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Abstract. We study the effect of a many-body interaction on inter-band
oscillations in a two-band Bose-Hubbard model with external Stark force. Weak
and strong inter-band oscillations are observed, where the latter arise from a
resonant coupling of the bands. These oscillations collapse and revive due to a
weak two-body interaction between the atoms. Effective models for oscillations
in and out of resonance are introduced that provide predictions for the system’s
behaviour, particularly for the time-scales for the collapse and revival of the
resonant inter-band oscillations.

Introduction. Recent experiments proved the possibility to study the coherent
dynamics of interacting many-particle systems [1, 2, 3]. Such realisations of many-body
systems with ultra-cold gases in optical lattices have a short but impressive history
and open immense possibilities for various fields of physics [4, 5]. The demonstration
of the well-known phenomenon of collapse and revival, the latter being a pure quantum
effect, with ultra-cold atoms bears witness of this coherent evolution of a many-body
wave function [2, 6]. Additionally, the high degree of control in such experiments allows
a manipulation of many system parameters and makes them particularly interesting
for various fields of physics as well as future applications [5, 7]. Different ways of
addressing additional degrees of freedom in such ultra-cold bosonic gases have been
suggested [5].

In the present Fast Track Communication, we discuss a two-band model with an
additional external force to control the coupling between the two bands. Applying a
force to atoms in optical lattices leads to Bloch oscillations and is a realization of a
many-body Wannier–Stark system [8]. The coupling of the low-lying energy bands in
such systems has been demonstrated in different experiments, e.g. on Landau-Zener
tunnelling [9, 8] and the influence of the many-body interaction on a weak coupling of
the bands has also been studied theoretically [10]. We go beyond a weak coupling of
energy bands and consider an isolated two-band system with a strong external force.
A closed two-band system is an idealisation but can be realised approximatively with
ultra-cold atoms [4] using different techniques as, e.g., super lattices [11, 12]. Besides
the possibility of experimental realisation, a closed two-band model is also interesting
as a simple model system. For the latter, we focus on the two lowest energy bands of
interacting bosons in a optical lattice V (x) = V0 cos(2kLx), with the wave vector of
the optical lattice kL = 2π/λL. Then, all parameters of the model Hamiltonian just
depend on this external potential. The parameters can be computed numerically (see,
e.g., Appendix A in [13]) and analytical approximations exist for them for not too
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small amplitudes V0 [4]. Using this setup, we are able to identify regions of strong and
weak inter-band coupling. A weak two-body interaction introduces new energy scales
in the coherent evolution of the many-body wave function, leading to a collapse of such
oscillations, but the form of the interaction gives rise to subsequent revivals. We give
analytical expressions for all time-scales in this many-body realisation of a two-band
collapse and revival phenomenon, and experimental ramifications for a realisation with
ultra-cold bosonic gases are discussed.

The many-particle model. We study a two-band Bose-Hubbard model with an
additional external Stark force for a strong coupling of the two bands, introduced in
[13, 14]

H =

L
∑

l=1

[

ǫ−l n
a
l −

ta
2
(a†l+1al + h.c.) +

gWa

2
na
l (n

a
l − 1)

+ǫ+l n
b
l +

tb
2
(b†l+1bl + h.c.) +

gWb

2
nb
l (n

b
l − 1) + FC0(b

†
l al + h.c.)

+2gWxn
a
l n

b
l +

gWx

2
(b†l b

†
lalal + h.c.)

]

.

(1)

Here, al (a
†
l ) annihilates (creates) a particle at site l of totally L sites in the lower band

and bl (b
†
l ) in the upper band. The corresponding number operators are na

l = a†lal,

nb
l = b†l bl. The bands are separated by a bandgap ∆ and have onsite-energies
ǫ±l = ±∆/2 + lF , respectively. We include hopping between neighbouring sites in
band a, b with a hopping strength ta, tb > 0, and a repulsive interaction between
particles occupying the same site in band a (b) with a strength Wa (Wb). The
two bands are coupled via C0F , with the external Stark force F and a coupling
constant C0 depending on the depth of the lattice V0 [13, 14], and also via the inter-
particle interaction with a strengthWx. All parameters are measured in recoil energies
Erec ≡ ~

2k2L/(2m) and we set ~ = 1 troughout. Focussing on a realisation with a
single optical lattice rather than a superlattice, the relation between the parameters
is generally: ∆ ≫ ta, tb, as well as ta, tb ≈ Wi and C0 = O(10−1). We take the
external force F as a free parameter. We assume that the interaction strength can
be tuned (experimentally, e.g, by the use of Feshbach resonances [4]) and include
a corresponding scaling factor g to all interaction terms. To study the occupation
of the upper band, we prepare the system in an initial state |ψ(0)〉, with a uniform
distribution of particles in the lower band only and evolve it in time by the many-body
Schrödinger equation. The quantity we study is the (normalised) number of particles
in the upper band

Nb(t) ≡
1

N
〈ψ(t)|

∑

l

nb
l |ψ(t)〉, (2)

where N =
∑

l(n
a
l + nb

l ) is the total number of particles. We will refer to Nb(t) as
occupation of the upper band.

Let us discuss the non-interacting single-particle case H0 ≡ H(g = 0) first. We
apply the following transformation involving Bessel functions of the first kind Jn(x)
to our operators, which is known to remove the hopping terms in the single-band
case [15]

αn =
∑

l∈Z

Jl−n(xa)al βn =
∑

l∈Z

Jl−n(xb)bl, (3)
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with xi ≡ ti/F , i = a, b. Using relations for Bessel functions, we arrive at

H0 =
∑

l∈Z

[

ǫ−l α
†
lαl + ǫ+l β

†
lβl + C0F

∑

n

Jl−n(∆x)(α
†
lβl+n + h.c.)

]

, (4)

where ∆x = xa + xb and ǫ
±
l = ±∆/2+ lF as above. We obtain coupling between any

two sites of the two different bands, weighted by Bessel functions. In (1) the coupling
between different and possibly remote sites originates from an on-site coupling and
subsequent hoppings. It can thus be considered a higher order process in the original
basis. But in the transformed Hamiltonian (4), this coupling is now direct with a
strength modified by the factor Jl−n(∆x).

The Hilbert space in the many-particle problem is spanned by Fock states with
fixed particle number |na

1 , . . . , n
a
L;n

b
1, . . . , n

b
L〉 with single-particle basis al, bl. The total

dimension of the Fock space for a given number of atoms N and lattice sites L per band
is given by dimH = (N+2L−1)!/[N !(2L−1)!]. For numerical simulations, we change
to the interaction-picture with respect to the external force [16] which removes the tilt
∑

l ln
a,b
l F and replaces a†l+1al → eiFta†l+1al (and likewise for b†l+1bl). The Hamiltonian

is then time-dependent with a periodicity of TB ≡ 2π/F and decomposes into a direct
sum of operators for specific quasi-momenta κ [16]. As a consequence, the size of the
Hilbert space is reduced by a factor of the order of L [13, 14, 16]. Since the different
subspaces are physically equivalent, we restrain our discussion to the κ = 0-subspace
of the Hilbert space [16].
For the time-evolution of a given initial state, we use either a direct numerical
integration (with an adaptive step-size Runge-Kutta algorithm [17]) or an eigenbasis
expansion after diagonalising the problem:

|ψ(mTB)〉 =
∑

n

cn exp(−iεnmTB)|εn〉. (5)

Here we use the eigenstates UF (TB)|εn〉 = exp(−iεnTB)|εn〉 of the Floquet-Bloch
operator (T denotes time-ordering)

UF (TB) = T exp
[

− i

∫ TB

0

H(t)dt
]

, (6)

since the Hamiltonian is explicitly time-dependent, with a periodicity TB. In addition,
this gives us the full spectrum and enables access to relevant energy scales of the
problem, as well as an identification of the most important states participating in the
time-evolution.

Results. For the specific system under consideration, i.e., bosons in optical
lattices, both hopping coefficients ta, tb are smaller than unity and (since we are
interested in strong inter-band coupling) we take the external Stark force F to be
much larger than the hopping coefficients: ∆x ≡ (ta+tb)/F ≪ 1. The non-interacting
Hamiltonian (4) now allows for simple solutions for two regimes: values of the external
force F not leading to a degeneracy between energy levels of different bands (off-
resonant regime) and values of the force F leading to such a degeneracy (resonant
regime). For the off-resonant regime we make use of ∆x ≪ 1 and neglect all Bessel
functions in (4) except for J0(∆x) ≈ 1. The Hamiltonian then decomposes [18] into
a sum of independent two-level systems and the occupation of the upper band when
initially zero follows a simple Rabi formula Nb(t) = [1 + ∆̃2/(4C2

0F
2)]−1 sin2(∆̃t/2),

where ∆̃ ≡
√

∆2 + 4C2
0F

2. This corresponds to Rabi oscillations between the bands

with an amplitude much smaller than unity and a period T∆ = 2π/∆̃ of the order
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of the Bloch period TB = 2π/F . An example is shown in the lower panel of figure 1
where the off-resonant contribution to the oscillations is shown.
Although the coupling from a site l to sites in the other band with different index l′

is usually small (cf. discussion after (4)), it is important when the two levels become
degenerate in energy, i.e., for resonant values of the force F . This happens when the
energy gap between both bands is close to an integer multiple of the external force
∆̃ ≈ rF and we refer to this regime as resonant of order r. In resonance, the coupling
of the degenerate levels is most important and the Hamiltonian of (4) can similarly
be reduced to a sum of independent two-level systems

H0 =
∑

l∈Z

[

ǫ−l α
†
lαl + ǫ+l β

†
lβl + C0FJl−r(∆x)(α

†
lβl+r + h.c.)

]

, (7)

and diagonalised by µ
(r)
l = 1√

2
(βl + αl+r) and ν

(r)
l = 1√

2
(βl − αl+r). The resonant

oscillations (of order r) between the two bands have an amplitude of almost unity
and a period given by Tres = π/|C0FJr(∆x)| ≫ TB. An example of these resonant
oscillations for r = 2 is shown as the thin dashed line in figure 1. The period
predicted by the reduction to independent two-level systems is T r=2

res = 285 TB for
the parameters given there, in excellent agreement with figure 1 where the actual
period is Tres ≈ 288 TB. We found equally good agreement in numerical simulations
for different lattice depths and other orders r of resonance not explicitly reported here.

Let us now study the effect of the many-body interaction in the original
Hamiltonian (1). Figure 1 also shows the occupation of the upper band as a function
of time for the initial state |ψ(0)〉 = |1, . . . , 1; 0, . . . , 0〉 in a weakly interacting system
with g = 0.1. We observe a decay of the resonant oscillations followed by a major
revival. At later times several minor revivals occur (not shown in figure 1). This
effect is stable against variations of the system parameters (as number of particles
and lattice sites, even for fillings N/L of order but not always close to one), with
the time scales of decay and revival depending on the interaction strength g (see the
following section and figure 2). We found the same phenomenon with different initial
states in numerical simulations as long as the particles are mainly delocalised along
the lattice and occupy only the lower band, i.e., excluding Fock states with all particles
on one lattice site for instance.

The oscillatory behaviour depicted in figure 1 strongly reminds of the collapse and
revival effect known from quantum optics [19]. A specific feature in these systems is
a linear dependence of the collapse and revival time on the inverse coupling strength,
i.e. trev ∝ 1/g and tcoll ∝ 1/g where g usually denotes the coupling strength between
the light field and the two-level atom in the quantum optical systems [19]. We verified
numerically for our system that the observed decay and revival times obey a similar
dependence with the interaction parameter g as coupling strength in our model. We
define tcoll as the time when the difference between the maximal and average amplitude
of the inter-band oscillations has fallen to 1/e, i.e., Nb(tcoll) ≡ 1/2+1/(2e). The revival
time is taken as the maximum of the revived oscillations. Figure 2 clearly demonstrates
the linear dependence of these times on the inverse interaction strength.

To find an effective description, we try to understand the most relevant interaction
processes. Clearly, the repulsive two-body interaction disfavours double occupancy of
sites since this will always cost an interaction energyWa(b) for two particles occupying
the same site in the lower (upper) band. Starting from an initial state with population
of the ground band only, the strong Stark force leads to an occupation of the upper
band. Doubly occupied sites are also suppressed there, but two particles may sit at
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Figure 1. (colour online) Occupation of the upper band as a function of time
for a resonance of order r = 2. Shown are the cases: vanishing two-body
interaction (g = 0, thin dashed line), weak two-body interaction (g = 0.1) with all
interaction terms (thick line) and only one interaction term 2Wx

∑
l
na

l
nb

l
(thick

dashed line) included. The collapse and revival times, tcoll and trev , are indicated
by arrows. Lower panel: Magnification of the initial oscillation showing small
non-resonant oscillations of period T

∆̃
on top of the resonant oscillations with

a much longer period Tres. Parameters correspond to V0 = 4: ∆ = 4.39, C0 =
−0.15, ta = 0.062, tb = 0.62,Wa = 0.030,Wb = 0.018,Wx = 0.012;N = L = 5
and F = 2.2207.
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Figure 2. (colour online) Collapse times (open symbols) and revival times (filled
symbols) versus 1/g for N,L = 5, 5 and V0 = 4: �, V0 = 5: ◦ , V0 = 6: ♦. Order
of the resonance: r = 1. The collapse time is defined via Nb(tcoll) = (1 + e−1)/2
and the revival time is chosen as the next maximum in the oscillations after initial
decay t > tcoll, as indicated in figure 1 (upper panel).

the same site in either band, i.e. “on top of each other”. Indeed, the most important
interaction term in the time-evolution is 2Wx

∑

l n
a
l n

b
l , since it already gives a non-
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zero contribution when there is only one particle per site in each of the two bands.
In fact, comparing the time evolution of the initial state with all interaction terms
and only the one mentioned shows almost no difference (cf. figure 1). We focus
on fillings close to unity n̄ = N/L ≈ 1 and study the time-evolution of states of
the form |ψ0〉 = |1, 1, . . . , 1; 0, . . . , 0〉, which is not an eigenstate of the system in
resonance. Note that this is the most important contribution to the superfluid ground
state in an expansion in our configuration state Fock basis. For large enough systems
the superfluid ground state of the untilted system (and the single-occupancy state
|ψ0〉 likewise) becomes indistinguishable from a coherent state (eq. (66) in [4]) that
factorises into a product of local coherent states at each site l:

∏

l

(

e
√
n̄a†

l |vac〉l
)

=
∏

l

|ϕ; 0〉l ≡ |ϕ; 0〉. (8)

We denote this coherent state with phase ϕ =
√
n̄ by |ϕ; 0〉. We are now going to re-

write this state in the resonant basis and determine the effect of the interaction term
2Wx

∑

l n
a
l n

b
l when acting on this state. We start by inserting the transformation

a†l = (1/
√
2)

∑

n Jl−n(xa)(µ
†
n − ν†n) into (8) to obtain

|ϕ; 0〉 =
∏

l

exp

[

√

N

2L

∑

n

Jl−n(xa)(µ
†
n − ν†n)

]

|vac〉

=
∏

n

e
√

n̄/2 µ†
ne−

√
n̄/2 ν†

n |vac〉. (9)

where we used
∑

m∈Z Jm(x)zm = exp[x(z − 1/z)/2] for z = 1 [20] and [µ†
n, ν

†
n] = 0

which follows from the properties of the operators a(†), b(†). Let us denote Fock states
with single-particle basis µl, νl by round parentheses |nµ

1 , . . . , n
µ
L;n

ν
1 , . . . , n

ν
L). From

(9) we see, that the coherent state of the lower band in resonance is a product of
local coherent states for both bands in the resonance basis

∏

l |ϕ̃;−ϕ̃)l ≡ |ϕ̃;−ϕ̃)

with ϕ̃ ≡ ϕ/
√
2. The time-evolution of this state (for the non-interacting system

in resonance) is simple since it is diagonal in the eigenbasis of the Hamiltonian in
resonance (7). We continue to study the phase evolution created by the most important

term 2Wx

∑

l n
a
l n

b
l perturbatively by expressing the operators a

(†)
l , b

(†)
l in the µ, ν-

basis:

exp
[

i2gWxt
∑

l

na
l n

b
l

]

|ϕ̃;−ϕ̃) = exp

[

igWxt

2

∑

l

∑

l1,...,l4

Jl−l1(xa)Jl−l2(xa)Jl−l3(xb)×

Jl−l4(xb)(µ
†
l1
− ν†l1)(µl2 − νl2)(µ

†
l3
+ ν†l3)(µl4 + νl4)

]

|ϕ̃;−ϕ̃). (10)

Since |ϕ̃;−ϕ̃) is a product of local coherent states we can ignore the sum over l and
discuss the expected behaviour. Firstly, both xa,b are much smaller than unity and the
main contribution in the sums over l1, . . . , l4 will come from the zeroth-order Bessel
functions J0. Secondly, the product of operators gives 16 different combinations of the
field operators. But due to the prefactors, the combinations with equal indices are the
most important. They simply give an integer number when applied to the product of
local coherent states they are acting on. Taking these two points together, the time
evolution of this state should show an approximate revival at

trev ≈ 4π

gWxJ2
0 (xa)J

2
0 (xb)

. (11)
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This result is valid for large systems and cannot account for the effect of non-universal
properties like a limited number of particles and lattice sites, but we expect it to yield
the right order of magnitude for finite systems, and in particular the correct scaling
with the parameters of external potentials (c.f. figure 4, inset, below).

Additional finite size corrections to (11) can be understood by using the
decomposition into the eigenbasis (5). The evolution of the occupation of the upper
band certainly depends on the initial state, which we can take into account by studying
the weights cn of the initial state expanded in the eigenbasis. The result of a numerical
diagonalisation for a system in resonance is depicted in figure 3, where the absolute
values of the expansion coefficients with their corresponding quasi-energies are shown.
For vanishing two-body interaction strength g = 0, the quasi-energies from the states
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Figure 3. (colour online) |cn| versus the corresponding quasi-energies εn in an
expansion in the eigenbasis of the Floquet–Bloch operator (6). Shown are different
interaction strengths: g = 0.0 (*), g = 0.05 (•), g = 0.1 (�), and g = 0.2 (�);
other parameters as in figure 1. We observe that different quasi-energies are
shifted at different rates when increasing the interaction strength.

with different occupation numbers are degenerate as expected. The energy difference
between neighbouring lines of constant quasi-energies corresponds to the time-scale
of the resonant inter-band oscillations and follows from the diagonalisation of the
resonant non-interacting system as Ωres = 2π/Tres = 2|C0FJr(∆x)|. In the non-
interacting system (g = 0), two coefficients are dominating and the difference of the
quasi-energies yields a single time-scale Tres. When the interaction is turned on, the
weight of states with many contributions from double- or higher occupancies of sites
decrease significantly (since they are energetically disfavoured) and their quasi-energies
are slightly shifted. But, surprisingly, only a limited number of additional coefficients
cn contributes significantly in the eigenbasis expansion even for g 6= 0. The observed
collapse and revival signal is now determined by a few expansion coefficients that are
much larger than the others. If we focus on the three largest coefficients, denoted
as c1, c2, c3 and sorted by their quasi-energies ε1, ε2, ε3, we find that the latter are
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shifted by the interaction by different amounts. The differences between neighbouring
quasi-energies, ω12 = |ε2 − ε1| and ω23 = |ε3 − ε2| (shown for the example g = 0.2 in
figure 3), lead to a beating between two oscillations with periods T12, T23 ≈ Tres and
the revival time will thus be given by

trev ≈ 2π

ω23 − ω12
=

T12T23
T23 − T12

. (12)

This estimate requires a numerical diagonalisation but gives a clear physical
interpretation to the revival time observed in a specific realisation with N atoms
on L lattice sites. Thus, taking (11) and (12) together, we have an understanding
of the general physical mechanism triggering the collapse and revival of the resonant
two-band oscillations.

We compare our prediction for the revival time, (11) and (12), to actual numerical
simulations in figure 4. We find that (11) gives the right order of magnitude for
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Figure 4. (colour online) Comparison between estimated revival times according
to (11) (– – –) and to (12) (•) with numerical simulations (�) for V0 = 8, r = 1,
and different system sizes, parametrised by the Hilbert space dimension of the
κ = 0 subspaces. The error bars indicate the width of the revival at half maximum.
Inset: Scaling of the numerically measured revival time with the lattice depth V0

for r = 1. We multiply trev by Wx since Wx also depends on V0 to show the
remaining non-trivial scaling behaviour. Shown are N,L = 4, 4 (dimH = 86,
�), N,L = 5, 5 (dimH = 402, ♦), N,L = 6, 7 (dimH = 3876, △) N,L = 7, 7
(dimH = 11076, ×). Filled symbols are trev expected from (12) for the same
system, and the thick dashed line again shows our universal result (11).

the revival in a specific realisation, and, in particular, it shows the correct scaling
behaviour with the depth of the optical lattice (shown in the inset of figure 4).
Additionally, figure 4 shows that the corrections for specific sizes of the system are well
accounted for by (12), which only slightly underestimate the revival times by a few
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percent. This deviation could be corrected by including more than three participating
states, extending in this manner the arguments which lead to (12).
In an experimental realisation, the shorter the collapse time tcoll the easier it could be
observed, and for an estimate we make use of the fact [19, 21] that the collapse time
is proportional to the revival time

tcoll =
1

π(∆n)2
trev, (13)

where ∆n denotes the width of the distribution of coefficients cn necessary to expand
the initial state in the eigenbasis. For the specific example of V0 = 5, g = 0.1, r = 1
and N = 5 = L we find ∆n ≈ O(1) for the width of the distribution (i.e. the g 6= 0
couplings include just one or very few additional states as in the derivation of (12)
above), such that we estimate trev/tcoll ≈ 3 compared to trev/tcoll ≈ 5.7 ± 0.1 found
numerically.

In this work, we focused on realisations with ultra-cold atoms in a tilted
periodic potential, and the observed effect can be manipulated by engineering the
potential [1, 11] or the two-body interaction [4]. Specifically, the revival time (11)
depends sensitively on parameters as the hopping strength and the external force
close to the zeros of the Bessel function in (11). This is analogous to already realised
manipulations by time-dependent forces as predicted by [22] and realized in [23]. The
observation of Bloch oscillations over thousands of periods and a fine control on the
two-body interaction have already been demonstrated experimentally [3]. Therefore,
the collapse and revival of resonant inter-band oscillations predicted here should be
accessible in such state-of-the-art experiments. We finally remark that the collapse
and revival phenomena discussed in this section have their origin (cf. figure 1) in the
degradation (due to interactions) of single particle inter-band oscillations. So, even if
there are analogies to the collapses and revivals observed in other experiments [2, 6, 24],
the collapse-revival oscillations reported there arise from the interaction within a
single-band. Therefore, in contrast to our results, those oscillations would not at
all occur when the lower band interaction is suppressed, equivalent to Wa = 0 in the
model here discussed.

Summary. We studied the coupling between two energy bands in a two-band
Bose–Hubbard model with an additional tilting force. The force can lead to a strong
coupling of the bands and we found strong resonances in the inter-band oscillations
in this lattice model. Furthermore, the two-particle interaction leads to a collapse
and revival of the resonant inter-band oscillations. Here, we made predictions for the
relevant time scales which were verified numerically.
A closed two-band system is an idealisation, but it can approximately be realised in
various parameter regimes with ultra-cold atoms [4] using different techniques as e.g.
super lattices [11]. In addition, the use of Feshbach resonances allows a complete
control and fine tuning of the interaction strength [3] needed to test our predictions.
Our work is a first important step in going beyond ground-band physics and accessing
more degrees of freedom in bosonic ultra-cold gases.
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