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Abstract. The work deals with the numerical solution of unsteady flow with low Mach
numbers in a two-dimensional channel. The flow is described by the unsteady Navier-Stokes
equations (laminar) for the compressible fluid. The unsteady flow is caused by a prescribed
time periodical motion of a part of the channel wall, which is changing the shape. The
numerical solution is realized by the finite volume method and the explicit predictor-corrector
MacCormack scheme with Jameson artificial viscosity using a grid of quadrilateral cells.
The moved grid of quadrilateral cells is considered in the form of conservation laws using
the Arbitrary Lagrangian-Eulerian method. Some numerical results of unsteady flows in
a symmetric channel are presented for inlet Mach number M∞ = 0.02, Reynolds number
Re ≈ 103 and for frequency of the wall motion 20 Hz. The numerical results were obtained
using special software developed by the authors.
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1. Introduction

The work presents a numerical method solving a two-dimensional unsteady compress-
ible viscous flow with low Mach numbers in a symmetric channel. The unsteady flow
is caused by a prescribed time periodic motion of a part of the channel wall. The flow
in the channel can represent a very simple model of airflow coming from the trachea,
through the glottis to the human vocal tract.

In reality, the airflow coming from the human lungs causes the vocal folds’ self-
oscillations, and the glottis is completely closing in normal phonation regimes gen-
erating acoustic pressure fluctuations. In our case, we prescribe a narrow channel
harmonic opening and nearly closing the cross-section. The frequency of periodic
oscillations of the vocal folds is in most cases higher than 100 Hz. Here, we present
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the results with frequency of oscillations 20 Hz. The voice source signal travels from
the glottis to the mouth, exciting the acoustic supraglottal spaces and modified by
acoustic resonance properties of the vocal tract [1]. Considering the normal speech
the airflow velocity in the trachea is approximately in the range 5 − 16 m/s. Here,
we impose a uniform inflow Mach number M∞ = 0.02, i.e., the airflow velocity is
6.68 m/s.

At present, the flow models in the glottis are mostly based on the Bernoulli equation
[1] or 1D models for the incompressible inviscid fluid [2]. Acoustic wave propagation
in the vocal tract is usually modelled separately using the linear acoustic perturbation
theory, the wave equation for the potential flow [3]. It is other problematic issue how
to model the flow separation point on the moving surface in a small gap. This is
usually approximated by some quasi-steady formulas which are deduced from the
steady flow solution in divergent channels [4], and the validity of this hypothesis for
higher frequencies is questionable. The airflow in the glottis which is described by
2D Navier-Stokes equations for the incompressible laminar flow was studied in [5]
using the Finite Volume Method (FVM) and in [6] using the Finite Element Method
(FEM). Software FIDAP was used in [7] for 3D modelling of the flow in glottis by
FEM using the Navier-Stokes equations for the incompressible fluid.

When the glottis is closing the airflow velocity becomes much higher in the nar-
rowest part of the airways, where the viscous forces are also important. For the
inviscid incompressible flow the maximum flow velocity would tend to infinity just
before glottis closure. Therefore for a correct modelling of a real flow in the glottis,
the compressible, viscous, unsteady model should be considered. Even if no complete
closure of the glottis is modelled, the mathematical model presented for the numerical
simulation of the airflow field in the glottis is complex and relatively closer to reality.

The numerical results shown in Section 4 were obtained by the numerical method
shown in Section 3 and by the software developed in C/C++, on the basis of the
FVM for compressible viscous flow in a narrow channel harmonically opening and
nearly closing the cross-section in space and time domains.

2. Mathematical model

The 2D system of Navier-Stokes equations was used as a mathematical model to de-
scribe the unsteady laminar flow of a compressible viscous fluid in a channel. The
Navier-Stokes equations are transformed to non-dimensional variables. The transfor-
mation of dimensional variables (marked with the accent hat) to the non-dimensional
variables is defined as follows:

ρ → ρ̂/ρ̂∞, (u, v) → (û, v̂)/ĉ∞, (x, y) → (x̂, ŷ)/L̂s, t → t̂ · ĉ∞/L̂s,

p → p̂/(ρ̂∞ · ĉ2
∞), e → ê/(ρ̂∞ · ĉ2

∞), η → η̂/η̂∞, T → T̂ /T̂∞,
(2.1)

where ρ denotes density, u and v are components of the velocity vector, p denotes
static pressure and e is total energy per unit volume. The reference variables in
this case are inflow variables (marked with the infinite subscript): speed of sound

ĉ∞ = 334 m/s, density ρ̂∞ = 1.225 kg/m3, temperature T̂∞ = 293.15 K, dynamic
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viscosity η̂∞ = 15 · 10−6 Pa · s and a selected length L̂s = 0.02 m. The system of
Navier-Stokes equations is expressed in the non-dimensional conservative form as:

∂W

∂t
+

∂F

∂x
+

∂G

∂y
=

1

Re

(
∂R

∂x
+

∂S

∂y

)
, (2.2)

where

W = [ρ, ρu, ρv, e]T , (2.3)

F = [ρu, ρu2 + p, ρuv, (e + p)u]T , (2.4)

G = [ρv, ρuv, ρv2 + p, (e + p)v]T , (2.5)
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W is the vector of conservative variables, F and G are the vectors of inviscid fluxes,
R and S are the vectors of viscous fluxes. The static pressure p is expressed by the
equation of state:

p = (κ − 1)

[
e − 1

2
ρ

(
u2 + v2

)]
. (2.8)

The Reynolds number Re = ρ̂∞û∞Ĥ/η̂∞ is computed from inflow variables, where

Ĥ = 2hL̂s is the inflow width of the channel (see Figure 1). The non-dimensional
dynamic viscosity found in the dissipative terms of the equations is a function of
temperature: η = (T/T∞)3/4. The heat transfer coefficient is expressed as k =
ηκ/[Pr(κ − 1)], where Pr = 0.7 is the Prandtl number and κ = 1.4 is the Poisson
parameter.

2.1. Mathematical formulation. For the numerical solution the domain D and the
boundary conditions have to be defined.

Figure 1 shows the domain D which represents the symmetric channel. The compu-
tational domain is only the lower half of the channel. The upper boundary represents
the axis of symmetry. The lower boundary represents the wall and the part of the
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channel wall between the points A, B is changing the shape as given function of time
and axial coordinate:

w (x, t) = 1
2 (a1 + at) ·

{
sin

[
π

C−A

(
x − A+C

2

)]
+ 1

}
+ d, x ∈ 〈A, C〉 ,

w (x, t) = 1
2 (a1 + at + d) ·

[
cos

(
π x−C

B−C

)
+ 1

]
, x ∈ 〈C, B〉 ,

at = a2 · sin (2πf · t) , t ∈ 〈0, 2π〉 ,

(2.9)

noindent where A = [1.75; 0.4], B = [2.65; 0], C = [2.3; w(x = 2.3, t)] and the
channel geometry has the following non-dimensional parameters: L = 8, h = 0.4,
d = 0.4. The frequency of oscillations is computed as f = 1/(t̂0· ĉ∞

L̂s

), where t̂0 = 0.05 s

is the period of oscillations. Then a gap, which is the glottal half-width, can be
computed in the following way (see Figure 1): g(x = 2.3, t) = (d + h)−w(x = 2.3, t).

In the work the results for two sizes of the glottal half-widths are presented. The
wide glottis has the amplitudes of oscillation (2.9) adjusted to a1 = 0.2, a2 = 0.08
and this case is called the Wide Gap. The minimum and maximum of the gap for
the Wide Gap is: gmin = 0.12, gmax = 0.28. In the second case, which is called the
Narrow Gap, the amplitudes of oscillation are adjusted to a1 = 0.3, a2 = 0.08 and
gmin = 0.02, gmax = 0.18.

The boundary conditions for the viscous fluid flow have been considered in the
following form:

a) Upstream conditions: 3 values of W are given (ρ, ρu, ρv) and the pressure is
extrapolated from the domain to the inlet of the channel, it means ∂p/∂n = 0
where n is the outer normal vector to the surface ∂D.

b) Downstream conditions: the pressure p2 is given and ∂(ρ, ρu, ρv)/∂n = 0.
c) On the wall the normal derivative of the temperature ∂T/∂n = 0 and the ve-

locity vector (u, v)|wall = (0, v̄wall) are considered. Variable v̄wall is y-velocity
component of the lower wall.

d) At the axis of symmetry the condition (u, v) · n = 0 is required.

Figure 1. The computational domain D (The symmetric channel)

The shape of this scale model is inspired by the shape of the vocal tract [8]. For
the numerical prediction of flow in the vocal tract we used the simplifying assumption
that during the normal phonation the vocal fold’s oscillations are symmetric [8], hence
symmetric geometry is used.
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3. Numerical solution

3.1. Algorithm. The numerical solution of two-dimensional problems uses FVM in
cell centred form on a grid of quadrilateral cells.

The bounded domain D is divided into mutually disjoint sub-domains Di,j (e.g.
the quadrilateral cells). The equations (2.2) are integrated over the sub-domains Di,j

and using the Green formula the following relation is valid:

∫

Di,j

∂W

∂t
dxdy = −

[∮

∂Di,j

(Fdy − Gdx) −
∮

∂Di,j

(Rdy − Sdx)

]
. (3.1)

When the domain is steady, equation (3.1) can be rewritten using the Mean value
theorem to the integral form of FVM:

∂W

∂t

∣∣∣∣
i,j

=
−1

µi,j

[∮

∂Di,j

(Fdy − Gdx) −
∮

∂Di,j

(Rdy − Sdx)

]
, (3.2)

where µi,j =
∫ ∫

Di,j
dxdy is volume of cell Di,j . The difference form of FVM is:

Wn+1
i,j − Wn

i,j

∆t
=

−1

µi,j

∑

k

[(
F̃k − R̃k

)
∆yk −

(
G̃k − S̃k

)
∆xk

]
, (3.3)

where ∆t = tn+1 − tn is time step. The physical fluxes F,G,R,S on an edge k of cell
Di,j are replaced by the numerical fluxes (marked with tilde) F̃, G̃, R̃, S̃ which are
approximations of the physical fluxes. The approximations of the numerical fluxes
and the time derivative depend on the chosen numerical scheme.

If the domain is unsteady, the integral form of FVM is derived using the Arbitrary
Lagrangian-Eulerian (ALE) formulation which defines homeomorphic mapping of the
reference domain D0 at initial time to a domain Dt at time t [9]. Then the equation
(3.1) can be written as:

∫
Di,j|t=0

∂(|J|W)
∂t

∣∣∣
X0

dX0 = −
{∮

Di,j|t
(F− W · s1) dy −

− (G − W · s2) dx] −
∮

Di,j|t
[Rdy − Sdx]

}
.

(3.4)

|J | denotes determinant of the Jacobi matrix of the ALE mapping and X0 ∈ D0 is
point of reference configuration. In the first integral on the right side fluxes (−W ·si)
induced by the movement of the boundary of the control volume appear when the
ALE method is used. Vector (s1, s2) stands for the domain velocity. Hence, the
differential form of FVM for unsteady domain is:

W
n+1

i,j
·µn+1

i,j
−W

n
i,j ·µ

n
i,j

∆t = −
∑ [(

F̃k − s1kWk − R̃k

)
∆yk −

−
(
G̃k − s2kWk − S̃k

)
∆xk

]
.

(3.5)
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3.2. Numerical scheme. For the numerical solution of the system (2.2) the explicit
MacCormack (MC) scheme in the predictor-corrector form is used. The scheme is of
the 2nd order of accuracy in time and space:

W
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µn
i,j

µn+1

i,j
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(3.6)

Equation (3.6) represents the MC scheme for the viscous flow in the domain with
moving grid of quadrilateral cells. The approximations of the convective terms and
the dissipative terms are central and the vector (s1, s2)k represents the speed of edge
k (see Fig. 2). The partial derivatives of the velocity and the temperature are
approximated using dual volumes V ′

k (see [10]) as shown in Figure 2. The partial
derivatives of a variable φ on the edge k are computed using the following relations:

∂φ

∂x

∣∣∣∣
k

=
1

V
′

k

4∑

l=1

φl∆yl,
∂φ

∂y
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k

= − 1

V
′

k

4∑

l=1

φl∆xl. (3.7)

Figure 2. Finite volume Di,j , Dual volume V
′

k
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The inviscid numerical fluxes are approximated by the physical inviscid fluxes as
follows:

F̃n
1 = Fn

i,j , F̃n
2 = Fn

i,j , F̃n
3 = Fn

i−1,j , F̃n
4 = Fn

i,j−1,

G̃n
1 = Gn

i,j , G̃n
2 = Gn

i,j , G̃n
3 = Gn

i−1,j , G̃n
4 = Gn

i,j−1,
the corrector step:
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G̃
n+1/2
3 = G

n+1/2
i,j , G̃

n+1/2
4 = G

n+1/2
i,j .

(3.8)

The last term used in MC scheme is the Jameson artificial dissipation AD(Wi,j)
n

[11]:

AD(Wi,j)
n = C1γ1

(
Wn

i+1,j − 2Wn
i,j + Wn

i−1,j

)
+

+ C2γ2

(
Wn

i,j+1 − 2Wn
i,j + Wn

i,j−1

)
,

(3.9)

C1, C2 ∈ R are constants, in our case C1 = 1.7, C2 = 1.5. Normalized pressure
gradients γ1, γ2 have the form:

γ1 =
|pn

i+1,j − 2pn
i,j + pn

i−1,j |
|pn

i+1,j | + 2|pn
i,j | + |pn

i−1,j |
, γ2 =

|pn
i,j+1 − 2pn

i,j + pn
i,j−1|

|pn
i,j+1| + 2|pn

i,j| + |pn
i,j−1|

. (3.10)

The use of artificial dissipation is a common way to stabilize the numerical scheme
with the higher order of accuracy. The term of artificial dissipation is of the third
order of accuracy then the second order of accuracy of the original scheme is valid.
Then the vector of conservative variables W can be computed at a new time level
tn+1:

Wn+1
i,j = W

n+1

i,j + AD(Wi,j)
n. (3.11)

The stability condition of the scheme (on the regular orthogonal grid) limits the time
step:

∆t ≤ CFL

[ |umax| + c

∆xmin
+

|vmax| + c

∆ymin
+

2

Re

(
1

∆x2
min

+
1

∆y2
min

)]−1

, (3.12)

c denotes the local speed of sound, umax and vmax are the maximum velocity in the
domain, CFL < 1 for the non-linear equations. The minimum cell size in y-direction
is ∆ymin ≈ 1/

√
Re to resolve capture boundary layer effects (see Fig. 3). The time

step in our case mainly depends on ∆ymin ∈ (10−3, 2.5 · 10−3) and the time step
during the unsteady problem computation is about ∆t

.
= 3 · 10−4.
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4. Numerical results

4.1. The methods that have been used. The numerical methods have been sug-
gested and developed at CTU in Prague, Department of Technical Mathematics since
1978. For the Euler and Navier-Stokes equations (compressible and incompressible)
methods based on classical schemes as well as modern finite volume schemes (TVD,
WENO, AUSM, Residual Distribution Scheme, etc.) have been developed. We tested
these methods for laminar and turbulent flows using different types of schemes and
grids (structured and unstructured). Also, comparison with experimental results and
with other numerical results has been published. The method presented here is also
one of the long established and tested methods including the ALE method (see [12]–
[19]).

Figure 3. Computational grid in two different time levels (at mini-
mum and maximum of the gap (Wide Gap)) and detail of grid re-
finement near the wall

The method has been tested using a structured grid, refinement of the grid (coarse,
fine, very fine) and also very fine grid near walls. The flow has been investigated in
three types of channel: in a channel with an upper straight wall and a lower sinus bump
time dependent wall using the Euler and Navier-Stokes equations [20], in a divergent
axis symmetry channel using the Navier-Stokes equations and in the present type of
channel [21], [22].
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For the numerical solution, the domain D (see Fig. 1) is covered by a structured
grid of quadrilateral cells. Figure 3 shows the grid in part of the channel at two
time levels (at minimum and maximum of the gap (Wide Gap)). In the detail, the
refinement cells near the wall are shown. The computational domain contains 400×50
cells.

The computation of the unsteady solution was carried out in two stages. First, the
computation of the steady solution was realized (see Fig. 4(a)). This steady solution
was then used as an initial condition for the computation of the unsteady problem,
when the unsteady boundary conditions (2.9) are imposed.

Figure 4. Steady numerical solution of viscous compressible (lami-
nar) flow in a symmetric channel. M∞ = 0.02, p2 = 1/κ, Re = 8700,
mesh of 400× 50 cells

4.2. Steady problem. Figure 4 shows the steady numerical solution for the viscous
laminar flow in the domain D (see Fig. 1) with a rigid wall. The gaps are fixed in
middle position, for the Wide Gap gmid = 0.20 and for the Narrow Gap gmid = 0.10.
In both cases the inlet Mach number M∞ = 0.02, the pressure at the outlet p2 = 1/κ
and Reynolds number Re = 8700. The results are mapped by Mach number iso-lines
(upper part of the symmetric channel) and by stream-traces and velocity vectors
(lower part of the symmetric channel).

Figure 4(a) shows the steady numerical solution for the Wide Gap. The maximum
computed value of the Mach number in the domain is Mmax = 0.0493 at point x =
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2.343 at the channel axis (y = 0.8). Figure 4(b) shows the steady numerical solution
for the Narrow Gap. The maximum Mach number in the domain is Mmax = 0.0938
at the point x = 2.324 at the channel axis. Figure 4(c) shows convergence to the
steady state solution computed using the L2 norm of momentum residuals (ρu). The
convergence seems to be satisfactory for this very sensitive and complicated cases.

4.3. Unsteady problem. Figures 5 and 6 show the unsteady numerical solution of
the flow field development of viscous compressible (laminar) flows in a symmetric
channel. The results are mapped by Mach number iso-lines (upper part) and by
stream-traces and velocity vectors (lower part). In both cases, the inlet Mach number

Figure 5. Unsteady numerical solution for the Wide Gap. gmax =

0.28, gmin = 0.12, M∞ = 0.02, p2 = 1/κ, Re = 8700, f̂ = 20 Hz,
mesh of 400× 50 cells

M∞ = 0.02, the frequency of oscillations of the wall between the points A, B (see

Fig. 1) f̂ = 20 Hz, the pressure p2 = 1/κ and Re = 8700 are set. The numerical
results are shown in the third period of oscillations for the Wide Gap and in the
second period of oscillations for the Narrow Gap at several time layers. Figure 5
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shows the numerical solution for the Wide Gap. The maximum computed value of
the Mach number is Mmax = 0.0867 at the point x = 2.341 at the channel axis in
time t = π/2 (see Figs. 5(b) and 9(b)). Figure 6 shows the numerical solution for
the Narrow Gap. In this case, the highest Mach number was not achieved when the
minimum gap was reached as in the previous case, but after the glottal-width began
to open. The maximum computed value of the Mach number is Mmax = 0.5174 at
the point x = 2.325 at the channel axis in time t = 27/50 π (see Fig. 10(b)).

Figure 6. Unsteady numerical solution for the Narrow Gap. gmax =

0.18, gmin = 0.02, M∞ = 0.02, p2 = 1/κ, Re = 8700, f̂ = 20 Hz,
mesh of 400× 50 cells

In Figures 7 and 8 the movement of the lower wall w(x = 2.3, t), the pressure and
Mach number computed in the narrowest cross-section of the channel at the point
x = 2.3 at the axis of symmetry in real time domain are shown. Figure 7 shows
results of the numerical solution for the Wide Gap. It can be seen that after a
transition time of about 0.06 s (in the second period of oscillations) the flow becomes
almost periodic. Due to a relatively low frequency of oscillations and wide minimal
gap, the phase shift between the motion of the wall and the pressure fluctuations is
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small. Figure 8 shows results of numerical solution for the Narrow Gap. The phase
shift between the motion of the wall and the pressure fluctuation is about 0.002 s.

Figure 7. Wide Gap. Function of the channel lower wall w(x =
2.3, t), pressure and Mach number computed at the axis of symmetry
(y = 0.8), at x = 2.3, in real time

Figure 8. Narrow Gap. Function of the channel lower wall w(x =
2.3, t), pressure and Mach number computed at the axis of symmetry
(y = 0.8), at x = 2.3, in real time
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Figures 9 and 10 show the pressure on the wall and the Mach number at the axis
of symmetry along the channel at several time levels during one oscillation period.
Figure 9 shows the results of the numerical solution for the Wide Gap. The minimum
of pressure and the maximum of the Mach number are behind the narrowest cross-
section of the channel (x = 2.3). The highest Mach number appears in time t = π/2
when the gap is minimal (i.e. w(x, t) is maximal, see the third period in Figure 7).
Figure 10 shows the results of the numerical solution for the Narrow Gap. In this
case the highest Mach number appears after the narrowest cross-section exceeds the
minimum of gap (gmin), during opening of the glottis, in time t = 27/50π.

Figure 9. Wide Gap. Pressure on the wall and Mach number at the
axis of symmetry along x at several time levels during one oscillation
period
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Figure 10. Narrow Gap. Pressure on the wall and Mach number
at the axis of symmetry along x at several time levels during one
oscillation period

Figure 11 shows the details of the numerical solution for the Wide Gap at the
point of flow separation in time t = π/2. The point of flow separation is behind the
narrowest cross-section (x = 2.3) at about xs = 2.33. The flow separation in a very
narrow channel is predicted to occur at the point where the glottal-width (2g) exceeds
the minimum glottal-width (2gmin) by 10 − 20 % [23]. In this case, the distance of
the point of separation from the narrowest cross-section is 0.03 and it is 12.5 % of
the minimum glottal-width (2gmin = 0.24). Figure 12 shows the detail of numerical
solution for the Narrow Gap at the point of flow separation in time t = π/2. The
distance of the point of separation from the narrowest cross-section is 0.016 and it is
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Figure 11. Wide Gap. Details of the velocity vectors at the point of
flow separation in time t = π/2 (g = gmin = 0.12)

Figure 12. Narrow Gap. Details of the velocity vectors at the point
of flow separation in time t = π/2 (g = gmin = 0.02)

40.0 % of the minimum glottal-width (2gmin = 0.04) and thus the quasi-steady rule
used in [23] is not generally valid. To locate the point of separation in this case, the
fine grid around the point of separation is necessary (∆x < 0.001).

5. Summary

A numerical method and a special programme code solving the two-dimensional un-
steady Navier-Stokes equations for the viscous compressible fluid has been developed.
The method is successfully working for higher Mach numbers (transonic flow) as well
as for very low Mach numbers. In the paper this method has been used for the numer-
ical solution of the airflow in a simplified model of the human vocal tract geometry.
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The method has been used for two different cases with similar geometry, with the
same inlet Mach number M∞ and frequency of oscillation but with different widths
of the narrow part of the channel (Wide Gap, Narrow Gap). The method can be
used successfully in other engineering applications for the steady as well as for the
unsteady numerical solution of flows with low Mach numbers, e.g. in studies of other
leakage flow-induced vibration problems.

Future tests of the method for applications in modelling of the flow in the human

vocal tract will be focused on the higher frequency of oscillation (f̂ ≈ 100 Hz), the
lower inflow Mach number (M∞ ≤ 0.015) and on narrower glottal-width (2gmin ≤
0.04). Also the geometry of the channel will be closer to the real geometry of the
glottis and vocal tract.
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9. Honzátko, R., Kozel, K., and Horáček, J.: Flow over a profile in a channel with
dynamic effects. Proceedings in Applied Mathematics, 4(1), (2004), 322-323. ISSN 1617-
7061.



An unsteady numerical solution of viscous compressible flow 191

10. Fürst, J., Janda, M. and Kozel, K.: Finite volume solution of 2D and 3D Euler and
Navier-Stokes equations. J. Neustupa, P. Penel (Eds.), Mathematical Fluid Mechanics.
Berlin, (2001). ISBN 3-7643-6593-5.

11. Jameson, A., Schmidt, W., and Turkel, E.: Numerical Solution of the Euler Equa-
tions by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes, AIAA,
Paper 81-1250, (1981).
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