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Abstract

The limitation of permutation tests is that they assume exchangeability.

It is shown that in generalized linear models one can construct permutation

tests from score statistics in particular cases. When under the null hypothesis

the observations are not exchangeable, a representation in terms of Cox-Snell

residuals allows to develop an approach based on an expected permutation

p-value (Eppv); this is applied to the logistic regression model. A small

simulation stydy and an illustration with real data are given.

Resumé

La limitation des tests de permutation est qu’ils sont basés sur une

hypothèse d’échangeabilité. Il est montré que dans les modèles linéaires
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généralisés on peut construire des tests de permutation par la statistique

du score dans des cas particuliers. Quand les observations ne sont pas

échangeables sous l’hypothèse nulle, une représentation en terme de résidus

de Cox-Snell permet de développer une approche basée sur l’espérance de la

p-valeur de permutation; ceci est appliqué au modèle de régression logistique.

Keywords: Exchangeability, Permutation tests, Residuals, Score Test,

Logistic regression, p-values.

Version française abrégée

Considérons une statistique T (Y ) pour tester une hypothèse H0. La

décision de rejet de H0 est prise si T (Y ) ≥ cα, cα choisi tel que l’erreur

de type I est α. La p-valeur est définie comme une variable aléatoire par:

pv[T (Y )] = E{IT(Y∗)>T(Y)|σ(Y)}

où Y ∗ est une variable indépendante de Y mais de même distribution. Les

tests de permutation sont basés sur un conditionnement sur les statistiques

d’ordre : Y(o) = Y(1), . . . , Y(n).

La p-valeur de permutation est:

ppv[T (Y )] = E{IT(Y∗)>T(Y)|σ(Y) ∨ σ(Y∗
(o) = Y(o))}

Supposons que nous puissions représenter Y par Y = g(ε) avec ε échangeable.

Une telle représentation a été proposé par Cox et Snell [3]. Alors T (Y ) =

T [g(ε)] = S(ε). Si ε était observé on pourrait utiliser la p-valeur de permu-

tation :

pvε∗
(o)

=ε(o)[S(ε)] = E{IS(ε∗)>S(ε)|σ(ε) ∨ σ(ε∗(o) = ε(o))}.
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En général ε n’est pas observé. Nous proposons donc de prendre l’espérance:

Eppv[T (y)] = E{pvε∗
(o)

=ε(o) [S(ε)]|σ(Y)}.

L’espérance peut dépendre de paramètres de nuisance γ ∈ Γ. Dans ce cas on

peut soit les remplacer par les estimateurs du maximum de vraisemblance,

soit calculer maxγ∈Γ Eppv(γ). Cette approche est adaptée à un modèle de

régression logistique.

1 Introduction

Permutations tests can be useful as distribution-free tests and also have ex-

act size (as opposed to the asymptotic validity of most conventional tests).

However the use of permutation tests in regression problems has been limited

because valid permutation tests obtain only if the observations are exchange-

able under the null hypothesis. A vector Y has an exchangeable distribution

if PY has the same distribution as Y , for any permutation matrix P . If

we consider a test statistic T (Y ), a permutation test is obtained, if Y is ex-

changeable, by conditioning on the order statistics Y(o) = {Y(1), . . . , Y(n)} [6].

The assumption of exchangeability, although a little less stringent than the

assumption of identically independently distributed (i.i.d.) observations, is

still quite restrictive, and does not hold for instance in regression problems.

The has been many applications of permutation tests; a particularly in-

teresting permutation test was proposed by Mantel [8]. Permutation tests

are often based on score tests. For some theory about permutation tests see

[1] and for score tests see [2] and [4].
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In this paper we propose a new approach, called expected permutation

p-value (Eppv), based on permuting an unobserved exchangeable variable.

Section 2 presents permutation versions of score tests in generalized linear

models. In sectiin 3 some theory about p-values, permutation and condi-

tioning is developed and the Eppv are presented. This approach is then

applied to the logistic regression model in section 4. Section 5 presents a

short simulation. An illustration with real data is given ins ectiion 6 which

concludes.

2 Permutation score tests

Consider a sample of independent random variables Yi, i = 1, . . . , n, and

assume a generalized linear model; the contribution of observation i to the

likelihood is:

f(Yi; θi, η) = exp
{

η−1 [θiYi − b(θi)] + c(Yi, η)
}

with E(Yi) = b′(θi) = µi and θi = Z iβ where Z i = (zi1, . . . , z
i
p) is a row vector

of explanatory variables (considered here as deterministic) and β is a p × 1

vector of regression coefficients; here η denotes the dispersion parameter.

Then the score equation obtained by equating to zero the derivative of the

loglikelihood L relatively to β is ZT R̂ = 0, where Z is the n × p matrix of

explanatory variables zij , and R̂ = (R̂1, . . . , R̂n)
T is the vector of residuals

R̂i = Yi −µi(β̂). Thus the estimated residuals are orthogonal to the space of

explanatory variables.

If we consider an explanatory variable indexed by p+1, the model becomes

θi = Z iβ + zip+1βp+1. Lets us denote the parameters γ = (η, β, βp+1). The
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score statistic for testing H0: “βp+1 = 0” has the linear form:

S(Y ) =
∂L

∂ βp+1
(βp+1 = 0) = zTp+1R̂, (1)

where zTp+1 = (z1p+1, . . . , z
n
p+1) is the vector of values for explanatory variable

p + 1 and R̂ is the vector of residuals in the model not including variable

p+ 1.

A test for H0: “βp+1 = 0” may be based on the asymptotic distribution

of n−1/2S(Y ). Let us call φ(Y ) the critical function of the test (φ(Y ) = 1:

H0 rejected, φ(Y ) = 0: H0 not rejected); except in simple cases it is not

possible to construct exact tests, that is with Eγ [φ(Y )] = α, γ ∈ ω, where ω

is the subset of the parameter space corresponding to H0. For small sample

sizes the difference between the nominal and true Type I error rates may

be large. In regression models it is tempting to try to construct tests based

on permutation of the residuals in the score statistics [10]. Fisher exact

test can be shown to be a permutation of the residuals in a score test, in

a case where the observations are exchangeable under the null hypothesis.

However, generally as soon as there is one explanatory variable under the

null hypothesis, neither Y nor R̂ are exchangeable; hence, permutation tests

cannot be constructed [1].
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3 Some theory about p-values, permutation

and conditioning

3.1 p-values

Consider a test φ(Y ) based on a statistic T (Y ). We examine the case where

the decision to reject H0 is taken if T (Y ) ≥ cα, cα being chosen such

Eγ [φ(Y )] = α. A definition of the p-value which allows to consider it as

a random variable (and hence to study its properties) is

pv[T (Y )] = Eγ[IT(Y∗)≥T(Y)|σ(Y)]

where Y ∗ is a random variable independent from Y but with the same

distribution and σ(Y ) is the sigma-algebra generated by Y . See [11] for

properties of the conditional expectation. We can construct a size α test by

rejecting H0 if pv[T (Y )] ≤ α, that is: φ(Y ) = Ipv[T (Y )]≤α.

3.2 Conditional p-values

We may define a p-value conditional on C, where C ⊂ σ(Y, Y ∗) as:

pvC[T (Y )] = Eγ [IT(Y∗)≥T(Y)|σ(Y) ∨ C}.

Conditional tests can be constructed as φ(Y ) = IpvC [T (Y )]≤α. We have Eγ [φ(Y )|C] =

α; it follows that we also have Eγ [φ(Y )] = α. That is, marginally the test has

size α, but the critical regions (and the power) depend on C. The conditional

approach has been advocated for two different situations [7].
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The first arises if we have a sufficient statistic C for the family of measure

PY = {Pγ, γ ∈ ω}, where ω = H∩K, the frontier between the sets represent-

ing the null (H) and the alternative (K) hypotheses. If C is the sigma-algebra

generated by C, then pvC [T (Y )] no longer depends on γ, so that we obtain

a similar test, Eγ [φ(Y )] = α, γ ∈ ω. Such a test is said to have the Neyman

structure relatively to C. As an example consider the case where we ob-

serve variables Yi, i = 1, . . . , n which are i.i.d. under the family of measures

PY = {Pγ, γ ∈ ω}. Then the order statistic. Y(o) = Y(1), . . . , Y(n) is sufficient

for γ and if we take C = σ({Y ∗
(o) = Y(o)}) we obtain a permutation test, that

is we have E[φ(Y )|Y(o)] = α. Due to the discrete character of the conditional

distribution of T (Y ), it is not possible to achieve E[φ(Y )|Y(o)] = α for all

α, except by resorting to randomisation; we will neglect this problem in the

sequel.

The second situation arises in the presence of ancillary statistics Z: here

the motivation is to perform the test adapted to the situation fixed by the

particular realization of Z. We may also consider S-ancillary statistics whose

distribution depends on an unknown parameter ξ, while the distribution of

Y given Z does not depend on ξ. While the unconditional p-value depends

on both γ and ξ, the p-value conditional on Z does not depend on ξ. As an

example consider the case of a regression model where explanatory variables

Z i are associated to response variables Yi: the regression model specifies the

conditional distribution of Yi given Z i and depend on γ, while the marginal

distribution depends on ξ only. It is natural to consider tests which are

conditional on Z; in our formalism, for a test stastic T (Y, Z) we then compute

the conditional p-value pvC[T (Y, Z)] with C = σ({Z∗ = Z}).
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The two situations have in common the fact that there is a reduction of

the number of parameters on which the p-value depends. In the particular

case where there is a sufficient statistic for γ, the p-value does not depend

on any parameter. However in complex problems this may not be achieved

without loosing too much power. One possibility is to replace pvC[T (Y ); γ]

by pvC[T (Y ); γ̂], where γ̂ is an estimator of γ. We would like to a have

a procedure such that |pvC[T (Y ); γ̂] − pvC[T (Y ); γ]| is as small as possible.

Choosing large C may help to reduce the variance of this random variable.

Another way is to apply a minimax argument. If it is known that γ belongs

to a compact set Γ, then we may base a test on maxγ∈Γ pvC [T (Y ); γ]. This

leads to a test of size lower or equal to α.

3.3 The expected conditional p-value

Consider the case where Y = g(ε), where g(.) is a non-decreasing func-

tion; if g is not one-to-one we have σ(Y ) ⊂ σ(ε). If we have a statistic

T (Y ), this defines a statistic S(ε) = T (g(Y )). We may consider the p-value

pvC[S(ε)] = Eγ [IS(ε∗)≥S(ε)|σ(ε) ∨ C}, where C ⊂ σ(ε∗, ε). Since in general

this is not σ(Y )-measurable, we may consider its expectation EpvC [S(ε)] =

Eγ [pvC [S(ε)]|σ(Y)]. A size-α test can be constructed using this expected

conditional p-value as usual.

This approach can in particular be connected with the Cox-Snell family

which represents Y as Y = g(ε), where ε is exchangeable. Such a repre-

sentation was proposed by Cox and Snell [3] to define residuals. If ε were

observed a permutation test could be constructed by conditioning on the

order statistic of ε. It is appealing thus to use an expected conditional p-
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value choosing C = σ(ε∗(o) = ε(o)). Such a p-value will be called expected

permutation p-value (Eppv).

Numerically this method is easy to implement: draw at random ε∗ from

the distribution of ε conditional on Y ; compute the permutation p-value;

take the mean of the p-values for a sufficient number of drawings. However

the distribution of ε conditional on Y may depend on parameters that may

have to be estimated (see sections 3.2 and 4).

4 Applications of the Eppv approach to the

logistic model

A logistic regression model is specified by: Pr(Yi = 1) = πi; logit(πi) = ziβ.

It can be depicted in terms of latent i.i.d. variables εi having a uniform

distribution on [0,1]:

Yi = Iεi≤πi

A score test for H0 : ”βp+1 = 0” is T (Y ) = S(ε) = zTp+1(Iε≤π − π) with

obvious vectorial notation. For a permutation test only the first part zTp+1Iε≤π

is needed. However, because
∑

i Iεi≤πi
is not constant under permutation

of ε, the test is not invariant for a change of origin of z: there is a need

to center one of the two vectors involved in this scalar product, a concept

also related to that of “clean” form as in [1]. Thus the proposed statistic

is T (Y ) = S(ε) =
∑

i z
i
p+1(Iεi≤πi

− n−1 ∑

i Iεi≤πi
) =

∑

i(z
i
p+1 − z̄p+1)Iεi≤πi

)

(where z̄p+1 is the mean of zip+1), which is invariant.

For computing the Eppv we draw ε from its conditional distribution which

is
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• εi ∼ U [0, πi] if Yi = 1;

• εi ∼ U [πi, 1] if Yi = 0.

If the πi are known, an exact permutation test follows. In practice one

may replace πi by an estimator π̂i, the maximum likelihood estimator of πi

under H0, leading to an approximate test. It is conjectured that the type

I error probability is α + Op(n
−1/2), similar as when using the asymptotic

distribution of the standardized score statistic. However for small sample

size the Eppv approach may have better performance because of the non-

standard conditioning. Another possibility is to apply the minimax approach.

Consider the case p = 1 and it is known that β1 ∈ [a, b]. One can find

maxβ1∈[a,b]Eppv(β1) and this leads to a test with type I error probability

lower or equal to α. In practice the maximum can be found numerically.

It is interesting to note that when there is no explanatory variable under

the null hypothesis, the Eppv test reduces to Fischer’s exact test; this hap-

pens because for all i, π̂i = Ȳ so that permuting ε is identical to permuting

Y .

5 Simulation study

We have simulated a Logistic regression model given by:

logit(πi) = β0 + β1z
i
1 + β2z

i
2

with β0 = 0; β1 = 1; zi1 = wi
1 − 1; zi2 = (wi

2 − 1)(zi1)
d, where wi

1 and wi
2 are

independent with exponential distributions. The values d = 0, where zi1 and

zi2 were independent, and d = 1 and d = −1, producing two different cases

10



of non-linear dependencies between zi1 and zi2, were tried. Samples of sizes

30 and 15 were generated from this model. The problem was: testing H0 :

“β2 = 0” at size α = 0.05. The empirical sizes (for β2 = 0) and powers (for

β2 = 1 for n = 30 and β2 = 2 for n = 15) of the likelihood ratio (LR) test,

the Wald test, a score test based on permutation of residuals (PR) and the

Eppv test have been estimated by simulation using 10000 replicates. We have

also tried a Bootstrap test: among several possibilities we have chosen the

one which seemed the most natural that is a non-parametric bootstrap of the

Wald test; the guidelines given in [5], that is resampling (β∗
2− β̂2)/σ

∗
β2

(where

β∗
2 is the maximum likelihood estimate of β2 for a resample and σ∗

β2
is the

estimated standard deviation of β∗
2), have been applied; this time-consuming

test (using 499 resamples) has been studied on only 1000 replicates. For

simplicity, for all the tests, only marginal probabilities were estimated, that

is we regenerated the zi1 and zi2 at each replicate.

The results appear in Table 1 (with β2 simply denoted β). It is clear that

the Wald test tends to be conservative while the LR test tends to be anti-

conservative. These behaviours are more marked for n = 15 than for n = 30.

The tests based on permutation better respect the size of the tests with a

tendency to conservative for d = 1; the Eppv test has a better stability than

permutation of residuals. The bootstrap Wald test is not really practical

for n = 15 because many configurations generated by resampling are too

particular and lead to failure of convergence of the algorithm; so the results

of this test are not displayed in Table 1. For n = 30 it is strongly anti-

conservative: the estimated type I error risks are 0.088, 0.097, 0.14 for d = 0,

1 and −1 respectively.
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The power of the Eppv test is always higher than that of the Wald test

and of the test based on permutation of residuals; it is sometimes lower than

that of the likelihood ratio test but the latter is not very reliable in the

situations considered. In conclusion when working with small samples and

when we can suspect a dependency between the factor studied and the other

explanatory variables, the Eppv test seems the most reliable among the tests

considered here.

6 Illustration on real data

Even in a large study very small numbers may occur in some categories of

the sample which are of interest. The small problem treated here for illustra-

tion is taken from a real study on the effect of wine consumption of the risk

of developing dementia [9]. In this study, 2273 non-demented subjects were

followed up during three years. Subjects were classified according to their

wine consumption as: no drinkers, mild drinkers moderate or heavy drinkers.

During the follow-up 99 cases of dementia developed. Potentially important

confounding factors were age, gender and educational level (here coded as a

binary variable: no primary diploma vs primary diploma or above). Globally

it appeared from a logistic regression analysis that moderate wine consump-

tion was a protective factor against dementia. However if we try to analyze

the data separately by gender (which is legitimate because both the curse

of dementia and drinking habits are different among genders) very small

numbers occur. In particular, there were 28 dementia cases among 811 non-

drinking women and 0 cases among 44 moderate or heavy drinking women.
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Table 1: Simulation results based on 10000 replicates of a logistic regression

model comparing the Wald test, the likelihood ratio test (LR), the test based

on permutation of residuals (PR) and the Eppv test; the theoretical size of

the tests is 0.05.

Wald LR PR Eppv

n = 30

d = 0 0.044 0.063 0.051 0.052

β = 0 d = 1 0.025 0.069 0.015 0.025

(Type I error) d = −1 0.020 0.080 0.062 0.046

d = 0 0.45 0.53 0.47 0.48

β = 1 d = 1 0.17 0.31 0.14 0.17

(Power) d = −1 0.81 0.91 0.85 0.88

n = 15

d = 0 0.020 0.072 0.049 0.049

β = 0 d = 1 0.009 0.094 0.018 0.020

(Type I error) d = −1 0.007 0.094 0.066 0.041

d = 0 0.22 0.52 0.57 0.58

β = 2 d = 1 0.10 0.41 0.19 0.22

(Power) d = −1 0.16 0.65 0.75 0.79
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With such figures, a logistic regression with wine consumption as an explana-

tory variable fails to converge so that it is not possible to use a Wald test

and a likelihood ratio test is probably not very reliable. For one-sided alter-

native, Fisher’s exact test gave a p-value equal to 0.21 and when adjusting

on age and educational level, we obtained p-values equal to 0.18 and 0.13

with the PR and Eppv tests respectively; on the basis of these data, taking

into account possible confounding factors, the hypothesis that consumption

of wine has no effect on risk of dementia among women cannot be rejected.

In conclusion the Eppv approach extends permutation tests ideas to com-

plex problems. Bootstrap was also in part motivated by such an extension

but unlike bootstrap, the Eppv approach keeps the idea of conditioning on

the order statistic of an exchangeable vector.
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