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Abstract

Beta-binomial/Poisson models have been used by many authors to model multivari-

ate count data. Lora and Singer (Statistics in Medicine, 2008) extended such models

to accommodate repeated multivariate count data with overdipersion in the binomial

component. To overcome some of the limitations of that model, we consider a beta-

binomial/gamma-Poisson alternative that also allows for both overdispersion and differ-

ent covariances between the Poisson counts. We obtain maximum likelihood estimates

for the parameters using a Newton-Raphson algorithm and compare both models in a

practical example.

Key words: bivariate counts, longitudinal data, overdispersion, random effects, regres-

sion models

1 Introduction

Beta-binomial models have been used by many authors to model binomial count data with

different probabilities of success among units from the same group of study. Williams

(1975) used such distributions to compare the number of fetal abnormalities of pregnant

rat females on a chemical diet during pregnancy to a control group, both with fixed litter

size. Gange et al. (1996) analyzed the quality of health services (classified as appropriate

or not) during patient stay in a hospital using a similar approach. To analyze mortality
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data in mouse litters with a fixed number of implanted fetuses, Brooks et al. (1997) used

such models not only to allow for different probabilities of success among units from the

same group of study, but also to consider overdispersion among them. Given that in many

studies, the number of trials may not be fixed, Comulada and Weiss (2007) considered a

multivariate Poisson distribution to model the number of successes and failures in a random

number of attempts, illustrating their proposal with data from a HIV transmission study.

Multivariate Poisson distribution have also been used to model correlated count data, as

in Karlis and Ntzoufras (2003) who used such distribution to model the number of goals of

two competing teams.

In a study where the number of successes in a random number of trials was observed

repeatedly, and therefore are possibly correlated, Lora and Singer (2008) consider multi-

variate beta-binomial/Poisson models. In their proposal, the beta-binomial component also

accounts for overdispersion across units with the same levels of covariates. The multivari-

ate Poisson component accommodates both the random number of trials and the repeated

measures nature of the data. The effect of possible covariates is taken into account via

the regression approach suggested by Ho and Singer (1997, 2001). Their model, however,

requires a constant covariance term between the repeated number of trials and does not

allow for overdispersion in these counts. Since, as suggested by Cox (1983), the precision

of parameter estimates may be seriously affected when overdispersion is not accounted for

in the models considered for analysis, we propose a beta-binomial/gamma-Poisson model

that not only incorporates such characteristics but is also easier to implement computa-

tionally. The model, along with maximum likelihood methods for estimation and testing

purposes are presented in Section 2. An illustration using data previously analyzed by Lora

and Singer (2008) is presented in Section 3. A brief discussion and suggestions for future

research are outlined in Section 4.

2 The beta-binomial/gamma-Poisson model for repeated mea-

surements

We denote the vector of responses for the g-th sample unit (g = 1, . . . ,M) by

Yg = (Xg1, Ng1, ...,Xgp, Ngp)
′
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with Xgh corresponding to the number of successes in Ngh trials performed under the h-th

(h = 1, . . . , p) observation condition. We assume that for all g and h,

Xgh | Ngh, πgh follow independent binomial(Ngh, πgh) distributions (1)

πgh follow independent Beta(µ(zµgh)/θ(zθgh), [1 − µ(zµgh)]/θ(zθgh)) distributions(2)

Ngh | τg follow independent Poisson(λ(zλgh)τg) distributions (3)

τg follow independent gamma(α(zαg)/δ(zδg), 1/δ(zδg)) distributions (4)

where zµgh, zθgh, zλgh, zαg and zδg are vectors of fixed covariates.

According to (1) and (2), the success probabilities may be different across units, but

they are generated by beta distributions that may depend on covariates. In (3) and (4),

we follow Nelson (1985) to specify that the numbers of trials may also be different across

units, but are generated by gamma distributions that may also depend on covariates.

The parametrizations (0 < µ < 1, θ > 0) adopted in (2) and (α > 0, δ > 0) adopted

in (4) are used to facilitate maximum likelihood estimation, as suggested by Gange et

al. (1996); their relation to the usual beta(a, b) parametrization, as in Johnson and Kotz

(1970), and the usual gamma(c, d) parametrization, as in Mood et al. (1974), is given by

µ =
a

a+ b
, θ =

1

a+ b
, α =

c

d
and δ =

1

d
.

The first and second order central moments of τg in (4) are

E(τg) = α(zαg) (5)

V ar(τg) = α(zαg)δ(zδg) (6)

From (3) and (4), the first and second order central moments of the number of trials are

E(Ngh) = λ(zλgh)α(zαg) (7)

V ar(Ngh) = λ(zλgh)α(zαg){1 + λ(zλgh)δ(zδg)} (8)

Cov(Ngh, Ngh′) = λ(zλgh)λ(zλgh′)α(zαg)δ(zδg) (9)

for all g, h, h′, h 6= h′. Similarly, the first and second order central moments of πgh in (2)

are

E(πgh) = µ(zµgh) (10)

V ar(πgh) = µ(zµgh)[1 − µ(zµgh)]θ(zθgh)[1 + θ(zθgh)]
−1 (11)
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Also, from (1) and (2), we may conclude that, for all g and h,

Xgh | Ngh ∼ beta− binomial[Ngh, µ(zµgh), θ(zθgh)]

with

E(Xgh) = µ(zµgh)λ(zλgh)α(zαg) (12)

V ar(Xgh) = µ(zµgh)[1− µ(zµgh)]
θ(zθgh)

1 + θ(zθgh)
λ2(zλgh)α(zαg)[α(zαg) + δ(zδg)]

+µ(zµgh)λ(zλgh)α(zαg)[1 + µ(zµgh)λ(zλgh)δ(zδg)] (13)

Cov(Xgh,Xgh′) = µ(zµgh)µ(zµgh′)λ(zλgh)λ(zλgh′)α(zαg)δ(zδg) (14)

for all g, h, h′, h 6= h′. The covariance between the numbers of successes and trials is

Cov(Xgh, Ngh) = µ(zµgh)λ(zλgh)α(zαg){1 + λ(zλgh)δ(zδg)}. (15)

The parameters θ(zθgh) govern both the variability of the success probabilities and the

overdispersion of the number of successes, that may also depend on the parameter δ(zδg).

When θ(zθgh) and δ(zδg) are equal to zero, there is no overdispersion for the number of

successes. The parameters δ(zδg) are also related to the variability and overdispersion of

the number of trials and to the covariance between the numbers of trials and numbers of

successes. When δ(zδg) = 0, the repeated counts are independent.

To investigate the effects of covariates, we adopt log-linear models of the form

µ(zµgh) =
exp(z′µghβµ)

1 + exp(z′µghβµ)
(16)

θ(zθgh) = exp(z′θghβθ) (17)

λ(zλgh) = exp(z′λghβλ) (18)

α(zαg) = exp(z′αgβα) (19)

δ(zδg) = exp(z′δgβδ) (20)

where βµ, βθ, βλ, βα and βδ are vectors of parameters to be estimated.

From (1), (2), (3) and (4) it follows that the joint probability mass function for the

number of trials and successes for the g-th unit is

P (Xg1, Ng1, ...,Xgp, Ngp) =

p
∏

h=1

P (Xgh | Ngh)P (Ng1, ..., Ngp)

=

p
∏

h=1

P (Xgh | Ngh)

(

∫

∞

0

p
∏

h=1

P (Ngh | τg)f(τg)dτg

)
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with f denoting the density of (4). Since the logarithm of the likelihood is given by

logL(βµ,βθ,βλ,βα,βδ) =

=

M
∑

g=1

p
∑

h=1

logP (Xgh | Ngh,βµ,βθ) +

M
∑

g=1

logP (Ng1, ..., Ngp | βλ,βα,βδ),

the parameters of the beta-binomial distribution (βµ,βθ) can be estimated separately from

those of the gamma-Poisson distribution (βλ,βα,βδ).

The beta-binomial probability mass function can be written as

P (Xgh = xgh | Ngh = ngh,βµ,βθ) =

(

ngh

xgh

){

Γ

(

1

θ(zθgh)

)[

Γ

(

1

θ(zθgh)
+ ngh

)]

−1
}

×

{

Γ

(

µ(zµgh)

θ(zθgh)
+ xgh

)[

Γ

(

µ(zµgh)

θ(zθgh)

)]

−1
}

×

{

Γ

(

1− µ(zµgh)

θ(zθgh)
+ ngh − xgh

)[

Γ

(

1− µ(zµgh)

θ(zθgh)

)]

−1
}

=

(

ngh

xgh

) ngh−1
∏

u=0

[1 + uθ(zθgh)]
−1

xgh−1
∏

v=0

[µ(zµgh) + vθ(zθgh)]

×

ngh−xgh−1
∏

w=0

[1− µ(zµgh) + wθ(zθgh)] (21)

where Γ(r) =
∫

∞

0 tr−1e−tdt. The expressions involving ratios between two gamma functions

(presented within brackets) make sense when ngh 6= 0 (in the first ratio), xgh 6= 0 (in the

second ratio) and xgh 6= ngh (in the third ratio). When these conditions are not satisfied,

the ratios between the gamma functions may be set equal to one, and do not affect the

conditional probability of Xgh given Ngh,βµ,βθ.

The kernel of the beta-binomial log-likelihood function is

L(βµ,βθ) =

M
∑

g=1

p
∑

h=1





xgh−1
∑

v=0

log[µ(zµgh) + vθ(zθgh)]+

ngh−xgh−1
∑

w=0

log[1− µ(zµgh) +wθ(zθgh)]−

ngh−1
∑

u=0

log[1 + uθ(zθgh)]



 (22)

and we may use maximum likelihood methods adopting a Newton-Raphson iterative process

to estimate βµ and βθ. The first and second derivatives of (22) are shown in Lora and Singer

(2008). Method of moments estimates based on the beta-binomial distribution may be used
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as initial values for µ(zµgh) and θ(zθgh), as suggested by Griffiths (1973). Likelihood ratio

tests may be employed for model reduction purposes, i.e., for constructing a parsimonious

model that captures the explainable variability in the data. For example, to verify if the

q-parameter vector β∗ is null, the test statistics LR = 2(L − L∗), with L∗ indicating the

log-likelihood under H0 and L, this logarithm under the alternative hypothesis may be

employed. Asymptotically, LR follows a chi-squared distribution with q degrees of freedom

under the null hypothesis.

The probability function for the repeated number of trials based in (3) and (4) is

P (Ng1 = ng1, ..., Ngp = ngp|βλ,βα,βδ) =

=

p
∏

h=1

{

[λ(zλgh)]
ngh

ngh!

}[

1

δ(zδg)

]α(zαg)/δ(zδg)

Γ

(

p
∑

h=1

ngh +
α(zαg)

δ(zδg)

)

{

Γ

(

α(zαg)

δ(zδg)

)}

−1

÷

[

p
∑

h=1

λ(zλgh) +
1

δ(zδg)

]Σp
h=1

ngh+α(zαg)/δ(zδg)

=

p
∏

h=1

{

[λ(zλgh)]
ngh

ngh!

} Σp
h=1

ngh−1
∏

u=0

[α(zαg) + uδ(zδg)]

÷

{

δ(zδg)

[

p
∑

h=1

λ(zλgh)

]

+ 1

}Σp
h=1

ngh+α(zαg)/δ(zδg)

(23)

In (23), the simplifications for the rations between two gamma functions make sense when
∑p

h=1 ngh 6= 0. When this condition is not satisfied, the ratio is also set equal to one, and

it does not affect the probability value.

The kernel of the gamma-Poisson log-likelihood function is

L(βλ,βα,βδ) =

M
∑

g=1







p
∑

h=1

[nghlogλ(zλgh)] +

Σp
h=1

ngh−1
∑

u=0

log[α(zαg) + uδ(zδg)]

−

[

p
∑

h=1

ngh +
α(zαg)

δ(zδg)

]

log

[

δ(zδg)

(

p
∑

h=1

λ(zλgh)

)

+ 1

]}

(24)

and we adopt the same methods used with the beta-binomial model to estimate βλ,βα and

βδ. The first and second derivatives of (24) are shown at the Appendix. Method of moments

estimates may be used used as the initial values for λgh(zλ), αg(zα) and δ(zδ) here, too.

Likelihood ratio tests may be employed for model reduction purpose, along similar lines as

those considered for the beta-binomial model.

Both iterative processes are implemented in the R software and the corresponding code

can be downloaded from http://www.ime.usp.br/∼jmsinger.
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3 Data analysis

To compare the beta-binomial/gamma-Poisson to the multivariate beta-binomial/Poisson

model, we consider the same data presented in Lora and Singer (2008) from a study con-

ducted at the Learning Laboratory of the Department of Physiotherapy, Phonotherapy and

Occupational Therapy of the University of São Paulo, Brazil, to evaluate the performance

of some motor activities of Parkinson’s disease patients. For the sake of completeness, we

repeat the description of the study here. Twenty five patients with confirmed clinical di-

agnosis of Parkinson’s disease and twenty one normal (without any preceding neurologic

alterations) subjects repeated two sequences of specified opposed finger movements (touch-

ing one of the other four fingers with the thumb) during one minute periods, with both

hands. This was done both before and after a four-week experimental period in which

only one of the sequences was trained (active sequence) with one of the hands; the other

sequence was not trained (control sequence). Half of the subjects in each group trained the

preferred hand (right for the right-handed and left for the left-handed in the normal group

or the less affected by the disease in the experimental group) and the other half trained the

non-preferred hand. Information on the number of attempted and successful trials were

recorded with a special device attached to a computer.

Six subgroups may be characterized by the combination of disease stage (normal, ini-

tial or advanced) and use of the preferred hand (yes or no). The repeated measures are

characterized by the cross-classification of the levels of sequence (control or active) and

evaluation session (baseline or final). The specific objective of the study was to evaluate

whether training is associated with increases in the expected number of attempted trials

per minute (agility) and/or on the probability of successful trials (ability). Note that the

treatment could improve agility without improving ability, so an evaluation of its effect on

both characteristics is important.

The means and variances of the number of attempted and successful trials at the baseline

and final evaluations with the active and control sequences for patients at the different dis-

ease stages using the preferred or non-preferred hands are presented in Table 1. Variances,

instead of standard deviations, are displayed to facilitate identification of overdispersion in

the sense referred by Nelder and McCullagh (1989), i.e., cases where variances are greater

than expected under Poisson or binomial distributions. Overdispersion in the number of

attempts, under a Poisson distribution is clearly identified by comparing the observed mean

and variance; for the number of successes, on the other hand, it is necessary to compare the
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observed and expected variances under the binomial distribution (np(1− p)). For example,

considering normal subjects performing the active sequence at the baseline session using the

preferred hand, the expected variance under the binomial model is 1.4, while the observed

variance is 49.0, highlighting the overdispersion for these counts too.

Correlation coefficients for the within-subject responses for the normal patients using

the preferred hand are displayed in Table 2. For this subgroup, only 3 out of the 28 observed

correlations are smaller than 0.60; this suggests that the counts are probably related and it

is sensible to use a model that can accommodate this relationship. The correlation patterns

for the other subgroups are similar and are not presented.

The analysis strategy consisted in fitting initial models of the form (16)-(20) with all

main effects and first order interactions, and trying to reduce them by sequentially elimi-

nating the non-significant terms. The parameters are indexed by disease stage (0=normal,

1=initial, 2=advanced), intervention hand (P=preferred, N=non-preferred), evaluation ses-

sion (B=baseline, F=final) and sequence (C=control, A=active). We adopted a reference

cell parameterization with the reference cell corresponding to the normal group (0), per-

forming the active sequence (A) with the preferred hand (P) at the baseline evaluation

(B).

3.1 Modelling the expected probability and dispersion of successful at-

tempts

For both beta-binomial/gamma-Poisson and multivariate beta-binomial/Poisson models,

the parameters of the beta-binomial components can be estimated separately from those

of the gamma-Poisson or the multivariate Poisson distributions. Therefore, modelling the

expected probabilities and dispersion parameters of the successful attempts is exactly the

same as in Lora and Singer (2008) and it is not shown here; we present only the estimates

and standard errors computed under the final beta-binomial model (Table 3) for comparison

with the results obtained under the beta-binomial/gamma-Poisson model. Under this final

model, estimates of the expected probabilities of successful attempts [E(πgh) = µ(zµgh)] and

dispersion parameters θ(zθgh) (that govern the variability of the probabilities of successful

attempts), along with their standard errors, are presented in Table 4.

The results suggest no evidence of difference between the expected probabilities of

successful attempts for patients using preferred or non-preferred hand (βµN = 0), neither

for active nor for control sequences in the baseline session (βµC = 0). Patients in the normal

group or with the disease in initial stage have similar expected probabilities of successful

8



Table 1: Mean and variance (within parentheses) of the number of attempted and successful

trials.
Disease Evaluation Intervention Sequence Successes Attempts

stage session hand

Normal Baseline Preferred Control 17.1 (49.0) 18.6 (46,2)

Normal Baseline Preferred Active 17.1 (72.3) 17.9 (79.2)

Normal Baseline Non-preferred Control 18.1 (27.0) 20.9 (47.6)

Normal Baseline Non-preferred Active 17.1 (37.2) 19.5 (53.3)

Normal Final Preferred Control 20.9 (90.3) 26.1 (44.9)

Normal Final Preferred Active 32.7 (139.2) 33.1 (132.3)

Normal Final Non-preferred Control 24.2 (25.0) 28.6 (38.4)

Normal Final Non-preferred Active 32.8 (74.0) 34.4 (72.3)

Initial Baseline Preferred Control 13.7 (24.0) 16.3 (44.9)

Initial Baseline Preferred Active 12.0 (23.0) 13.5 (23.0)

Initial Baseline Non-preferred Control 12.0 (17.6) 14.6 (9.0)

Initial Baseline Non-preferred Active 10.7 (20.3) 13.6 (10.9)

Initial Final Preferred Control 13.2 (30.3) 16.8 (43.6)

Initial Final Preferred Active 20.2 (9.6) 21.8 (2.9)

Initial Final Non-preferred Control 15.3 (112.4) 20.3 (116.6)

Initial Final Non-preferred Active 20.1 (33.6) 20.4 (39.7)

Advanced Baseline Preferred Control 4.8 (22.1) 7.1 (11.6)

Advanced Baseline Preferred Active 4.6 (11.6) 7.9 (14.4)

Advanced Baseline Non-preferred Control 8.3 (72.3) 12.5 (15.2)

Advanced Baseline Non-preferred Active 13.5 (92.2) 15.5 (57.8)

Advanced Final Preferred Control 7.4 (75.7) 11.9 (67.2)

Advanced Final Preferred Active 13.5 (90.3) 14.9 (77.4)

Advanced Final Non-preferred Control 5.8 (31.4) 12.8 (12.3)

Advanced Final Non-preferred Active 22.5 (75.7) 23.8 (75.7)

9



Table 2: Correlation coefficients for the within-subject responses for the normal subjects

using the preferred hand

Baseline session Final session

Active seq. Control seq. Active seq. Control seq.

Suc. Att. Suc. Att. Suc. Att. Suc. Att.

Baseline Active Suc. 1

session seq. Att. 0.99 1

Control Suc. 0.85 0.84 1

seq. Att. 0.78 0.80 0.96 1

Final Active Suc. 0.76 0.76 0.61 0.61 1

session seq. Att. 0.74 0.74 0.61 0.63 0.99 1

Control Suc. 0.53 0.49 0.59 0.63 0.60 0.61 1

seq. Att. 0.81 0.82 0.70 0.69 0.93 0.92 0.50 1

Codes: Suc.=Successes, Att.=Attempts and seq.=sequence

attempts (βµ1 = 0), but those with the disease in an advanced stage have smaller expected

probabilities of successful attempts (βµ2 < 0). Moreover, an intervention effect is detected

since the expected probabilities of successful attempts in the final session are greater than

those for the baseline session (βµF > 0). These values are smaller for the control sequence

than for the active sequence (βµF + βµ(F∗C) < 0) suggesting that training is effective with

respect to ability.

We may also infer that there is no difference between the expected dispersion parameter

for subjects performing the active and control sequences (βθC = 0). For the normal subjects,

the expected dispersion parameters are the same (βθC , βθN , βθF=0), except in the final

evaluation using the non-preferred hand, for which the expected value is smaller than the

others (βθ(F∗N) < 0). For patients in initial stage of the disease, the expected dispersion

parameters are smaller than for those in the normal group (βθ1 < 0); however, they change

for each combination of session and intervention hand (βθ(1∗F ), βθ(1∗N), βθ(F∗N) 6= 0).

Finally, for patients in the advanced stage of the disease, the expected dispersion parameter

is larger than for those in the normal group (βθ2 > 0), but this changes for the final session

when the non-preferred hand is used (βθ(F∗N) 6= 0).
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Table 3: Parameter estimates and standard errors under the final beta-binomial model

Standard

Parameter Related to Estimate error

βµ0 Normal group, preferred hand, 1.86 0.15

baseline session and active sequence

βµ2 Effect of advanced stage -1.35 0.25

βµF Effect of final session 1.38 0.30

βµ(F∗C) Effect of final session and control sequence -1.79 0.30

βθ0 Normal group, preferred hand, -1.07 0.27

baseline session and active sequence

βθ1 Effect of initial stage -2.98 1.05

βθ2 Effect of advanced stage 1.31 0.37

βθ(1∗F ) Effect of disease in initial stage and final session 1.66 0.82

βθ(1∗N) Effect of initial stage and non-preferred hand 2.78 0.91

βθ(F∗N) Effect of final session and non-preferred hand -1.49 0.44

3.2 Modelling the expected number of attempts

The initial model parameter vector, with all main effects and first order interactions is

β = (βλ,βα,βδ) where

βλ = (βλ0, βλ1, βλ2, βλN , βλF , βλC ,

βλ(1∗F ), βλ(1∗N), βλ(1∗C), βλ(2∗F ), βλ(2∗N), βλ(2∗C), βλ(F∗N), βλ(F∗C), βλ(N∗C))

βm = (βm0, βm1, βm2, βmN , βm(1∗N), βm(2∗N))

with m = α, δ. We may interpret βλ0 as the logarithm of λ for normal individuals, using

the preferred hand, performing the active sequence at the final evaluation; βλN corresponds

to the variation in the logarithm of λ due to the effect of the non-preferred hand compared

to the preferred one; βλ(1∗N) corresponds to an additional variation in the logarithm of λ

due to the interaction between the initial stage of the disease (1) and the use of the non-

preferred hand (N). The elements of the vector βλ related to different evaluation sessions

(represented by F and C) allow for different number of attempts in these different evaluation

sessions. On the other hand, α(zαg) and δ(zδg) do not vary in different evaluation sessions;

therefore the vectors βα and βδ do not have elements to distinguish between sessions, but

have elements to compare subgroups.

As noticed in Lora and Singer (2008) for the beta-binomial model, the iterative process

11



Table 4: Estimates of expected probabilities of successful attempts, dispersion parameters

and standard errors under the final beta-binomial model

Disease Evaluation Intervention Expected Standard

stage session hand Sequence value error

Expected probabilities of successful attempts

Normal or initial Baseline Either Either 0.87 0.02

Normal or initial Final Either Control 0.81 0.03

Normal or initial Final Either Active 0.96 0.01

Advanced Baseline Either Either 0.62 0.06

Advanced Final Either Control 0.52 0.06

Advanced Final Either Active 0.87 0.04

Dispersion parameters

Normal Baseline Either Either 0.34 0.09

Normal Final Preferred Either 0.34 0.09

Normal Final Non-preferred Either 0.08 0.03

Initial Baseline Preferred Either 0.02 0.02

Initial Baseline Non-preferred Either 0.28 0.14

Initial Final Preferred Either 0.09 0.06

Initial Final Non-preferred Either 0.33 0.19

Advanced Baseline Either Either 1.27 0.37

Advanced Final Preferred Either 1.27 0.37

Advanced Final Non-preferred Either 0.29 0.13

was very sensitive to initial values, specially for the interactions. To overcome this difficulty,

we started with a simpler model containing only the main effects and used the resulting

estimates as initial values for fitting other models, obtained by including the interactions one

by one. The estimates of the interaction parameters obtained in this preliminary process

were used as the initial values in our modelling strategy.

The non-significant interactions were identified and their simultaneous elimination from

the initial model was supported (p = 0.211) via a test of the hypothesis

H0 : βλ(1∗F ), βλ(1∗N), βλ(1∗C), βλ(2∗F ), βλ(2∗N), βλ(2∗C), βλ(F∗N), βλ(N∗C),

βα(1∗N), βα(2∗N), βδ(1∗N), βδ(2∗N) = 0

Under the resulting reduced model, the non-significant main effects were identified; their
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simultaneous elimination was corroborated (p = 0.493) via a test of the hypothesis

H0 : βλN , βλC , βα1, βα2, βαN , βδ1, βδ2, βδN = 0.

We considered other hypotheses where some of these parameters are equal to zero and they

were all rejected (p < 0.150). Goodness of fit of the resulting reduced model was confirmed

by a likelihood ratio test in which it was compared to the initial model (p = 0.289).

For this final model, the corresponding parameter estimates along with their standard

errors are presented in Table 5. Based on this, we estimated expected values for λ(zλgh);

the results are presented in Table 6. Additionally, since only the parameters βα0 and βδ0

were included at the final model, we have α(zαg) = 3.67, with standard error of 0.18, and

δ(zδg) = 0.27, with standard error of 0.07, for all disease stages and both hands. The

non-zero estimate of δ suggests that the total attempts are overdispersed and that the

correlations among the counts across the different instants of evaluation are non-null.

Table 5: Parameter estimates and standard errors for the final gamma-Poisson model

Parameter Related to Estimate Standard error

βλ0 Normal group, preferred hand, 1.68 0.03

initial evaluation and active sequence

βλ1 Effect of initial stage -0.38 0.05

βλ2 Effect of advanced stage -0.71 0.05

βλF Effect of final evaluation 0.52 0.04

βλ(F∗C) Effect of final evaluation and control sequence -0.22 0.05

βα0 Normal group, preferred hand 1.30 0.05

βδ0 Normal group, preferred hand -1.32 0.25

We may conclude that individuals in the initial stage of the disease have smaller expected

number of attempts than normal ones, and for individuals in the advanced stage this value

is even smaller (βλ2 < βλ1 < 0 and βα1 = βα2 = 0). There is no evidence of difference

between the expected number of attempts for participants using preferred or non-preferred

hands (βλN = 0 and βαN = 0), neither for active nor for control sequences in the baseline

session (βλC = 0). The results suggest that the training is also effective with respect to

agility, since the expected number of attempts under the final evaluation is bigger than

at the initial one (βλF > 0). Moreover, for the control sequence, the expected number of

attempts is larger at the final evaluation compared with the initial one (βλF +βλ(F∗C) > 0);

however, considering only the final evaluation, the expected number of attempts is larger

for the active sequences than for the control ones (βλ(F∗C) < 0).
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Table 6: Estimates of expected values of λ(zλgh)

Disease Evaluation Intervention Sequence Expected Standard

stage session hand value error

Normal Baseline Either Either 5.4 0.2

Normal Final Either Control 7.2 0.3

Normal Final Either Active 9.0 0.4

Initial Baseline Either Either 3.7 0.2

Initial Final Either Control 5.0 0.4

Initial Final Either Active 6.2 0.3

Advanced Baseline Either Either 2.3 0.1

Advanced Final Either Control 3.6 0.2

Advanced Final Either Active 4.4 0.3

Table 7 contains estimates of the expected successful and total attempts along with

the respective standard errors. In Table 8 we present estimates (with respective standard

errors) of the elements of the covariance matrix for normal subjects using the preferred

hand. Covariance patterns for the other subgroups are similar and are not included.

Table 7: Estimates and standard errors (within parentheses) for the expected number of

successful and total attempts under the final beta-binomial/gamma-Poisson model

Disease Evaluation Intervention Sequence Successful Total

stage session hand attempts attempts

Normal Baseline Either Either 17.2 (1.0) 19.8 (1.1)

Normal Final Either Control 21.4 (0.8) 26.4 (0.1)

Normal Final Either Active 31.7 (1.8) 33.0 (1.8)

Initial Baseline Either Either 11.8 (0.7) 13.6 (0.8)

Initial Final Either Control 14.9 (1.1) 18.4 (1.2)

Initial Final Either Active 21.9 (1.4) 22.8 (1.4)

Advanced Baseline Either Either 5.2 (0.6) 8.4 (0.6)

Advanced Final Either Control 6.9 (0.9) 13.2 (0.9)

Advanced Final Either Active 14.0 (1.2) 16.1 (1.1)

4 Discussion

The proposed beta-binomial/gamma-Poisson model is more general than the multivariate

beta-binomial/Poisson model considered in Lora and Singer (2008) because it allows for

14



Table 8: Estimates and standard errors (within parentheses) for the expected covariance

matrix for normal subjects using the preferred hand

Baseline session Final session

Active seq. Control seq. Active seq. Control seq.

Suc. Att. Suc. Att. Suc. Att. Suc. Att.

Baseline Active Suc. 51.2

session seq. (7.2)

Att. 42.2 48.5

(11.4) (13.0)

Control Suc. 21.5 0 51.2

seq. (5.8) (7.2)

Att. 0 28.7 42.4 48.5

(7.8) (11.4) (13.0)

Final Active Suc. 40.3 0 40.3 0 118.9

session seq. (10.8) (10.8) (22.2)

Att. 0 48.4 0 48.4 110.5 115.1

(13.0) (13.0) (30.0) (31.2)

Control Suc. 27.3 0 27.3 0 52.3 0 87.4

seq. (7.3) (7.3) (13.8) (12.9)

Att. 0 39.0 0 39.0 0 65.8 64.9 80.1

(10.5) (10.5) (17.7) (17.8) (21.8)

Codes: Suc.=Successes, Att.=Attempts and seq.=sequence

different covariances between the number of attempts in different evaluation sessions and

considers a possible overdispersion of the total attempts. Moreover, the gamma-Poisson

component of the model is computationally much easier to use for comparisons among the

numbers of attempts in different evaluation sessions.

While in the multivariate beta-binomial/Poisson model, the multivariate Poisson com-

ponent requires a different set of parameters for each evaluation session, in the beta-

binomial/gamma-Poisson model, the gamma-Poisson component includes a single set of

parameters for all evaluation sessions. To compare the expected number of attempts under

different conditions using the former, it is necessary rewrite the model and to derive ad

hoc estimating equations while under the latter, it suffices to eliminate the corresponding

regression parameter and to obtain new parameter estimates using the same estimating
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equations. For the analyzed data, for example, the comparison between the control and ac-

tive sequence during the baseline evaluation using the beta-binomial/gamma-Poisson model

is done by testing if the parameter βλC is null. On the other hand, under the multivari-

ate beta-binomial/Poisson approach, the total number of trials is modelled with a specific

vector of parameters for each instant of observation; for the data in the example, they are:

baseline evaluation performing active sequence, baseline evaluation performing the control

sequence, final evaluation performing the active sequence and final evaluation performing

the control sequence. To compare the control and active sequences during the baseline

session we should rewrite the model using only three parameters: baseline evaluation (the

same for active and control sequences), final evaluation performing active sequence and

final evaluation performing control sequence.

The average of the absolute differences between the sample means of the number of

successful and total attempts and the respective expected values under this final model

(Table 7) is 1.7. The same average based on the multivariate beta-binomial/Poisson model

is 0.9. Furthermore, the average of the absolute differences between the observed and

estimated covariances using the multivariate beta-binomial/Poisson model is 21.5 while

it is 19.1 if we use the beta-binomial/gamma-Poisson. These differences are attributable

to the more flexible covariance structure induced by the latter, i.e., allowing for different

covariances between the repeated number of trials.

The values of the AIC ( = 1888.0) and the BIC ( = 1919.1) for the beta-binomial/gamma-

Poisson model compared to the corresponding values (AIC = 1935.6 and BIC = 1974.0)

for the multivariate beta-binomial/Poisson also suggest a better fit of the former.

Although the results are quite similar, with the exception of the values for patients in

the advanced stage of the disease, the beta-binomial/gamma-Poisson one is preferable to

the multivariate beta-binomial/Poisson, both because of the modelling flexibility and the

computational advantages mentioned before.

As an extension for the beta-binomial/gamma-Poisson model, we could incorporate a

parameter to relate the probabilities of success to the total attempts, as in Zhu et al.

(2004). Another possible extension would be to consider the case where attempts could be

done correctly, satisfactorily or incorrectly; in this case, we could generalize the model by

considering Dirichlet-multinomial/gamma-Poisson distribution models. These extensions

are currently under investigation.
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Appendix

First and second derivatives for the gamma-Poisson model

∂L(βλ,βα,βδ)

∂βλ

= Z′

λL
[

L−1n− (Ip ⊗B−1)(1p ⊗ a)
]

,

∂L(βλ,βα,βδ)

∂βα

= Z′

αM[c−D−1log(b)] and

∂L(βλ,βα,βδ)

∂βδ

= Z′

δ[De+D−1Mlog(b)−B−1Lsa]

∂2L(βλ,βα,βδ)

∂βλ∂β
′

λ

= Z′

λL[Ip ⊗ (AB−1)]
{

L[Ip ⊗ (DB−1)]− IMp

}

Zλ,

∂2L(βλ,βα,βδ)

∂βλ∂β
′

α

= −Z′

λL[Ip ⊗ (MB−1)](1p ⊗ Zα),

∂2L(βλ,βα,βδ)

∂βλ∂β
′

δ

= −Z′

λL[Ip ⊗ (DB−2)] [Ip ⊗ (Ns −MLs)] (1p ⊗ Zδ),

∂2L(βλ,βα,βδ)

∂βα∂β
′

α

= Z′

αM
[

C−D−1log(B)−MF
]

Zα,

∂2L(βλ,βα,βδ)

∂βα∂β
′

δ

= Z′

αMD
[

−J−D−1B−1Ls +D−2log(B)
]

Zδ and

∂2L(βλ,βα,βδ)

∂βδ∂β
′

δ

= Z′

δD
{

E−DQ+MD−1B−1Ls −D−2Mlog(B)−B−2Ls [Ns −MLs]
}

Zδ

with L(βλ,βα,βδ) presented in (24) and

a = (a1, ..., ag, ..., aM )′, ag = δ(zδg)

[

p
∑

h=1

ngh

]

+ α(zαg)

A = diag{ag}

B = diag{bg}, bg = δ(zδg)

[

p
∑

h=1

λ(zλgh)

]

+ 1

log(b) = (log(b1), ..., log(bg), ..., log(bM ))′

log(B) = diag{log(bg)}

c = (c1, ..., cg , ..., cM )′, cg =

Σp
h=1

ngh−1
∑

u=0

1

α(zαg) + uδ(zδg)
,

C = diag{cg}
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e = (e1, ..., eg , ..., eM )′, eg =

Σp
h=1

ngh−1
∑

u=0

u

α(zαg) + uδ(zδg)

E = diag{eg},

F = diag{fg}, fg =

Σp
h=1

ngh−1
∑

u=0

1

[α(zαg) + uδ(zδg)]2

J = diag{jg}, jg =

Σp
h=1

ngh−1
∑

u=0

u

[α(zαg) + uδ(zδg)]2

Q = diag{qg}, qg =

Σp
h=1

ngh−1
∑

u=0

[

u

α(zαg) + uδ(zδg)

]2

n = (n11, ..., ngh, ..., nMp)
′,

Ns = diag

{

p
∑

h=1

ngh

}

L = diag{λ(zλgh)}

Ls = diag

{

p
∑

h=1

λ(zλgh)

}

M = diag{α(zαg)}

D = diag{δ(zδg)}

Zλ = (z′λ11, ..., z
′

λgh, ..., z
′

λMp)
′

Zα = (z′α1, ..., z
′

αg, ..., z
′

αM )′

Zδ = (z′δ1, ..., z
′

δg, ..., z
′

δM )′
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