Nonlinear friction in quantum mechanics
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The effect of nonlinear friction forces in quantum mechanics is
studied via dissipative Madelung hydrodynamics. A new thermo-quantum
diffusion equation is derived, which is solved for the particular case of
guantum Brownian motion with a cubic friction.

Nonlinear friction forces are a problem in classical Brownian motion for a long
time [1]. They are described either by Langevin or by Fokker-Planck equations [2-4].
However, the rigorous generalized Langevin equation is linear, which points out that
nonlinear friction forces possess a macroscopic hydrodynamic origin [1]. For this reason,
they are not present in the modern quantum theory of open systems [5]. The scope of
the present paper is to investigate the nonlinear friction effect on quantum mechanics.
The analysis is based on a dissipative Madelung quantum hydrodynamics.

A quantum particle in vacuum is described by the Schrédinger equation
iho,y =-h*0%y 1 2m+Uy (1)

where m is the particle mass and U is an external potential. The complex wave func-
tion can be generally presented in its polar form \y:\/gexp(iS/h), where p is the

probability density and S/7# is the wave function phase. Introducing this Madelung

presentation in Eq. (1) results in the following two equations [6]
op=-0,(pV) mo\V +mVo\V =-0,p, /p-0,U (2)

corresponding to the imaginary and real parts, respectively. The first equation is a con-
tinuity one with V =0,S/m being the hydrodynamic-like velocity in the probability

space. The second equation is a macroscopic force balance, where the quantum effects



are completely included in the quantum pressure p, = —(#* 1 4m)pd’ Inp . Note that the

latter depends both on the local density p and its spatial derivatives and, hence, the

Madelung hydrodynamics is a non-local theory.

The Madelung presentation of the Schrédinger equation opens a door for intro-
duction of dissipative forces in quantum mechanics. The friction force of a particle in a
classical environment depends naturally on the particle velocity. Hence, one can add a

macroscopic friction force f (V) in the force balance (2) to obtain

MoV +mVaN =-0,(p, +ksTp)/ p—3U + f (V) (3)

Here the new pressure term accounts for the osmotic thermal pressure due to the envi-
ronment temperature T . Thus one arrives to a dissipative Madelung hydrodynamics. At
strong friction the inertial terms on the left-hand-site of Eq. (3) can be neglected as
compared to the friction force and the hydrodynamic-like velocity can be expressed in

the form V = f (0, u), where f " is the inverse function of f and u=Q+k,T Inp+U
is the local chemical potential. The chemical potential term Q E—hzai\/EIZm\/E, cor-
responding to the quantum pressure via the Gibbs-Duhem relation dpQ =pdQ, is in fact

the Bohm quantum potential. While the latter is an icon in the de Broglie-Bohm theory,

the symbol of the Madelung hydrodynamics is p,. Introducing now this expression for

V into the continuity equation (2) results in a generalized nonlinear diffusion equation

0 = ~0,[pf (O] (4)

The equilibrium solution of Eq. (4) corresponds to V =0 or a constant chemical poten-
tial, which is in accordance to the rules of thermodynamics.

Equation (4) is valid for arbitrary friction forces. Usually the friction force is well

approximated by the expression f(V)=-hV —bV?® with two friction coefficients, a li-



near one b, and a cubic one b, [7]. At low velocity the cubic term becomes negligible
and, hence, f(d,u) =—0 u/b,. Thus Eq. (4) reduces to a quantum Smoluchowski equ-

ation [8]
0p=0,[p0,(Q+U) /b + D0,p] (5)

where D =k,T /b, is the classical Einstein diffusion constant. The solution of Eq. (5) for
a free particle at zero temperature is a Gaussian distribution density with dispersion ob-
eying the sub-diffusive quantum law ¢° = h\/t/Tb1 [8]. In the opposite case of a fast
particle the cubic term dominates the friction force and f *(0,u) = —m . Thus Eq.

(4) acquires the following strongly nonlinear form

0,p=0,[p30,(Q+k,TInp+U)/h,] (6)

For a classical particle moving in a biquadratic external potential U = Kx* /4 the
solution of Eq. (6) reads p=T'(3/4)exp(—x*/4c")/nc, where the average displace-

ment evolves in time according to the equation

F(1/31/3,4/3Ko* /K, T)3Ko* 1k,T = (4/3)3K /byt (7)

Here I' and F are the gamma and hypergeometric functions, respectively. The plot of
Eqg. (7) is shown in Fig. 1. As is seen, initially the evolution is super-diffusive, than passes

through a normal diffusive regime and ends with a sub-diffusive part. At infinite time

6040 =k;T / K and the probability density reduces to the equilibrium Boltzmann distribu-
tion. In the case of a free classical particle with a cubic friction force Eq. (7) provides a
super-diffusive classical law &? :«/64kBTt3 / 27b, . Hence, the nonlinear friction accele-

rates the particle diffusion, which is, however, non-Gaussian.
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Fig. 1 Dimensionless dispersion /K /k,T c* vs. dimensionless time (4/3)3/K /b,t.

In the case of free quantum diffusion at zero temperature Eq. (6) reduces to

0.0 =0,(p3/6,Q1b,) = 8,[pYn* (@, Inpd? Inp+° In p) / 4mb, ] (8)

At large X one can neglect the third-derivative term in the brackets of Eq. (8) and the

solution of the remaining equation is p =3¥/3I(2/3) exp(—|x|3 /36°)/ 4nc . Surprisingly,

the corresponding displacement obeys a normal diffusive law o° =§/4h2/mb3t. This
unexpected result shows that the quantum sub-diffusivity compensate the super-
diffusivity originating from the cubic friction in such a way that the final result corres-
ponds formally to the classical Einstein law with a novel quantum diffusion constant
?/hz / 2mb, . The distribution density above is, however, non-Gaussian again.

Generally, it is possible to find the inverse function of the complete nonlinear
friction force f(V)=-bV —b3V3 and to perform the corresponding analysis of Eq. (4).

The physical transparency will suffer, however, due to mathematical complications. We



expect the appearance of many sub- and super-diffusive regimes, which alternatively
can be formally described via fractal diffusion equations [9]. In the case of diffusion is

structured environment it is expected that the friction coefficients b, and b, will depend

on the local particle position X [10]. This will not change, however, the validity of the
general diffusion equation (4). Moreover, any more advanced model for the local chem-

ical potential p could be directly employed in Eq. (4).
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