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Abstract. Cylinders in elliptical orbital motion at low Reynolds numbers (Re) have been
fairly extensively researched by grid-based Computational Fluid Dynamic (CFD) methods,
revealing discontinuous behaviour of the root mean square (rms) lift coefficient from positive
to negative values for low transverse amplitudes and orbital periodicity close to the Strouhal
number for the fixed cylinder. Following published grid-based analyses, this paper studies a
few flows for Re values of 130, 160 and 180 with orbital periodicity set at 85 % of the Strouhal
frequency. The orbital amplitude in the mainstream flow direction Ax is fixed at 0.3 of the
cylinder diameter, while the transverse amplitude is varied over the range 0 < Ay < 0.3. A
brief outline of the vortex cloud analysis is first given followed by a presentation of predicted
lift and drag coefficients for this range of flow conditions plus selected flow patterns for
regions of main interest. While the detailed predicted CLmean results are not identical to
the published grid-based analysis, similar proneness to this switching phenomenon is found
to occur. The flow mechanism underlying this is shown to be that of vortex pair formation
in the downstream wake and is illustrated by predicted vortex-cloud patterns.
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1. Introduction

Formation of vortex streets behind bluff bodies has fascinated large numbers of re-
searchers since the early experiments of Strouhal [1] in 1878 concerning the generation
of ‘Aeolean tones’ and the famous 1911 paper by Theodore von Kármán [2] bequeath-
ing his name to the ‘von Kármán vortex street’. Vortex streets are created as the
outcome of periodic shedding of vorticity created initially at the surface and sub-
sequently diffused and convected within the body boundary layer. The consequent
fluctuations result in large periodic variation of the lift and drag forces and their
associated lift and drag coefficients CL and CD defined as follows for a cylinder of
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diameter d in a uniform stream U∞
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Shedding frequency fv is categorised by the dimensionless Strouhal number St defined

St =
fvd

U∞

. (1.2)

As discussed elsewhere [3-5], the onset of regular vortex street shedding occurs
above Re ≈ 47 and remains two-dimensional in character until Re ≈ 190, above which,
as convective processes gain ascendency over viscous diffusion, three-dimensional in-
stabilities begin to occur as proven theoretically by Barkley and Henderson [6] and
Posdziech and Grundmann [7] and experimentally by Williamson [8]. The present
studies using two-dimensional modelling are thus restricted to this range but towards
the upper end for the three values Re = 130, 160 and 180 for which convective pro-
cesses begin to dominate.

Because of vortex wake periodicity, flexibly mounted bodies such as struts, heat
exchanger tubes, chimney stacks etc. may deflect and oscillate in response to these
forces, possibly in linear or orbital motion. In such cases the vortex shedding prop-
erties will change resulting in quite different lift and drag variations with time. The
main aim of this paper is to simulate these conditions for a cylinder in elliptical orbital
motion at low Reynolds numbers. Studies of this type were previously undertaken
by Baranyi [3, 4] employing a very precise grid-based Eulerian type method of CFD
for solving the two-dimensional Navier Stokes equations. Vortex cloud modelling
provides a quite different CFD method based on Lagrangian modelling of the same
situation and the second aim of this paper is to compare results obtained by these
two techniques of fluid-flow simulation. Such comparisons of the now well established
CFD codes for classical datum cases are crucial at this stage of increasingly wide en-
gineering design/analysis application and one such paper has already been published
by Baranyi and Lewis [5] for low Re flow past a stationary cylinder. The present
paper extends these cross-checks to cylinders in orbital motion.

Figure 1. Elliptical path for a cylinder in orbital motion
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The main advantage of the vortex cloud model is its ability to keep account of all
the vorticity in the downstream wake without the restriction of any reference grid
and the consequent ease for obtaining simulated wake patterns. A full account of
the fundamentals of vortex cloud analysis has been given by Lewis [9] and of its
application to moving bodies and cascades [10, 11]. Thus only a brief summary of
the underlying theory will be given here in section (2) followed in section (3) by
comparisons of predicted lift and drag coefficients and presentation of selected wake
patterns. Before proceeding with this we begin with a presentation of the underlying
geometrical definitions of the proposed orbital motion as illustrated in Figure 1.

As shown here the cylinder is located in a uniform stream U∞ but subjected to
an orbital motion following an elliptical path with semi-major and minor axes Ax

, Ay where the cylinder leading edge point O is taken here to define this path. In
practice oscillations might occur with different frequencies fx and fy parallel to the
x and y axes. For elliptical motion however we will impose equal values f = fx = fy

and adopt anticlockwise motion beginning in the downstream direction for which the
cylinder displacements at time t are given by

x0 = −Ax cos (2πft) , x0 = −Ay sin (2πft) (1.3)

and its velocity components u0 and v0 are thus

u0 = 2πfAx sin (2πft) , v0 = 2πfAy cos (2πft) . (1.4)

2. The vortex cloud flow simulation method

The flow model for vortex cloud analysis is illustrated in Figure 2. At any instant the
flow past the cylinder generates a surface vorticity sheet of local strength γ(s) = vs

equal in magnitude to the surface slip-velocity vs. If the cylinder is represented by
M surface elements, the vorticity at element n is assumed to be shed as a discrete
vortex element of strength ∆Γn = γ(sn)∆sn. Although only 12 elements are shown in
Figure 2, typically fifty surface elements would be adopted for acceptable resolution as
in the present project. For further accuracy sub-elements may be used as illustrated
in Figure 2(b), where the line vortex element γ(sn)∆sn has been modelled by three
sub-elements of strength ∆Γn = 1

3
γ(sn)∆sn.

The governing integral equation is then given by [9]

1

2
γ (sm) +

∮

k (sm, sn) γ (sn) dsn + (U∞ − u0) cosβm + (V∞ − v0) sin βm+

+
Z
∑

j=1

∆Γj (Umj cosβm + Vmj sin βm) = 0
(2.1)

which states that the velocity on and parallel to the body surface of point m is
zero. This equation may be represented numerically by the following set of M linear
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Figure 2. Numerical model for vortex cloud analysis. (a) Vortex
cloud wake flow simulation, (b) Numerical model

equations,

M
∑

n=1

K (sm, sn) γ (sn) = − (U∞ − u0) cosβm − (V∞ − v0) sin βm−

−
Z
∑

j=1

∆Γj (Umj cosβm + Vmj sinβm)
(2.2)

where the cylinder is located in the uniform stream W∞ and Z discrete vortex elements
∆Γj have been shed into the fluid since initiation of the motion.

The vortex cloud computations are undertaken in a time-stepping sequence, in the
present case for 3000 steps of size ∆t = 0.05, with a uniform stream W∞ = U∞ = 1.0
and a cylinder diameter d = 1.0. A summary of the computations undertaken for
each time step is as follows:

Vortex Cloud analysis time-stepping procedure

1. Potential flow analysis by equation (2.2), to calculate the body surface slip
flow and the newly created surface vorticity γ(sj).

2. The shedding of discrete vortices ∆Γj = γ(sj)∆sj from each surface element,
thus creating a cloud of vortex elements.

3. Use of the random walk procedure [9] for each discrete vortex ∆Γj to simulate
viscous diffusion over the time step ∆t.

4. Mutual convection of all members of the vortex cloud for this time step.
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5. Recombination of any vortices that become excessively close due to the ran-
dom walk. This has the beneficial side effect of reducing the total volume of the
vortex cloud.

6. Deletion of any discrete vortices which stray inside the body profile during
diffusion and imposition of the circulation theorem to ensure that the equivalent loss
is restored during the subsequent potential flow analysis (Step 1 above) in order to
ensure overall conservation of vorticity.

Output data of importance to categorise the resulting motions are the predicted
vortex wake motions and the lift and drag coefficients CL, CD. In view of the oscilla-
tory nature of the latter, helpful practice is to evaluate their average values and their
rms fluctuations, defined as follows.

CLmean = 1

t2−t1

t2
∫

t1

CLdt

CLrms =

√

√

√

√
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t2−t1

t2
∫

t1

[CL − CLmean] dt

(2.3)

and similarly for CDmean and CDrms, where the interval t1 to t2 includes a large
number of completed oscillations.

3. Predicted results for three test cases

Baranyi [3] published results predicted by his grid-based CFD method for the three
configurations given in Table 1, which will be the focus of the present studies. The
orbital semi-major axis Ax is fixed at 0.3 for all cases and the semi-minor axis is
varied over the range 0.0 ≤ Ax ≤ 0.3. For each Re value the orbital frequency f is
set at 85 % of the Strouhal number for the fixed cylinder.

Table 1. Parameters for test cases

Case Re f Ax Ay range
1 130 0.1521 0.3 0.0 to 0.3
2 160 0.1598 0.3 0.0 to 0.3
3 180 0.165665 0.3 0.0 to 0.3

Vortex cloud calculations were undertaken for these three test cases for a cylinder
modelled by 50 elements, with two sub-elements. Further to this, to reduce the
”numerical noise” inherent in the random walk model for viscous diffusion, it was also
decided to undertake the viscous diffusion in three sub-steps of value 1

3
∆t. Vortex

cloud predictions will now be presented for these three cases in comparison with
Baranyi [3].
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3.1. Case 1: Re = 130, f = 0.1521. The mean and rms lift and drag coefficients
are compared in Figure 3, where, of particular interest, are the predicted CLmean

values. As previously predicted by Baranyi, Figure 3(a), these resolve into two distinct
envelopes that show a major discontinuity in the lower range of Ay values. His results
shift discontinuously from the upper envelope to the lower one at Ay ≈ 0.02 and
revert to the upper at Ay ≈ 0.07.

Figure 3. Comparison of predicted force coefficients for Re = 130,f =
0.1521, Ax = 0.3. (a) Baranyi [3] – Grid based method, (b) Lewis –
Vortex cloud method

The present vortex dynamics predictions, Figure 3(b), show good general agreement
of CLmean with Baranyi’s results but with some very interesting variations in the lower
range Ay < 0.07 for which results fell on either the upper envelope ABC or the lower
one DEB. The immediate deduction to be drawn from this is the likelihood of some
major instability between two possible stable vortex wake regimes and we will return
to this later. Good agreement was also obtained between the two methods for the
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predicted values of CLrms and CLmean but less so for CLrms for which vortex cloud
modelling shows much higher values.

Next we will take a look at the actual variations of CL and CD with time, see
Figure 4 below.

Figure 4. Predicted lift and drag coefficients for Re = 130, f =
0.1521. (a) Ax = 0.3, Ay = 0.0, (b) Ax = 0.3, Ay = 0.15, (c)
Ax = 0.3, Ay = 0.3

The predicted variations with time of CL and CD are shown in Figure 4 for Ax = 0.3
for three values of Ay spanning the orbital range from purely horizontal motion Ay =
0.0, on to elliptical motion Ay = 0.15 and finally for circular motion Ay = 0.3. The
CD curves are remarkably similar which explains the fairly constant values for CDmean

and CDrms in Figure 3 and it is of some interest to note that this wide variation in
orbital motion should have such little impact on the magnitude and character of the
drag coefficient. On the other hand much more variation can be observed in the
predicted lift coefficient CL. There are fluctuations in the amplitude and variations
in the predicted wave pattern for all three cases but increasingly so as the vertical
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orbital displacement Ay is increased. The most regular of these is for horizontal
motion Ay = 0.0, Figure 4(a), particularly over the first half of the time sequence.
Attention should be drawn to the general wave shape which has sharp maxima and
more rounded minima, a characteristic discovered by Baranyi [3]. This same feature
is conspicuous in Figure 4(c) for circular motion, Ay = 0.3, if less conspicuously so
for the elliptical orbit, Figure 4(b).

For further insight into some of these characteristics we will now focus attention
on predicted wake patterns for these three orbital cases, Figure 5.

Figure 5 portrays the predicted wake patterns for these three cases in comparison
with that for the motionless cylinder with its typical von Kármán vortex street, Figure
5(a). Here the cylinder in practice sheds vortices of alternate sign and equal magnitude
into the wake at regular intervals, namely the Strouhal frequency St, as borne out
here by vortex cloud simulation. The predicted flow pattern for purely horizontal
motion, Figure 5(b), is quite similar to this but with some evidence of vortex pairing
of the two +ve and −ve vortices shed during each orbit. For the cylinder in orbital
motion however, Figures 5(c) and 5(d), much more development of this phenomenon
is observed, namely the formation in the wake of very distinct vortex pairs. Thus in
Figure 5(c), attention is drawn to the pairing of a clockwise +ve vortex shed from
the upper surface with an anticlockwise −ve vortex shed slightly previously from the
lower surface and we observe also a new vortex pair being shed just downstream of
the cylinder as it completes it’s upstream orbiting motion. These +/− vortex pairs
have a natural self-convection effect in the downwards direction resulting in a general
net downward drift of the cylinder wake. The same phenomenon can be observed in
Figure 5(d) for the circular orbit. Once again the vortex pairing is of +/− type as
for the elliptical orbit, Figure 5(c). It is of particular interest to observe however that
the opposite +/− vortex pairing occurred for the case of purely horizontal motion
Ay = 0.0 shown here in Figure 5(b). In this case, Figure 3(b), the related CLmean

value was at point D located on the lower envelope whereas the CLmean values for
the elliptical and circular orbiting cases Ay = 0.15 and 0.3 actually lie on the upper
envelope. There thus seems to be a direct connection between the sign of vortex
pairing and the particular envelope on which the CLmean results lie.

3.2. Case 2: Re = 160, f = 0.1598. Results for the higher Reynolds number of
Re = 160 are shown in Figure 6 where the behavioural trends of CLmean are again
similar for the two CFD methods, with good agreement for the wider orbiting range
0.15 < Ay < 0.3. As before Baranyi discovered the switching of CLmean between
upper and lower envelopes, in this case for Ay > 0.07. However it is of considerable
interest to note that his predicted CLmean curve is an inversion of that for Re = 130,
Figure 5(a). Vortex cloud predictions here suggest a more progressive switch over the
range 0.09 < Ay < 0.15 and many more points were obtained on the lower envelope
than the upper for Ay < 0.08. The reason for the greater stability of the CLmean

curves for the higher Ay values is probably due to the stronger stirring effect of the
wider elliptical orbit shedding large amounts of clockwise vorticity. This leads here
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Figure 5. Predicted wake flow for Re = 130 for various orbits. (a)
Motionless cylinder with zero orbital motion,f = Ax = Ay = 0.0, (b)
Cylinder in orbital (horizontal) motion with f = 0.1521, Ax = 0.3,
Ay = 0.0, (c) Cylinder in orbital (elliptical) motion with f = 0.1521,
Ax = 0.3, Ay = 0.15, (d) Cylinder in orbital (circular) motion with
f = 0.1521, Ax = 0.3, Ay = 0.3

to anticlockwise bound vorticity and large negative lift. However, one stray point A
was found for Ay = 0.21 seeming to lie on the extended upper envelope, Figure 6(b).

A re-run of this situation resulted in the CLmean value B lying on the lower envelope
having the normal vortex pairing, as can be seen from Figure 7 below.
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Figure 6. Comparison of predicted force coefficients for Re = 160,
fx = fy = 0.1598, Ax = 0.3. (a) Baranyi – Grid based method, (b)
Lewis – Vortex cloud method

Figure 7. Opposite vortex pairing of points A and B in Figure 6

As can be seen from Figure 7, the stray point A has +/− vortex pairing which is
opposite to the normal more stable −/+ pairing of Case B. What is of particular
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importance to note here however is that at the higher Re of 160 the vortex pairing
for the wider y orbital range of 0.07 < Ay < 0.3 of stable vortex motion is of Case
B −/+ type which is quite contrary to that exhibited for Re = 130 orbital motion
where the stable vortex pairings were of +/− type, a remarkable switch of behaviour
for such a small Reynolds number rise. Comparing Baranyi’s results for these two
Reynolds numbers, Figures 5(a) and 6(a), the same shift of vortex pairing between
the +/− and −/+ types was in all probability also occurring, judging by the shift
from the upper envelope to the lower for Ay > 0.07. We now consider results for a
further increase to Re = 180 for the same orbital motions.

3.3. Case 3: Re = 180, f = 0.165665. Predicted results for the third case at the
highest Reynolds number Re = 180 with orbital frequency f = 0.165665 are shown
in Figure 8. As before Baranyi [3], Figure 8a, found there to be two envelopes, with
a fairly similar distribution of CLmean. Thus all CLmean values for Ay > 0.1 are
lying on the lower envelope following the same trend as the Re = 160 results. For
Ay < 0.l on the other hand his predicted values lay mainly on the upper envelope
with deviations from this in the very low y amplitude range Ay ≈ 0.004 to 0.02.

Figure 8. Comparison of predicted force coefficients for Re = 180,
fx = fy = 0.165665, Ax = 0.3. (a) Baranyi – Grid based method,
(b) Lewis – Vortex cloud method
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Vortex cloud analysis predicted similar overall trends for the lower envelope for
Ay > 0.1 but also, surprisingly, the presence of an upper envelope over most of this
wider orbiting range. The strategy adopted here on the evidence of Section 3.2 was
to plot points with +/− vortex pairing on the upper envelope and −/+ pairs on the
lower one. Within the small range 0.18 < Ay < 0.25, however, no points were found
on the lower envelope. It is difficult to escape the conclusion, comparing Figures 3, 6
and 8, that these developments of the upper envelope for the range Ay > 0.1 at the
increasing Reynolds number are caused by the progressive dominance of convection
over viscous diffusion. At the lower orbital range of Ay < 0.1 the same indeterminacy
of vortex pairing type is present and the upper envelope is in good agreement between
the two CFD methods. A couple of points were, however, still found on the lower
envelope by vortex cloud modelling.

Another feature of test runs for Re = 180 was the tendency so switch occasionally
between the +/− and −/+ vortex pairing modes for some of the Ay values. Similar
switching occurred to a very limited extent at Re = 160 in the lower Ay range.
At these lower Re values of 130 and 160 however stable locking of the vortex pairs
generally occurred as the norm for each test run.

4. Conclusions

The following conclusions may be drawn from this study:

1. Reasonable agreement has been obtained between a high resolution grid based
CFD method and vortex cloud modelling of cylinders in orbital motion within
the low Re range 130 to 180, with special focus on the time averaged lift
coefficient CLmean. Best agreement was obtained at the lower Reynolds number
Re = 130.

2. Although vortex shedding is dependent ultimately upon boundary layer for-
mation and separation, which is more rigorously modelled in the grid-based
method of Baranyi, for bluff body flows periodic vortex shedding is also strongly
dominated by the upstream influence of vortex formation and convective pat-
terns within the downstream wake for which both CFD methods are well
adapted.

3. Both methods revealed the presence of upper and lower envelopes of the CLmean

curves. For Re = 130 results for the larger y orbits over the range 0.1 < Ay <
0.3 lay on the upper envelope. For Re = 160 and 180 however CLmean values
predicted by Baranyi lay on the lower envelope over this range.

4. For the higher Reynolds number Re = 180, however, the present method pre-
dicted the presence of CLmean values lying on both upper and lower envelopes
over almost the entire y orbiting range 0.023 < Ay < 0.3 which has been
attributed to the greater influence of convective motions as one approaches
the upper limit of Re ≈ 190 below which the flow locks into two-dimensional
motion and above which three-dimensional instabilities begin to set in.

5. The present studies have revealed that the orbital motion results in regular
vortex pairing in the downstream wake. These are shown to be of the two
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possible types, namely +/− and −/+.Points on the upper envelope are found
to be of +/− type and those on the lower envelope are of −/+ type.

6. Wake patterns at the higher Re = 180 were sometimes found to switch between
+/− and −/+ type, whereas at the lower Reynolds numbers much more stable
locking of the vortex pairs was occurring as the norm.
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