Nonlinear friction in quantum mechanics

Roumen Tsekov Department of Physical Chemistry, University of Sofia, 1164 Sofia, Bulgaria 01 March 2010

The effect of nonlinear friction forces in quantum mechanics is studied via dissipative Madelung hydrodynamics. A new thermo-quantum diffusion equation is derived, which is solved for the particular case of quantum Brownian motion with a cubic friction.

Nonlinear friction forces are a problem in classical Brownian motion for a long time [1]. They are described either by Langevin or by Fokker-Planck equations [2-4]. However, the rigorous generalized Langevin equation is linear, which points out that nonlinear friction forces possess a macroscopic hydrodynamic origin [1]. For this reason, they are not present in the modern quantum theory of open systems [5]. The scope of the present paper is to investigate the nonlinear friction effect on quantum mechanics. The analysis is based on a dissipative Madelung quantum hydrodynamics.

A quantum particle in vacuum is described by the Schrödinger equation

$$i\hbar\partial_t \Psi = -\hbar^2 \partial_x^2 \Psi / 2m + U \Psi \tag{1}$$

where *m* is the particle mass and *U* is an external potential. The complex wave function can be generally presented in its polar form $\psi = \sqrt{\rho} \exp(iS/\hbar)$, where ρ is the probability density and S/\hbar is the wave function phase. Introducing this Madelung presentation in Eq. (1) results in the following two equations [6]

$$\partial_t \rho = -\partial_x (\rho V) \qquad \qquad m \partial_t V + m V \partial_x V = -\partial_x p_0 / \rho - \partial_x U \tag{2}$$

corresponding to the imaginary and real parts, respectively. The first equation is a continuity one with $V \equiv \partial_x S / m$ being the hydrodynamic-like velocity in the probability space. The second equation is a macroscopic force balance, where the quantum effects are completely included in the quantum pressure $p_Q \equiv -(\hbar^2 / 4m)\rho \partial_x^2 \ln \rho$. Note that the latter depends both on the local density ρ and its spatial derivatives and, hence, the Madelung hydrodynamics is a non-local theory.

The Madelung presentation of the Schrödinger equation opens a door for introduction of dissipative forces in quantum mechanics. The friction force of a particle in a classical environment depends naturally on the particle velocity. Hence, one can add a macroscopic friction force f(V) in the force balance (2) to obtain

$$m\partial_t V + mV\partial_x V = -\partial_x (p_0 + k_B T \rho) / \rho - \partial_x U + f(V)$$
(3)

Here the new pressure term accounts for the osmotic thermal pressure due to the environment temperature T. Thus one arrives to a dissipative Madelung hydrodynamics. At strong friction the inertial terms on the left-hand-site of Eq. (3) can be neglected as compared to the friction force and the hydrodynamic-like velocity can be expressed in the form $V = f^{-1}(\partial_x \mu)$, where f^{-1} is the inverse function of f and $\mu = Q + k_B T \ln \rho + U$ is the local chemical potential. The chemical potential term $Q = -\hbar^2 \partial_x^2 \sqrt{\rho} / 2m \sqrt{\rho}$, corresponding to the quantum pressure via the Gibbs-Duhem relation $dp_Q = \rho dQ$, is in fact the Bohm quantum potential. While the latter is an icon in the de Broglie-Bohm theory, the symbol of the Madelung hydrodynamics is p_Q . Introducing now this expression for V into the continuity equation (2) results in a generalized nonlinear diffusion equation

$$\partial_t \rho = -\partial_x [\rho f^{-1} (\partial_x \mu)] \tag{4}$$

The equilibrium solution of Eq. (4) corresponds to V = 0 or a constant chemical potential, which is in accordance to the rules of thermodynamics.

Equation (4) is valid for arbitrary friction forces. Usually the friction force is well approximated by the expression $f(V) = -b_1V - b_3V^3$ with two friction coefficients, a li-

near one b_1 and a cubic one b_3 [7]. At low velocity the cubic term becomes negligible and, hence, $f^{-1}(\partial_x \mu) = -\partial_x \mu / b_1$. Thus Eq. (4) reduces to a quantum Smoluchowski equation [8]

$$\partial_t \rho = \partial_x [\rho \partial_x (Q + U) / b_1 + D \partial_x \rho]$$
(5)

where $D = k_B T / b_1$ is the classical Einstein diffusion constant. The solution of Eq. (5) for a free particle at zero temperature is a Gaussian distribution density with dispersion obeying the sub-diffusive quantum law $\sigma^2 = \hbar \sqrt{t / m b_1}$ [8]. In the opposite case of a fast particle the cubic term dominates the friction force and $f^{-1}(\partial_x \mu) = -\sqrt[3]{\partial_x \mu / b_3}$. Thus Eq. (4) acquires the following strongly nonlinear form

$$\partial_{t}\rho = \partial_{x} \left[\rho \sqrt[3]{\partial_{x} (Q + k_{B}T \ln \rho + U) / b_{3}}\right]$$
(6)

For a classical particle moving in a biquadratic external potential $U = Kx^4/4$ the solution of Eq. (6) reads $\rho = \Gamma(3/4) \exp(-x^4/4\sigma^4)/\pi\sigma$, where the average displacement evolves in time according to the equation

$$F(1/3, 1/3; 4/3; K\sigma^4 / k_B T) \sqrt[3]{K\sigma^4 / k_B T} = (4/3) \sqrt[3]{K/b_3} t$$
(7)

Here Γ and F are the gamma and hypergeometric functions, respectively. The plot of Eq. (7) is shown in Fig. 1. As is seen, initially the evolution is super-diffusive, than passes through a normal diffusive regime and ends with a sub-diffusive part. At infinite time $\sigma_{\infty}^4 = k_B T / K$ and the probability density reduces to the equilibrium Boltzmann distribution. In the case of a free classical particle with a cubic friction force Eq. (7) provides a super-diffusive classical law $\sigma^2 = \sqrt{64k_BTt^3/27b_3}$. Hence, the nonlinear friction accelerates the particle diffusion, which is, however, non-Gaussian.

Fig. 1 Dimensionless dispersion $\sqrt{K/k_BT}\sigma^2$ vs. dimensionless time $(4/3)\sqrt[3]{K/b_3}t$.

In the case of free quantum diffusion at zero temperature Eq. (6) reduces to

$$\partial_t \rho = \partial_x \left(\rho \sqrt[3]{\partial_x Q / b_3} \right) = -\partial_x \left[\rho \sqrt[3]{\hbar^2 (\partial_x \ln \rho \partial_x^2 \ln \rho + \partial_x^3 \ln \rho) / 4mb_3} \right]$$
(8)

At large x one can neglect the third-derivative term in the brackets of Eq. (8) and the solution of the remaining equation is $\rho = 3\sqrt[6]{3}\Gamma(2/3)\exp(-|x|^3/3\sigma^3)/4\pi\sigma$. Surprisingly, the corresponding displacement obeys a normal diffusive law $\sigma^2 = \sqrt[3]{4\hbar^2/mb_3}t$. This unexpected result shows that the quantum sub-diffusivity compensate the super-diffusivity originating from the cubic friction in such a way that the final result corresponds formally to the classical Einstein law with a novel quantum diffusion constant $\sqrt[3]{\hbar^2/2mb_3}$. The distribution density above is, however, non-Gaussian again.

Generally, it is possible to find the inverse function of the complete nonlinear friction force $f(V) = -b_1V - b_3V^3$ and to perform the corresponding analysis of Eq. (4). The physical transparency will suffer, however, due to mathematical complications. We

expect the appearance of many sub- and super-diffusive regimes, which alternatively can be formally described via fractal diffusion equations [9]. In the case of diffusion is structured environment it is expected that the friction coefficients b_1 and b_3 will depend on the local particle position x [10]. This will not change, however, the validity of the general diffusion equation (4). Moreover, any more advanced model for the local chemical potential μ could be directly employed in Eq. (4).

Acknowledgment: The author is thankful to Dr. S. Karakashev for the support.

References:

- [1] Klimontovich Yu L 1994 Phys. Usp. 37 737
- [2] Ebeling W 2004 Cond. Matter Phys. 7 539
- [3] Lindner B 2007 New J. Phys. 9 136
- [4] Dubkov A A, Hänggi P and Goychuk I 2009 J. Stat. Mech. P01034
- [5] Weiss U 2008 Quantum Dissipative Systems World Scientific Singapore
- [6] Madelung E 1927 Z. Phys. 40 322
- [7] Mori H, Fujisaka H and Shigematsu H 1974 Prog. Theor. Phys. 51 109
- [8] Tsekov R 2009 Int. J. Theor. Phys. 48 630
- [9] Metzler R and Klafter J 2000 Phys. Rep. 339 1
- [10] Tsekov R and Ruckenstein E 1994 J. Chem. Phys. 101 7844