i

2

[

(−1)x|x+ (−1)x〉
]

, (8)

He|x〉 =
i

2

[

(−1)x|x− (−1)x〉
]

. (9)

The resultant Hamiltonian blocks are HB
o = −σ2/2, and

HB
e = σ2/2 when operating on the block with coordi-

nates flipped in sign. With (HB
o )2 = (HB

e )2 = 1
4I,

Uo(e) = cI − 2isHo(e) , |c|2 + |s|2 = 1 . (10)

where s = sin(τ/2) is a parameter that can be tuned.
These expressions can be rearranged to separate the

translationally invariant part of the walk from the loca-
tion dependent signs. Let the amplitude distribution in
a two spinor (or coin) component notation be

Ψ(X, t) ≡
(

ψ(2x, t)
ψ(2x− 1, t)

)

. (11)

Then the walk operator becomes

W = ŨC , C = UB
o =

(

c s
−s c

)

, (12)

Ũ |X〉 = c|X〉 − s
∑

±
(±σ±)|X ± 1〉 . (13)

The operator C = UB
o just mixes the components of Ψ

within the block. The first term of the operator Ũ is sta-
tionary, while the other moves the amplitude to neigh-
bouring blocks. The movement is accompanied by chi-
rality flip, a characteristic feature of the Dirac opera-
tor, because of the raising and lowering Pauli operators
σ± = (σ1 ± iσ2)/2.
In d dimensions, the above structure generalises to 2d×

2d Hamiltonian blocks that can be expressed in terms of
tensor products of Pauli matrices [8]. When operating
on hypercubes with coordinate labels {0, 1}⊗d,

HB
o = −1

2

d
∑

j=1

I⊗(d−j) ⊗ σ2 ⊗ σ
⊗(j−1)
3 , (14)

and HB
e = −HB

o when operating on a hypercube with
all coordinates flipped in sign. Note that Eq.(14) is the
sum of d terms, which mutually anticommute and whose
squares are proportional to identity. This is the charac-
teristic signature of the Dirac Hamiltonian, Eq.(1). The
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block-diagonal matrices satisfy H2
o = H2

e = d
4I, and ex-

ponentiate to

Uo(e) = cI − is
2√
d
Ho(e) , |c|2 + |s|2 = 1 . (15)

The parameter s = sin(
√
dτ/2) can be optimised, to

achieve the fastest diffusion across the lattice. Note that
the d-dimensional walk is not the tensor production of d
one-dimensional walks.
Again separating the degrees of freedom within each

local hypercube as ~x ≡ ~X⊗{0,-1}⊗d, the location depen-
dent signs can be rewritten as operators acting on the
spinor (or coin) degrees of freedom. The walk operator

takes the form: W = ŨC, C = UB
o and

Ũ | ~X〉 = c| ~X〉 (16)

− s√
d

∑

±

d
∑

j=1

(I⊗(j−1) ⊗ (±σ±)⊗ σ
⊗(d−j)
3 )| ~X ± ĵ〉 .

B. Search Algorithm

To search for a marked vertex, say the origin, we at-
tract the quantum random walk towards it by adding a
potential to the free Hamiltonian,

V =

{

βV0 δ~x,0 (gravitational) ,
V0 δ~x,0 (electromagnetic) .

(17)

Exponentiation of this potential produces a phase change
for the amplitude at the marked vertex. For the steep-
est attraction of the quantum random walk towards the
marked vertex, it is optimal to choose V0 so as to make
the corresponding evolution phase is maximally different
from 1, i.e. e−iV0τ = −1. The sign provided by β does
not matter in this case, and the evolution phase becomes
the binary oracle,

R = I − 2|~0〉〈~0| . (18)

The search algorithm alternates between diffusion and
oracle operators—a discrete version of Trotter’s formula
involving Ho, He and V—yielding the evolution

ψ(~x; t1, t2) = [W t1R]t2ψ(~x; 0, 0) . (19)

Here t2 is the number of search oracle queries, and t1 is
the number of walk steps between queries. Both should
be minimised to find the the quickest solution to the
search problem.
Since this algorithm iterates a unitary operator on the

initial state, it produces periodic results. As a function
of the number of iterations, the probability of being at
the marked vertex first increases, reaches a peak value
P after t2 search oracle queries, then decreases down to-
wards zero, and thereafter keeps on repeating this cycle.
Grover’s algorithm is designed to evolve the quantum

state in a two-dimensional Hilbert space (spanned by the
initial and marked states), and is able to reach P = 1.
That does not hold for spatial search, and the resultant
values of P are less than 1. The remedy is to augment
the algorithm by the amplitude amplification procedure
[9], to find the marked vertex with Θ(1) probability. The
complexity of the algorithm is then characterised by the
effective number of search oracle queries, t2/

√
P .

C. Complexity Bounds

Spatial search obeys two simple lower bounds. One
arises from the fact that while the marked vertex could
be anywhere on the lattice, one step of the local walk
can move from any vertex to only its nearest neighbours.
Since the marked vertex cannot be located without reach-
ing it, the worst case scenario on a hypercubic lattice re-
quires Ω(dL) steps. This bound is the strongest in one
dimension, where quantum search is unable to improve
on the O(N) classical search.
The other bound follows from the fact that spatial

search cannot outperform Grover’s optimal algorithm,
and so it must require Ω(

√
N) oracle queries. That is

independent of d, and stronger than the first bound for
d > 2. As a matter of fact, the first bound weakens with
increasing d, as the number of neighbours of a vertex in-
crease and steps required to go from one corner of the
lattice to another decrease. In analogy with mean field
theory behaviour of problems in statistical mechanics,
we can thus expect that in the d → ∞ limit the local-
ity restriction on the walk would become irrelevant and
the complexity of spatial search would approach that of
Grover’s algorithm. (Note that the maximum value of d
is log2N for finite N .) Our results in this work demon-

strate that not only is the Ω(
√
N) complexity scaling

achievable for d > 2, but one can get pretty close to the
asymptotic prefactor π/4 as well.
Combined together, the two bounds make the com-

plexity of spatial search Ω(dN1/d,
√
N). The two bounds

are of the same magnitude, Ω(
√
N), for the critical case

of d = 2. It is a familiar occurrence in statistical mechan-
ics of critical phenomena that interplay of different dy-
namical features produces logarithmic correction factors
in critical dimensions due to infrared divergences. The
same seems to be true for spatial search in d = 2, where
algorithms are slowed down by extra logarithmic factors
[2, 3, 10]. It is an open question to design algorithms,
perhaps using additional parameters, that suppress the
logarithmic factors as much as possible. We look at the
special d = 2 case in an accompanying article.
The way the lower bounds arise in spatial search also

illustrates an interplay of two distinct physical principles,
special relativity (or no faster than light signaling) and
unitarity. It is well-known that the two are compatible,
but just barely so, in the sense that physical theories
that are unitary but not relativistic or relativistic but
not unitary exist. In spatial search, locality of the quan-
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tum walk and the square-root speed up produced by the
Dirac equation (through change in the dispersion rela-
tion) follow from special relativity. On the other hand,
optimality of square-root speed up provided by Grover’s
algorithm is a consequence of unitarity [11, 12]. Why
these two distinct physical principles lead to the same
scaling constraint is not understood, and is a really in-
teresting question to explore. At present, however, we
have nothing more to add.
We point out that preparation of the unbiased initial

state for the search problem, i.e. the translationally in-
variant uniform superposition state |s〉 =∑x |~x〉/

√
N , is

not at all difficult using local directed walk steps. For
instance, one can start at the origin, step by step trans-
fer the amplitude to the next vertex along an axis, and
achieve an amplitude L−1/2 at all the vertices on the axis
after L steps. Repeating the procedure for each remain-
ing coordinate direction produces the state |s〉 after dL
steps in total. Clearly, this preparation does not add to
the complexity of the algorithm.

II. OPTIMISATION OF PARAMETERS

The fastest search amounts to finding the shortest uni-
tary evolution path between the initial state |s〉 and the

marked state |~0〉. This path is a geodesic arc on the uni-

tary sphere from |s〉 to |~0〉, and Grover’s optimal algo-
rithm strides along this path perfectly. In our algorithm,
Eq.(19), we have replaced Grover’s optimal diffusion op-
erator, G = 2|s〉〈s| − 1, by the walk operator W t1 . So to
optimise our algorithm, we need to tune the parameters
appearing in W t1 , i.e. s (or c) and t1, such that W t1R

approximates a rotation in the two-dimensional |s〉-|~0〉
subspace by the largest possible angle.
The operator G has |s〉 as an eigenstate with eigen-

value 1. All other states orthogonal to |s〉, in particular

the combination |s⊥〉 = (|s〉 −
√
N |~0〉)/

√
N − 1 in the

|s〉-|~0〉 subspace, are its eigenstates with eigenvalue −1.
The walk operator W = UeUo also has |s〉 as an eigen-
state with eigenvalue 1. But its other eigenvalues are
spread around the unit circle, and evolution under W t1R
does not remain fully confined to the |s〉-|~0〉 subspace. If
the outward diffusion is not controlled, the probability of
remaining in the |s〉-|~0〉 subspace would decay exponen-
tially with the number of iterations. To reach the marked
state with a constant probability, therefore, parameters
must be tuned so that part of the outward diffusion sub-
sequently returns to the |s〉-|~0〉 subspace.

A. Analytical Criteria

The optimisation condition that makes W t1 as close
an approximation to G as possible can be formulated in
several different ways. Though they all lead to the same
result, describing them separately is instructive.

(1) Maximise the overlap of W t1 and G, i.e.

Tr(W t1G) = Tr(2|s〉〈s|−W t1) = 2−
∑

i

〈i|W t1 |i〉 . (20)

〈i|W t1 |i〉 is the amplitude for the random walk to return
to the starting state |i〉 after t1 time steps. Since W is
translationally invariant along each coordinate direction
in steps of 2, we need to evaluate 〈i|W t1 |i〉 only for states
|i〉 in an elementary hypercube. Now, any closed path
on a hypercubic lattice takes an even number of steps
along each coordinate direction, and all location depen-
dent propagation signs (cf. Eq.(4)) get squared to 1 in
the process. As a result, 〈i|W t1 |i〉 is independent of |i〉,
and the optimisation condition becomes minimisation of
A(t1) ≡ 〈~0|W t1 |~0〉.
(2) Make |s⊥〉 approximate an eigenvector ofW t1 , with

an eigenvalue approaching −1, i.e. minimise

〈s⊥|W t1 |s⊥〉 =
1

N − 1

(

− 1 +NA(t1)
)

, (21)

which happens to be the same condition as above. In
addition, unitarity of the evolution operator implies

|〈s⊥|W t1 |s⊥〉| ≤ 1 =⇒ − 1 +
2

N
≤ A(t1) ≤ 1 . (22)

(3) Maximise the rotation provided by the operator

W t1R along the |s〉-|~0〉 subspace. This rotation is given
by the projection

Projs,s⊥ [W
t1R] =

(

〈s|W t1R|s〉 〈s|W t1R|s⊥〉
〈s⊥|W t1R|s〉 〈s⊥|W t1R|s⊥〉

)

=

(

1− 2
N

2
N

√
N − 1

2√
N−1

(A(t1)− 1
N ) (1− 2

N )1−NA(t1)
N−1

)

(23)

=

(

1 0
0 1−NA(t1)

N−1

)(

1− 2
N

2
N

√
N − 1

− 2
N

√
N − 1 1− 2

N

)

.

The factor on the right above is precisely the rotation
matrix produced by the operator GR in Grover’s algo-
rithm, i.e. rotation by an angle 2 sin−1(1/

√
N) in the

|s〉-|~0〉 subspace. So the total projection can be viewed
as first applying an iteration of Grover’s algorithm to the
state, and then shrinking the |s⊥〉 component by a fac-
tor (1−NA(t1))/(N − 1). The shrinking disappears and
the projection tends to an exact orthogonal transforma-
tion, as A(t1) approaches its lower bound (2−N)/N . It
also follows that when the shrinking is controlled, cutting
down outward diffusion from the |s〉-|~0〉 subspace, the al-
gorithm will have the same O(

√
N) scaling as in case of

Grover’s algorithm.
The minimisation condition for A(t1) is obtained above

only using translational invariance of the walk operator
W , together with W |s〉 = |s〉 and 〈s|W = 〈s|. It is easy
to perform this optimisation numerically, as a function
of the parameters s and t1, and our results are described
later. Before that, an understanding of the eigenspec-
trum of W gives us some idea regarding what to expect.
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Since H2
o = H2

e = d
4I, eigenvalues of Ho and He

are ±
√
d/2. Moreover, Ho and He are traceless, so

that half the eigenvalues are
√
d/2 and the other half

−
√
d/2. Consequently, eigenvalues of Uo and Ue are

c± is = exp(±i
√
dτ/2), equally divided among complex

conjugate pairs. Furthermore, Ho(e) and Uo(e) have the
same eigenvectors.
Since Uo and Ue do not commute, we do not have a

general solution for the eigenspectrum of W . Still it is
straightforward to work it out in the continuum time
limit, τ → 0. Hfree is diagonalised by a Fourier transform:

H2
free|~x〉 = −1

4

d
∑

n=1

[

|~x+ 2n̂〉 − 2|~x〉+ |~x− 2n̂〉
]

−→
d
∑

n=1

sin2(kn)|~k〉 , (24)

with a uniform distribution in the Brillouin zone. Up to
O(τ2), therefore, the eigenvalues of W (≈ e−iHfreeτ ) are

exp(±iτ
√

∑

j sin
2 kj), with the eigenphases in the inter-

val [−τ
√
d, τ

√
d]. The average value of H2

free is d/2, and

the corresponding eigenvalues of W are exp(±iτ
√

d/2).
We find that this average value plays an important role
in determination of the optimal parameters.

B. Numerical Optimisation

The considerations of the previous subsection focused
on what happens during a single iteration of the algo-
rithm. Over many iterations, there is outward diffusion
of the amplitude distribution from the |s〉-|~0〉 subspace,
and subsequent partial return. That plays an important
role in the overall success of the algorithm, but we have
not been able to estimate it analytically. To study the
performance of the whole algorithm, therefore, we nu-
merically tune the parameters s and t1 to (a) maximise
the probability of reaching the marked vertex, and (b)
minimise the number of search oracle queries required to
reach that stage. The ensuing results of our optimisation
of P , t2 and A(t1) are described in what follows.
We first looked at how the probability distribution

evolves as a function of time during the search process.
To illustrate our results, we take s = c = 1/

√
2 that

corresponds to maximal mixing between even and odd
vertices, and analyse the evolution as a function of t1
and t2 on a 323 lattice. As displayed in Fig.2, the proba-
bility at the marked vertex undergoes a cyclic evolution
pattern as a function of time t2. We observe that the
evolution is essentially sinusoidal for t1 = 1, 2, 3, and
persists for more than 30 cycles without any visible devi-
ation. This behaviour implies that a constant fraction of
the quantum state remains in the |s〉-|~0〉 subspace, and
the operatorW t1R rotates it at a uniform rate within the
subspace, fully matching the exact solution of Grover’s

algorithm. The difference among t1 = 1, 2, 3 is that the
cycle time and the peak probability vary, meaning that
the fraction of the quantum state present in the |s〉-|~0〉
subspace depends on t1.

For t1 > 3, we find that the evolution rapidly loses
its sinusoidal nature and the peak probability plummets.
The change in the pattern is so drastic that the algorithm
no longer performs a reasonable search. This behaviour
implies that most of the quantum state has moved out
of the |s〉-|~0〉 subspace and only a negligible component
is left behind. An appropriate choice of t1 is thus crucial
for constructing a successful search algorithm.

We also show in Fig.3 what the probability distribu-
tion looks like at the instance when the probability at
the marked vertex attains its peak value. We note that
the distribution is strongly peaked around the marked
vertex in an essentially uniform background. The peak
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FIG. 2: Time evolution of the probability at the marked ver-
tex for the spatial search problem on a 323 lattice. s = 1/

√
2

and t1 increases from 1 (top) to 4 (bottom).
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FIG. 3: Probability distribution for the spatial search prob-
lem on a 323 lattice, at the instance when the probability
at the marked vertex (16, 16, 16) attains its peak value. The
displayed results are for the z = 16 slice. s = 1/

√
2 and t1

increases from 1 (top) to 4 (bottom).

is sharper when the peak probability is larger, and it al-
most disappears for t1 > 3. This pattern suggests that
the part of the quantum state that diffuses outside the
|s〉-|~0〉 subspace is almost featureless.

Combining our observations in this particular example,
we find that the best results—the shortest period, the
largest peak probability and the sharpest peak—clearly
correspond to t1 = 3. The results improve as t1 increases
from 1 to 3, and rapidly deteriorate thereafter. The im-
portant fact that all optimal features appear simultane-
ously at t1 = 3 simplifies tuning of the parameters.

Next we scanned through values of s, for different val-
ues of t1 and in different dimensions, to determine the
optimal values at which the peak probability P at the
marked vertex is the largest and the time t2 required to
reach it is the smallest. A typical situation, with t1 = 3
on a 323 lattice, is shown in Fig.4. We notice that con-
tinuous P has a smoother behaviour than discrete t2,
and maximisation of P and minimisation of t2 occur at
roughly the same value of s. So we simplify matters, and
select maximisation of P as our optimality condition.

A comparison of our scans, for t1 = 3 and different
number of dimensions, is presented in Fig.5. We find
that at fixed t1, the shape of the P vs. s curve is al-
most dimension independent, and the optimal value of s
is approximately the same for all dimensions. We also
observe that for fixed s, P roughly scales as 2−d. In the
staggered fermion implementation of the Dirac operator,
different vertices of an elementary hypercube correspond
to different degrees of freedom [4]. So our observation
suggests that to a large extent only the degree of free-
dom corresponding to the marked vertex evolves during
the search, while other degrees of freedom remain spec-
tators. Moreover, the feature that the maximum value
of P approaches 2−d with increasing d implies that the
efficiency of our algorithm increases with d.

All our quantitative results for optimal values of s are
collected in Table I. We note that the best performance
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FIG. 4: Optimisation of s for t1 = 3 on a 323 lattice.
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TABLE I: Results of optimal parameter determination for
different t1 and in different dimensions.

d L t1
Spatial Search Walk

s t2 P θ s A(t1)min θ

3 32

2 0.9507 59 0.0942 3.551 0.9258 −0.7143 3.346

3 0.7015 55 0.1001 3.299 0.6737 −0.7618 3.136

4 0.5363 55 0.1016 3.202 0.5194 −0.7748 3.089

8 0.2755 54 0.1027 3.158 0.2665 −0.7860 3.052

20 0.1114 54 0.1030 3.157 0.1074 −0.7890 3.044

4 16

2 0.9541 54 0.0528 3.583 0.9428 −0.7778 3.482

3 0.6986 54 0.0548 3.281 0.6827 −0.8190 3.188

4 0.5411 53 0.0553 3.234 0.5257 −0.8300 3.131

8 0.2771 52 0.0558 3.177 0.2694 −0.8395 3.086

20 0.1115 52 0.0559 3.160 0.1084 −0.8420 3.072

5 16

2 0.9500 150 0.0276 3.545 0.9535 −0.8182 3.577

3 0.6920 148 0.0284 3.242 0.6880 −0.8541 3.219

4 0.5376 147 0.0286 3.211 0.5292 −0.8636 3.155

8 0.2726 147 0.0288 3.124 0.2710 −0.8718 3.105

20 0.1108 147 0.0288 3.140 0.1092 −0.8739 3.095

6 8
3 0.6891 51 0.0145 3.225 0.6913 −0.8778 3.238

20 0.1106 51 0.0147 3.135 0.1094 −0.8951 3.101

7 8
3 0.6932 102 0.0073 3.250 0.6937 −0.8949 3.252

20 0.1097 102 0.0074 3.109 0.1098 −0.9102 3.112

parameters, P and t2, depend on d but hardly on t1 or
s. (With increasing t1, there is a slight increase in P and
a small decrease in t2, but that is a rather tiny improve-
ment.) More interestingly, we find a relation between the
optimal values of s and t1, in terms of the variable

θ =
√
2t1 sin

−1 s = t1τ
√

d/2 . (25)
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FIG. 5: Optimisation of s for t1 = 3 in different dimensions.
Lattice sizes L = 32, 16, 16, 8, 8 were used for d = 3, 4, 5, 6, 7
respectively.

Since sin−1 s describes the unitary rotation performed
by the single step operators Uo(e), and t1 is the number
of walk steps, θ is a measure of the unitary rotation per-
formed by the operatorW t1 . The corresponding operator
in Grover’s optimal algorithm, G, is a reflection providing
a phase change of π. We find that our optimalW t1 is also
close to a reflection, in a sense, with θ ≈ π. Unlike the
discrete ±1 eigenvalues of G though, eigenvalues of W t1

form a distribution. We don’t know this distribution in
general, but we know it in the limit τ → 0, as described
at the end of Subsection II.A. This limit corresponds to
small s and large t1, and Table I shows that θ indeed
gets close to π in this limit. To be precise, this normal-

isation of θ implies that the optimal W t1 ≡ e−iH̃τt1 is a
reflection operator for the “average eigenvalue” of the as-
sociated H̃2. Appearance of the average eigenvalue in the
normalisation indicates that all spatial modes contribute
to the search process with roughly equal strength.
Table I also lists our results for the variable A(t1) de-

fined in Subsection II.A, which characterises how close
W t1 is to G. We computed A(t1), by starting with unit
amplitude at the marked vertex, and then measuring
the amplitude at the marked vertex after t1 walk steps.
At the beginning of this Subsection we mentioned that
checking A(t1) is not as elaborate an optimisation test
as using the full search algorithm. Nevertheless, the re-
sults corroborate our optimisation of spatial search: the
minimum value of A(t1) is reasonably close to −1, and
occurs at approximately the same value of s (and hence
θ) that provides the optimal search (the mismatch de-
creases with increasing d). We also observe that A(t1)
gets closer to −1, suggesting that the algorithm becomes
more efficient, with increasing d as well as t1.
Given the strong correlation between the optimal val-

ues of s and t1, the computational cost of the algorithm
is minimised by choosing the smallest t1. For t1 = 1,
Eq.(25) does not have a solution with θ ≈ π, the optimal
value of s is very close to 1, and our algorithm does not
work well there. Then t1 = 2 is the choice that min-
imises the number of walk steps in the algorithm. Even
when the emphasis is on optimising P and t2, most of
the improvement can be obtained by going from t1 = 2
to t1 = 3, and we need not go beyond that.

III. SIMULATION RESULTS

We carried out numerical simulations of the quantum
spatial search problem, with a single marked vertex and
lattice dimension ranging from 3 to 9. The matrices Uo(e)

are real with our conventions, and that was convenient
for simulations. The optimal values of s-t1 pairs depend
a little on the lattice size and dimension. We are only
interested in the asymptotic behaviour of the algorithm,
however, and so we used the same parameter values for
all lattice sizes and dimensions: s = 0.9539 for t1 = 2,
s = 1/

√
2 for t1 = 3 and s = 0.5410 for t1 = 4.

To extract the scaling properties of the algorithm, we
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TABLE II: Fit parameters for peak probability P and search oracle queries t2/
√
N vs. L.

s t1 d L a1 b1 Error a2 b2 Error a2/
√
a1

0.9539 2

3 64,128,256,512 0.0911 0.0964 2.43×10−5 0.3237 0.1440 4.57×10−4 1.072

4 16,32,48,64 0.0522 0.0100 3.02×10−5 0.2167 −0.0832 1.05×10−3 0.948

5 12,16,24,32 0.0275 0.0009 1.70×10−6 0.1486 −0.0243 2.39×10−4 0.896

6 12,14,16,18 0.0141 0.0001 2.31×10−7 0.1043 −0.0208 1.78×10−4 0.878

7 6,8,10 0.0072 −0.0004 1.40×10−6 0.0757 −0.0338 2.47×10−4 0.892

8 6,8 0.0036 — 3.50×10−6 0.0509 — 7.23×10−5 0.848

9 6 0.0018 — — 0.0356 — — 0.839

1/
√
2 3

3 64,128,256,512 0.0968 0.0920 2.73×10−6 0.3141 −0.0306 1.23×10−3 1.010

4 16,32,48,64 0.0542 0.0076 1.46×10−5 0.2097 0.0151 6.71×10−4 0.901

5 12,16,24,32 0.0283 0.0010 4.66×10−6 0.1470 −0.0300 2.12×10−4 0.874

6 12,14,16,18 0.0145 0.0001 5.79×10−7 0.1035 −0.0269 1.88×10−4 0.860

7 6,8,10 0.0074 −0.0003 1.46×10−6 0.0750 −0.0296 3.39×10−4 0.872

8 6,8 0.0037 — 3.00×10−6 0.0498 — 4.55×10−5 0.819

9 6 0.0019 — — 0.0353 — — 0.810

0.5410 4

3 64,128,256,512 0.0984 0.0936 1.84×10−5 0.3123 −0.1239 8.46×10−4 0.996

4 16,32,48,64 0.0548 0.0087 2.24×10−5 0.2103 −0.0500 3.57×10−4 0.898

5 12,16,24,32 0.0285 0.0013 8.05×10−6 0.1455 −0.0142 2.25×10−4 0.862

6 12,14,16,18 0.0146 0.0002 7.67×10−7 0.1015 0.0043 6.28×10−5 0.840

7 6,8,10 0.0074 −0.0003 2.86×10−6 0.0733 −0.0194 2.01×10−4 0.852

8 6,8 0.0037 — 4.50×10−6 0.0505 — 4.39×10−4 0.830

9 6 0.0019 — — 0.0353 — — 0.810

studied behaviour of P and t2, as a function of L and
d. We found that the finite size effects in our data, as
L→ ∞ at fixed d, are well described by series in inverse
powers of L. In Figs.6-7, we show some of our results,
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FIG. 6: The peak probability at the marked vertex as a func-
tion of database size (ranging from 28 to 227) in different di-
mensions. The points are the data from the simulations with
t1 = 3, and the curves are the fits P = a1 + (b1/L).

with the fitting functions:

P = a1 +
b1
L
,

t2√
N

= a2 +
b2
L
. (26)

All the fit parameters are listed in Table II, where error
refers to the r.m.s. deviation of the data from the fit. We
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FIG. 7: The number of search oracle queries as a function of
database size (ranging from 28 to 227) in different dimensions.
The points are the data from the simulations with t1 = 3, and
the curves are the fits (t2/

√
N) = a2 + (b2/L).
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do not have sufficient data for d = 8 and d = 9, to make
accurate fits or to see the asymptotic behaviour. Our
analysis, therefore, relies on the patterns seen for d = 3
to d = 7, while we use d = 8 and d = 9 values only for
consistency checks.

We observe the following features:
(1) There is not much difference among the a1 and a2
values for different optimised s-t1 pairs. This confirms
our earlier inference that implementing our algorithm for
t1 = 2 minimises the running cost.
(2) P approaches a constant as L→ ∞, with a1 decreas-
ing approximately as 2−d with increasing d. As men-
tioned before, this is a consequence of the fact that in
the staggered fermion implementation of the Dirac op-
erator, only the degree of freedom corresponding to the
location of the marked vertex on the elementary hyper-
cube participates in the search process. Since the number
of vertices in an elementary hypercube is 2d, P is upper
bounded by 2−d. Our algorithm achieves that bound up
to a constant multiple close to 1.
(3) b1 decreases towards zero with increasing d, which
is also true for |b2| to a large extent. Thus the small-
est d = 3 has the largest finite size corrections to the
asymptotic L→ ∞ behaviour. This suggests that as the
number of neighbours of a vertex increase, the finite size
of the lattice becomes less and less relevant.
(4) t2 is proportional to

√
N as L → ∞, with a2 de-

creasing approximately as 2−d/2 with increasing d. Thus
t2 scales with the database size as (L/2)d/2 =

√

N/2d.
This is in agreement with the fact that, with only one
degree of freedom per elementary hypercube participat-
ing in the search process, the effective number of vertices
being searched is N/2d.

(5) In the combination t2/
√
P , describing the effective

number of oracle queries for our algorithm, the factors
of 2d arising from the number of vertices in an elemen-
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FIG. 8: Behaviour of the asymptotic fit parameters as a func-
tion of dimension. The data points are from Table II, with
t1 = 3, and the curves are the fits described in Eqs.(27,28).

tary hypercube fully cancel. That makes t2/
√
P scale

as
√
N , and a2/

√
a1 describes the complexity scaling of

our algorithm. As listed in the last column of Table II,
a2/

√
a1 shows a gradual decrease with increasing d, and

our results are just above the corresponding value π/4 for
Grover’s optimal algorithm. More explicitly, our result
for d = 3 is about 25% above π/4, decreasing to about
10% above π/4 for d = 7. These values imply that our
algorithm improves in efficiency with increasing d, and
is not too far from the optimal behaviour even for the
smallest dimension d = 3.
To analyse the dimension dependence of our algorithm

in more detail, we fit the values in Table II to the func-
tional forms,

log2 a1 = c1 + d1d , log2 a2 = c2 + d2d , (27)

a2√
a1

= c3 +
d3
d
. (28)

The results for t1 = 3 are displayed in Fig.8, showing
that the fits work reasonably well.
The fit parameters for the three different optimised s-

t1 pairs are listed in Table III. They support our earlier
scaling observations: d1 close to −1 means that P scales
roughly as 2−d, and d2 close to −0.5 means that t2 scales
roughly as

√

N/2d. Interpreting Grover’s algorithm as
the d → ∞ limit of the spatial search algorithm, we ex-
pect c3 to be close to π/4. It turns out to be somewhat
smaller, but is not very accurately determined due to siz-
able correction from d3 for the values of d that we have.
We believe that simulations for larger lattice sizes and
higher dimensions can remedy this problem.
To look at our data in a different manner, we analyse

the scaling behaviour of t2/
√
NP as a function of the
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FIG. 9: t2/
√
NP as a function of the database size for differ-

ent lattice sizes. The points are the data for t1 = 3, and the
curves are the fits (t2/

√
NP ) = al+(bl/d). Also shown is the

limiting value corresponding to Grover’s optimal algorithm.
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TABLE III: Fit parameters for log2 a1, log2 a2 and a2/
√
a1 vs. d.

s t1 Fitted d c1 d1 Error c2 d2 Error c3 d3 Error

0.9539 2
3,4,5,6,7,8

−0.553 −0.938 4.77×10−2 −0.085 −0.526 2.53×10−2 0.721 0.995 1.71×10−2

1/
√
2 3 −0.458 −0.947 4.48×10−2 −0.138 −0.521 2.57×10−2 0.729 0.791 1.63×10−2

0.5410 4 −0.421 −0.951 3.78×10−2 −0.151 −0.521 2.09×10−2 0.725 0.761 1.32×10−2

database size. In Fig.9, we plot a subset of the data, il-
lustrating how t2/

√
NP behaves for fixed lattice size L

when the database size is changed by changing d. The ap-
proach to the asymptotic behaviour is particularly clear
in this form, with t2/

√
NP decreasing towards π/4 as the

database size increases. It is also obvious that, for fixed
N , our algorithm improves in efficiency with decreasing
L (or equivalently with increasing d). This is a conse-
quence of the increase in the number of neighbours of
a vertex with increasing d. An important implication is
that, given a database of size N , it is best to implement
the algorithm using the smallest L (and hence the largest
d) available. For our staggered fermion implementation
of the Dirac operator, L has to be even, and the small-
est L possible is 4. Because of small values of d that we
have worked with, and discrete nature of t2, our data for
L = 4 do not show smooth asymptotic behaviour. We
therefore omitted L = 4 from our analysis, and our best
results are for L = 6.

We can fit the data reasonably well as

t2√
NP

= al +
bl
d
. (29)

The fit parameters for the three different optimised s-t1
pairs are listed in Table IV. We note that al is close to
π/4 when data for d > 6 are available, but it cannot be
accurately determined using data for small d only due to
sizable corrections from bl.

TABLE IV: Fit parameters for t2/
√
NP vs. d at fixed L.

s t1 L Fitted d al bl Error

0.9539 2

6 5,6,7,8,9 0.766 0.551 1.06×10−2

8 4,5,6,7,8 0.805 0.293 5.31×10−4

16 3,4,5,6 0.663 1.132 1.73×10−2

32 3,4,5 0.625 1.304 5.77×10−3

1/
√
2 3

6 4,5,6,7,8,9 0.819 0.006 1.28×10−2

8 4,5,6,7,8 0.803 0.234 3.28×10−3

16 3,4,5,6 0.773 0.471 6.46×10−3

32 3,4,5 0.724 0.705 3.23×10−3

0.5410 4

6 4,5,6,7,8,9 0.837 −0.092 1.35×10−2

8 4,5,6,7,8 0.791 0.272 3.79×10−3

16 3,4,5,6 0.767 0.450 1.29×10−3

32 3,4,5 0.711 0.726 1.13×10−3

IV. RESULTS FOR MULTIPLE

MARKED VERTICES

We also carried out a few simulations of spatial search
with more than one marked vertex. The change from
the single marked vertex algorithm is that the search or-
acle now flips the sign of amplitudes at several distinct
vertices, say M . To see clear patterns in the results, we
needed to keep the marked vertices well separated and
avoid interference effects.
With the staggered fermion implementation of the

Dirac operator, it matters whether the marked vertices
belong to the same corner of the elementary hypercube
or to different corners. So we considered various hyper-
cube locations for the marked vertices. In Table V, we
compare our illustrative results for two and three marked
vertices with those for a single marked vertex. The val-
ues for peak probability P and corresponding time t2
were obtained with s = 1/

√
2 and t1 = 3 on a 643 lattice.

When the marked vertices belong to the same corner of
the elementary hypercube (e.g. (0,32,32) and (32,32,32)),
they involve the same degree of freedom. In that case,
we observe that P decreases by a factor of M and t2 de-
creases by a factor of

√
M . On the other hand, when

the marked vertices belong to different corners of the ele-
mentary hypercube (e.g. (0,32,33) and (32,32,32)), they
involve different degrees of freedom. In that case, we
find that P and t2 are more or less the same as for the
single marked vertex case. This pattern is also followed
when some marked vertices are at the same corner of the
elementary hypercube and some at different corners.
We can infer the following equipartition rule from these

observations. A fixed peak probability (upper bounded
by 2−d) is available for each corner degree of freedom
of the elementary hypercube. Multiple marked vertices
corresponding to the same degree of freedom share this
peak probability equally, while different degrees of free-
dom evolve independently of each other. Apart from this
caveat, the dependence of t2 on M for our spatial search
algorithm is the same as in case of Grover’s algorithm,
i.e. proportional to

√

N/M .

V. SUMMARY

We have formulated the spatial search problem us-
ing staggered fermion discretisation of the Dirac oper-
ator on a hypercubic lattice in arbitrary dimension. Our
search strategy, Eq.(19), mimics that of Grover’s algo-
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TABLE V: Spatial search results for multiple marked vertices in d = 3.

s t1 M Marked vertices P t2

1/
√
2 3

1 (32,32,32) 0.09829 161

2
(0,32,32), (32,32,32) 0.04919, 0.04919 112, 112

(0,32,33), (32,32,32) 0.09868, 0.09790 161, 161

3
(0,0,0), (16,16,16), (32,32,32) 0.03530, 0.03264, 0.03082 94, 92, 92

(0,0,1), (16,16,16), (32,32,32) 0.09380, 0.05590, 0.04507 161, 117, 109

(0,0,1), (16,16,16), (33,32,32) 0.09298, 0.09838, 0.10347 157, 161, 162

rithm. The locality restriction on the walk operator be-
comes less and less relevant as the dimensionality of the
space increases, and we expect to reach the optimal scal-
ing behaviour of Grover’s algorithm as d→ ∞.
We have verified our theoretical expectations by nu-

merical simulations of the algorithm for d = 3 to d = 9.
We clearly demonstrate the approach to the d→ ∞ limit,
and find that even for d = 3 our algorithm is only 25%
less efficient. From computational cost point of view, for

a fixed database size N , our best parameters are t1 = 2
and the largest d available. With the staggered fermion
implementation, our algorithm works in total Hilbert
space dimension N . That is a big reduction from the
total Hilbert dimension 2dN required by the algorithms
that use coin or internal degrees of freedom (for the best
d = Θ(logN), 2d = O(N) is substantial), and makes our
exercise worthwhile.
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