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Abstract

The Dirac-Morse problem are investigated within the framework of an approximation to the term

proportional to 1/r2 in the view of the position-dependent mass formalism. The energy eigenval-

ues and corresponding wave functions are obtained by using the parametric generalization of the

Nikiforov-Uvarov method for any κ-value. It is also studied the approximate energy eigenvalues,

and corresponding wave functions in the case of the constant-mass for pseudospin, and spin cases,

respectively.
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The investigation of the solutions for quantum mechanical systems having certain poten-

tials in the case of position-dependent mass (PDM) [1, 2] has been received great attentions.

Many authors have studied the solutions of different potentials for spatially-dependent mass,

such as hypergeometric type potentials [3], Coulomb potential [4], PT -symmetric kink-like,

and inversely linear plus linear potentials [5]. It is well known that the theory based on

the effective-mass Schrödinger equation is a useful ground for investigation of some physical

systems, such as semiconductor heterostructures [6], the impurities in crystals [7-9], and

electric properties of quantum wells, and quantum dots [10]. In the present work, we tend

to solve the Dirac-Morse problem within the PDM formalism.

The pseudospin symmetry is an interesting result appearing in Dirac equation of a particle

moving in an external scalar, and vector potentials in the case of it when the sum of the po-

tentials is nearly zero. It was observed that the single particle states have a quasidegeneracy

labeled with the quantum numbers ℓ̃, and s̃, which are called the pseudo-orbital angular mo-

mentum, and pseudospin angular momentum quantum numbers, respectively [11-16]. The

concept of pseudospin symmetry has received great attentions in nuclear theory because of

being a ground to investigate deformation, and superdeformation in nuclei [17, 18], and to

build an effective shell-model coupling scheme [19, 20]. The symmetry appears in that case,

when the magnitude of scalar potential is nearly equal to the magnitude of vector potential

with opposite sign [14, 21-25] and the Dirac equation has the pseudospin symmetry, when

the sum of the vector, and scalar potentials is a constant, i.e., Σ(r) = Vv(r)+Vs(r) = const.

or dΣ(r)/dr = 0 [16]. The spin symmetry is another important symmetry occurring in Dirac

theory in the presence of external scalar, and vector potentials. The spin symmetry appears

in the Dirac equation, when the difference of scalar, and vector potentials is a constant, i.e.,

∆(r) = Vv(r)− Vs(r) = const. [14, 16].

Recently, the pseudospin and/or spin symmetry have been studied by many authors for

some potentials, such as Morse potential [26-28], Woods-Saxon potential [29], Coulomb [30],

and harmonic potentials [31-33], Eckart potential [34-36], Pöschl-Teller potential[37, 38],

Hulthén potential [39], and Kratzer potential [40]. In Ref. [41], the bound-state solutions

of Dirac equation are studied for generalized Hulthén potential with spin-orbit quantum

number κ in the position-dependent mass background. In this letter, we tend to show that

the new scheme of the Nikiforov-Uvarov (NU) method could be used to find the energy

spectra, and the corresponding eigenspinors within the framework of an approximation to
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the term proportional to 1/r2 for arbitray spin-orbit quantum number κ, i.e. κ 6= 0, when

the mass depends on position. The NU method is a powerful tool to solve of a second order

differential equation by turning it into a hypergeometric type equation [42].

Dirac equation for a spin-1
2
particle with mass m moving in scalar Vs(r), and vector

potential Vv(r) can be written as (in h̄ = c = 1 unit)

[α .P+ β(m+ Vs(r))] Ψnκ(r) = [E − Vv(r)] Ψnκ(r) . (1)

where E is the relativistic energy of the particle, P is three-momentum, α and β are 4× 4

Dirac matrices, which have the forms of α =

(

0 σ

σ 0

)

and β =

(

0 I

−I 0

)

, respectively, [43].

Here, σ is a three-vector whose components are Pauli matrices and I denotes the 2× 2 unit

matrix. J denotes the total angular momentum , and K̂ = −β(σ.L + 1) corresponds to the

spin-orbit operator of the Dirac particle in a spherically symmetric potential, where L is

the orbital angular momentum operator of the particle. The eigenvalues of the spin-orbit

operator K̂ are given as κ = ±(j+1/2), where κ = −(j+1/2) < 0 correspond to the aligned

spin j = ℓ+ 1/2, and κ = (j + 1/2) > 0 correspond to the unaligned spin j = ℓ− 1/2. The

total angular momentum quantum number of the particle is described as j = ℓ̃ + s̃ ,where

ℓ̃ = ℓ + 1 is the pseudo-orbital angular momentum quantum number, and s̃ = 1/2 is the

pseudospin angular momentum quantum number. For a given κ = ±1,±2, . . ., the relation

between the spin-orbit quantum number κ , and ”two” orbital angular momentum quantum

numbers are given by κ(κ + 1) = ℓ(ℓ+ 1), and κ(κ− 1) = ℓ̃(ℓ̃+ 1).

The Dirac spinor in spherically symmetric potential can be written in terms of upper and

lower components as

Ψnκ(r) =
1

r

(

χnκ (r)Y
ℓ
jm(θ, φ)

iφnκ (r)Y
ℓ̃
jm(θ, φ)

)

, (2)

where Y ℓ
jm(θ, φ), and Y ℓ̃

jm(θ, φ) are the spherical harmonics, and χnκ (r)/r, and φnκ (r)/r are

radial part of the upper and lower components. Substituting Eq. (2) into Eq. (1) enable us

to write the Dirac equation as a set of two couple differential equations in terms of χnκ (r)

and φnκ (r). By eliminating χnκ (r) or φnκ (r) in these coupled equations, we obtain

{ d2

dr2
− κ(κ + 1)

r2
+

1

M∆(r)

(dm(r)

dr
− d∆(r)

dr

)

(
d

dr
+

κ

r
)
}

χnκ(r) = M∆(r)MΣ(r)χnκ(r) ,(3)
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{ d2

dr2
− κ(κ− 1)

r2
− 1

MΣ(r)

(dm(r)

dr
+

dΣ(r)

dr

)

(
d

dr
− κ

r
)
}

φnκ(r) = M∆(r)MΣ(r)φnκ(r) ,(4)

where M∆(r) = m + Enκ − ∆(r) , MΣ(r) = m − Enκ + Σ(r), and ∆(r) = Vv (r) − Vs (r),

Σ(r) = Vv (r) + Vs (r).

In the NU-method, the Schrödinger equation is transformed by using an appropriate

coordinate transformation

σ2(s)Ψ′′(s) + σ(s)τ̃ (s)Ψ′(s) + σ̃(s)Ψ(s) = 0 , (5)

where σ(s), σ̃(s) are polynomials, at most second degree, and τ̃(s) is a first degree polyno-

mial. The polynomial π(s), and the parameter k are required in the method

π(s) =
1

2
[σ′(s)− τ̃(s)]±

√

1

4
[σ′(s)− τ̃ (s)]2 − σ̃(s) + kσ(s), (6)

λ = k + π′(s), (7)

where λ is a constant. The function under the square root in the polynomial in π(s) in

Eq. (6) must be square of a polynomial in order that π(s) be a first degree polynomial.

Replacing k into Eq. (6), we define

τ(s) = τ̃ (s) + 2π(s). (8)

where the derivative of τ(s) should be negative [42]. Eq. (5) has a particular solution with

degree n, if λ in Eq. (7) satisfies

λ = λn = −nτ ′ − [n(n− 1)σ′′]

2
, n = 0, 1, 2, . . . (9)

To obtain the solution of Eq. (5) it is assumed that the solution is a product of two

independent parts as Ψ(s) = φ(s) y(s), where y(s) can be written as

yn(s) ∼
1

ρ(s)

dn

dsn
[σn(s) ρ(s)] , (10)

where the function ρ(s) is the weight function, and should satisfy the condition

[σ(s) ρ(s)]′ = τ(s) ρ(s) , (11)

and the other factor is defined as

1

φ(s)

dφ(s)

ds
=

π(s)

σ(s)
. (12)
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In order to clarify the parametric generalization of the NU method, let us take the following

general form of a Schrödinger-like equation written for any potential,
{

d2

ds2
+

α1 − α2s

s(1− α3s)

d

ds
+

−ξ1s
2 + ξ2s− ξ3

[s(1− α3s)]2

}

Ψ(s) = 0. (13)

When Eq. (13) is compared with Eq. (5), we obtain

τ̃ (s) = α1 − α2s ; σ(s) = s(1− α3s) ; σ̃(s) = −ξ1s
2 + ξ2s− ξ3 . (14)

Substituting these into Eq. (6)

π(s) = α4 + α5s±
√

(α6 − kα3)s2 + (α7 + k)s+ α8 , (15)

where the parameter set are

α4 =
1
2
(1− α1) , α5 =

1
2
(α2 − 2α3) , α6 = α2

5 + ξ1

α7 = 2α4α5 − ξ2 , α8 = α2
4 + ξ3 .

(16)

In NU-method, the function under the square root in Eq. (15) must be the square of a

polynomial [42], which gives the following roots of the parameter k

k1,2 = −(α7 + 2α3α8)± 2
√
α8α9 , (17)

where α9 = α3α7 + α2
3α8 + α6 . We obtain the polynomials π(s) and τ(s) for k = −(α7 +

2α3α8)− 2
√
α8α9, respectively

π(s) = α4 + α5s− [(
√
α9 + α3

√
α8 )s−

√
α8 ] , (18)

τ(s) = α1 + 2α4 − (α2 − 2α5)s− 2 [(
√
α9 + α3

√
α8 )s−

√
α8 ] . (19)

Thus, we impose the following for satisfying the condition that the derivative of the function

τ(s) should be negative in the method

τ ′(s) = −(α2 − 2α5)− 2(
√
α9 + α3

√
α8 )

= −2α3 − 2(
√
α9 + α3

√
α8 ) < 0. (20)

From Eqs. (7), (8), (19), and (20), and equating Eq. (7) with the condition that λ should

satisfy given by Eq. (9), we find the eigenvalue equation

α2n− (2n+ 1)α5 + (2n+ 1)(
√
α9 + α3

√
α8 ) + n(n− 1)α3

+ α7 + 2α3α8 + 2
√
α8α9 = 0. (21)
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We obtain from Eq. (11) the polynomial ρ(s) as ρ(s) = sα10−1(1 − α3s)
α11

α3
−α10−1

and

substituting it into Eq. (10) gives

yn(s) = P
(α10−1,

α11

α3
−α10−1)

n (1− 2α3s) , (22)

where α10 = α1 + 2α4 + 2
√
α8, α11 = α2 − 2α5 + 2(

√
α9 + α3

√
α8) and P (α,β)

n (1− 2α3s) are

the Jacobi polynomials. From Eq. (12), one obtaines

φ(s) = sα12(1− α3s)
−α12−

α13

α3 , (23)

then the general solution Ψ(s) = φ(s)y(s) becomes

Ψ(s) = sα12(1− α3s)
−α12−

α13

α3 P
(α10−1,

α11

α3
−α10−1)

n (1− 2α3s). (24)

where α12 = α4 +
√
α8 and α13 = α5 − (

√
α9 + α3

√
α8 ). Let us study the case where the

parameter α3 = 0. In this type of problems, the eigenfunctions become

Ψ(s) = sα12 eα13s Lα10−1
n (α11s) , (25)

when the limits limα3→0 P
(α10−1 ,

α11

α3
−α10−1)

n (1 − α3s) = Lα10−1
n (α11s) and limα3→0 (1 −

α3s)
−α12−

α13

α3 = eα13s are satisfied and the corresponding energy spectrum is

α2n− 2α5n + (2n+ 1)(
√
α9 − α3

√
α8 ) + n(n− 1)α3 + α7

+ 2α3α8 − 2
√
α8α9 + α5 = 0 . (26)

The generalized Morse potential is given by [44]

VM(x) = De−2βx − 2De−βx , (27)

where x = (r/r0)− 1 ,β = αr0 ,D is the dissociation energy, r0 is the equilibrium distance,

and α is the potential width. The term proportional to 1/r2 in Eq. (4) can be expanded

about x = 0 [45]

VM(x) =
κ(κ− 1)

r2
=

a0
(1 + x)2

= a0(1− 2x+ 3x2 + . . .) ; a0 =
κ(κ− 1)

r20
, (28)

Instead, we now replace VM(x) by the potential [45]

ṼM(x) = a0(a1 + a2e
−βx + a3e

−2βx) , (29)
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Expanding the potential ṼM(x) around x = 0, and combining equal powers with Eq. (28),

one can find the arbitrary constants in the new form of the potential as

a1 = 1− 3

β
+

3

β2
; a2 =

4

β
− 6

β2
; a3 = − 1

β
+

3

β2
. (30)

Eq. (4) can not be solved analytically because of the last term in the equation, we prefer

to use a mathematical identity such as dm(r)/dr = −dΣ(r)/dr to eliminate this term. We

obtain the mass function from the identity as

m(x) = m0 +m1e
−βx +m2e

−2βx , (31)

where m0 corresponds to the integral constant, and the parameters m1, and m2 are 2D, and

−D, respectively. The parameter m0 will denote the rest mass of the Dirac particle. By

using the potential form given by Eq. (29) replaced by Eq. (28), inserting the mass function

in Eq. (31), setting the ”difference” potential ∆(r) to generalized Morse potential in Eq.

(27) and using the new variable s = e−βx, we have

{ d2

ds2
+

1

s

d

ds
+

1

s2

[

− δ2(a0a1 +m2
0 − E2)− δ2[a0a2 + (m0 − E)(m1 + 2D)]s

− δ2[a0a3 + (m0 − E)(m2 −D]s2
]}

φnκ(s) = 0 . (32)

Comparing Eq. (32) with Eq. (13) gives the parameter set

α1 = 1 , −ξ1 = −δ2[a0a3 + (m0 −E)(m2 −D]

α2 = 0 , ξ2 = −δ2[a0a2 + (m0 − E)(m1 + 2D)]

α3 = 0 , −ξ3 = −δ2(a0a1 +m2
0 −E2)

α4 = 0 , α5 = 0

α6 = ξ1 , α7 = −ξ2

α8 = ξ3 , α9 = ξ1

α10 = 1 + 2
√
ξ3 , α11 = 2

√
ξ1

α12 =
√
ξ3 , α13 = −

√
ξ1

(33)

where δ = 1/α. We write the energy eigenvalue equation of the generalized Morse potential

by using Eq. (26)

2δ
√

a0a1 +m2
0 −E2 − δ

a0a2 + (m0 − E)(m1 + 2D)
√

a0a3 + (m0 − E)(m2 −D)
= 2n+ 1 . (34)
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Since the negative energy eigenstates exist in the case of the pseudospin symmetry [14, 15,

16], so we choose the negative energy solutions in Eq. (46). In Table I, we give some nu-

merical values of the negative bound state energies obtained from Eq. (46) for CO molecule

in atomic units, where we use the input parameter set as D = 11.2256 eV, r0 = 1.1283 Å,

m0 = 6.8606719 amu, and a = 2.59441 [46], and summarize our results for different ℓ̃, and

n values. The corresponding lower spinor component can be written by using Eq. (25)

φ(s) = sw1 e−w2sL2w1

n (2w2s) , (35)

where w1 = δ
√

a0a1 +m2
0 −E2 , and w2 = δ

√

a0a3 + (m0 − E)(m2 −D) .

Let us study the two special limits, pseudospin and spin symmetry cases, respectively, in

the case of the constant mass.

1. Pseudospin Case

The Dirac equation has the exact pseudospin symmetry if the ”sum” potential could

satisfy the condition that dΣ(r)/dr = 0, i.e. Σ(r) = A(const.) [14]. The parameters in our

formalism become m1 = m2 = 0. Setting the ”difference” potential ∆(r) to the generalized

Morse potential in Eq. (27), using Eq. (29) for the term proportional to 1/r2, and using

the new variable s = e−βx, we have from Eq. (4)

{ d2

ds2
+

1

s

d

ds
+

1

s2

[

− δ2[a0a1 +M(m0 + E)]− δ2(2MD + a0a2)s

+ δ2(MD − a0a3)s
2
]}

φ(s) = 0 . (36)

where M = m0 + A− E. By following the same procedure, the energy eigenvalue equation

for the exact pseudospin symmetry in the case of constant mass is written

2
√

a0a1 +M(m0 + E) =
a0a2 + 2DM√
a0a3 −DM

+ α(2n+ 1) . (37)

and the corresponding wave functions read as

φm1=m2=0(s) = sw
′

1 e−w′

2
sL2w′

1

n (2w′
2s) , (38)

where w ′
1 = δ

√

a0a1 +M(m0 + E) , and w ′
2 = δ

√
a0a3 −DM . We must consideration the

negative bound states solutions in Eq. (37) because there exist only the negative eigenvalues

in the exact pseudospin symmetry [14, 15, 16].
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2. Spin Case

The spin symmetry appears in the Dirac equation if the condition is satisfied that ∆(r) =

Vv(r)− Vs(r) = A(const.). In this case, we have from Eq. (3)

{ d2

dr2
− κ(κ+ 1)

r2
− (m0 + E − A)(m0 − E − Σ(r))

}

χ(r) = 0 , (39)

where we set the ”sum” potential as generalized Morse potential given in Eq. (27), and use

approximation for the term proportional to 1/r2 in Eq. (29) [45]

ṼM(x) = b0(b1 + b2e
−βx + b3e

−2βx) , (40)

where b0 = κ(κ + 1)/r20 , and the parameters bi(i = 1, 2, 3) are given in Eq. (30). Using the

variable s = e−βx, and inserting Eq. (40) into Eq. (39), we obtain

{ d2

ds2
+

1

s

d

ds
+

1

s2

[

− δ2[b0b1 +M ′(m0 −E)] + δ2(2DM ′ − b0b2)s

− δ2(b0b3 +DM ′)s2
]}

χ(s) = 0 . (41)

where M ′ = m0+E−A. We write the energy eigenvalue equation, and corresponding wave

equations in the spin symmetry limit, respectively,

δ[2DM ′ − b0b2]√
b0b3 +DM ′

+ 2δ
√

b0b1 +M ′(m0 − E) = 2n+ 1 , (42)

and

χm1=m2=0(s) = sw
′′

1 e−w′′

2
sL2w′′

1

n (2w′′
2s) , (43)

where w ′′
1 = δ

√

b0b1 +M ′(m0 −E) , and w ′′
2 = δ

√
b0b3 +DM ′ . We must take into account

the positive energy solutions in Eq. (42) in the case of the exact spin symmetry [14, 15, 16].

In Summary, we have approximately solved the effective mass Dirac equation for the

generalized Morse potential for arbitrary spin-orbit quantum number κ in the position-

dependent mass background. We have found the eigenvalue equation, and corresponding

two-component spinors in terms of Legendre polynomials by using the parametric NU-

method within the framework of an approximation to the term proportional to 1/r2 . We

have also obtained the energy eigenvalue equations, and corresponding wave functions for

exact pseudospin, and spin symmetry limits in the case of constant mass. We have observed

that our analytical results in the case of the pseudospin symmetry are good agreement with

the ones obtained in the literature.
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TABLE I: Energy eigenvalues for the CO molecule for different values of ℓ̃ and (n, κ) in the case

of position dependent mass.

ℓ̃ n κ state E < 0

1 1 -1 1s1/2 6.15913020

2 1 -2 1p3/2 6.52968379

3 1 -3 1d5/2 6.89146288

4 1 -4 1f7/2 7.24974882
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