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Abstract. The present paper investigates the properties of the second harmonics of mono-
chromatic symmetrical normal waves. The analytical representations for nonharmonic dis-
tortion of normal waves with a free propagation direction in the plane of a cubic anisotropic
monocrystal germanium layer have been obtained. The intensity of the second harmon-
ics and the wave motion forms have been analyzed for nonelastic equivalent propagation
directions.
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1. Introduction

In the present paper nonlinear effects, which appear when stationary stress waves
spread in elastic mediums, have been investigated. One of the widely used conceptions
of such a study is the determination of the so-called higher orders harmonics, which
describe nonlinear, i.e., nonharmonic effects. This conception is effectively used to
investigate nonlinear elastic waves with low intensity, and on its base a great number of
fundamental scientific and applied results are obtained. The most important features
of this conception can be found in papers [1-3]. The procedure we apply is based on
the representation of the elastic wave displacements in a series in terms of the acoustic
Mach number, which can be regarded as a small parameter.

We obtain appropriate equations for the different members of the series from the
nonlinear equations of dynamics written in terms of displacements. The solutions
to these equations are referred to as second, third and fourth order harmonics, re-
spectively. By applying this approach we want to determine the second harmonics of
monochromatic elastic waves, which belong to one of the wave motions mode for the
waveguide considered, or the compound second harmonics of linear waves. The latter
belong to two different waveguide modes. In the second case, the question about the
normal waves’ three-phonon interaction deserves special attention.
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Works [1-9] are devoted to the solution methods and provide a number of results
for the propagation of the second harmonics of elastic waves in anisotropic bodies. In
these works a geometrically nonlinear model is selected and the effect of the propaga-
tion medium on the equations of motion is also clarified. The issues of how to obtain
the solutions, how to describe the second harmonics and the basic physical-mechanical
effects for the nonlinear wave phenomena have all been analyzed both theoretically
and experimentally. In the above works the second harmonics of longitudinal and shift
bulk waves in isotropic mediums, the second harmonics of compound monochromatic
waves in crystalline mediums in a number of crystal systems have been obtained.
The questions about three-phonon interaction of bulk elastic waves in anisotropic
and isotropic mediums have also been considered. In paper [10] the second harmonics
are found for Relay-type surface waves in an isotropic medium.

There are only a few works devoted to the problem of how to obtain and analyze
the second harmonics of normal waves in waveguides of different geometry with cross-
section dimension, restricted at least on one coordinate. For example, in paper [11]
the analysis of nonharmonic effects for the propagation of flexure elastic waves in a
thin isotropic lamina is considered.

2. The model and basic equations of the wave process

Indicial notations are employed in a Cartesian coordinate system throughout this
paper. In accordance with the general rules of indicial notations summation over
repeated indices is implied and subscripts preceded by a colon denote differentiation
with respect to the corresponding coordinate. Latin indices range over the integers
1, 2 and 3.

Nonlinear elastic wave propagation has been investigated in an arbitrary direction
in the plane of the waveguide. The volume V under consideration is given by

V = {−∞ < x1, x2 < ∞, |x3| ≤ h} , (2.1)

where x1, x2 and x3 are non-dimensional coordinates.

The body under consideration is homogenous and anisotropic. The problem is
a dynamic one. Components εij of the Lagrange deformation tensor in terms of
displacements ui are given by the equation

εij =
1
2
(ui,j + uj,i + ul,iul,j) . (2.2)

It is assumed that the elastic potential has the form

U =
1
2
cijklεijεkl +

1
6
cijklmnεijεklεmn, (2.3)

in which cijkl and cijklmn are the tensors of elastic constants. The second Piola–
Kirchoff stress tensor σjq can be divided into two parts:

σjq = ∂U/∂(uj,q) = σ
(l)
jq + σ

(n)
jq , (2.4)
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where

σ
(l)
jq = cjqikui,k, σ

(n)
jq = 1

2cjqikul,iul,k + cpqikuj,pui,k + 1
2cjqiklmui,kul,m. (2.5)

The density and elastic properties of the Oh class monocrystal cubic system layer
under consideration are characterized by the following second and third order nonzero
elastic constants:

ρ̃ = ρρ∗; c̃11 = c̃22 = c̃33 = c11c∗;

c̃12 = c̃13 = c̃21 = c̃23 = c̃31 = c̃32 = c12c∗;

c̃44 = c̃55 = c̃66 = c44c∗; c̃111 = c̃222 = c̃333 = c111c∗;

c̃112 = c̃113 = c̃122 = c̃133 = c̃223 = c̃233 = c112c∗;

c̃144 = c̃255 = c̃366 = c144c∗; c̃123 = c123c∗; c̃456 = c456c∗;

c̃155 = c̃166 = c̃244 = c̃266 = c̃344 = c̃355 = c155c∗,

(2.6)

where the values of the normalizing parameters are c∗ = 1010 Pa, ρ∗ = 103 kg/m3.

The elastic potential in quadratic and cubic terms of ui,j for the monocrystal layer
has the form

U = 1
2c11

∑3
k=1 u2

k,k + 1
2c44

∑3
k,l=1, k 6=l u

2
k,l +

+c44

∑3
k,l=1, k<l uk,lul,k + c12

∑3
k,l=1, k<l uk,kul,l +

+ 1
2∆3

∑3
k,l=1, k 6=l uk,ku2

l,k + 1
2∆2

∑3
k,l=1, k 6=l uk,ku2

k,l +

+∆6

∑3
k,l,m=1, k 6=l,m, l<m uk,luk,m(ul,m + um,l) +

+ 1
6∆1

∑3
k=1 u3

k,k + 1
2∆5

∑3
k,l=1, k 6=l uk,ku2

l,l +

+ 1
2∆7

∑3
k,l,m=1, k 6=l,m, l 6=m uk,ku2

l,m +

+c144

∑3
k,l,m=1, k 6=l,m, l<m uk,kul,mum,l +

+∆4

∑3
k,l=1, k<l uk,kuk,lul,k +

+
∑3

k,l,m=1, k 6=l,m, l 6=m uk,luk,mum,l +

+c456

∑3
l,m=2, l 6=m u1,lul,mum,1,

(2.7)

where

∆1 = 3 c11 + c111; ∆2 = c12 + 2 c44 + c155; ∆3 = c11 + c155;

∆4 = c44 + c155; ∆5 = c12 + c112; ∆6 = c44 + c456; ∆7 = c12 + c144.
(2.8)

The equations of motion in terms of displacements are obtained from the equation of
motion

σij,j = ρ0üi (2.9)
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and have the form

ρ0üj −∆8(ul,lj + uk,kj)− c44(uj,ll + uj,kk)− c11uj,jj =

= ∆1uj,juj,jj + ∆2(2uj,luj,lj + 2uj,kuj,kj + uj,juj,ll + uj,juj,kk)+

+∆3(ul,jul,jj + uk,juk,jj + ul,luj,ll + uj,lul,ll + uk,kuj,kk + uj,kuk,kk)+

+∆4(2ul,juj,lj + uj,lul,jj + 2uk,juj,kj + uj,kuk,jj + ul,jul,ll + uk,juk,kk)+

+∆5(ul,luj,jj + uk,kuj,jj)+

+∆9(uk,lul,kj + ul,kuk,lj + uk,jul,kl + ul,juk,lk)+

+∆10(uk,kul,lj + ul,luk,kj)+

+∆6(uk,juk,ll + 2uk,luj,kl + uj,kuk,ll + 2ul,kuj,lk + uj,lul,kk + ul,jul,kk)+

+∆7(uk,kuj,ll + ul,luj,kk)+

+(∆4 + ∆5)(ul,lul,lj + uj,jul,lj + uj,juk,kj + uk,kuk,kj)+

+(∆6 + ∆7)(ul,kul,kj + uk,luk,lj + uj,k ul,kl + uj,luk,lk) (j = 1, 3),

(2.10)

where

l =





1, j = 2, 3;

2, j = 1;
k =





3, j = 1, 2;

2, j = 3;
(2.11)

∆8 = c12 + c44; ∆9 = c144 + c456; ∆10 = c123 + c144. (2.12)

Our main objective is to find the analytical representations for second harmonics of
normal three-partial waves. More precisely we would like to determine what forms
the linear three-partial waves’ second harmonics have and to investigate the intensity
levels of the second harmonics.

3. Analytical solution of a homogeneous problem for linear waves

After giving the elastic displacements uj as a sum of the linear harmonic terms u
(l)
j

and its inharmonic distortion u
(n)
j – the latter is proportional to the acoustic Mach

number of the first degree – we can determine the expressions for u
(l)
j and u

(n)
j from

the first and the second boundary value problems:

ρ0ü
(l)
j − cjsrku

(l)
s,k = 0,

(c3srku
(l)
r,k)x3=±h = 0;

(3.1)
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ρ0ü
(n)
j − cjdiku

(n)
i,dk = cjdiku

(l)
l,dku

(l)
l,i + cpdik(u(l)

j,dpu
(l)
i,k+

+u
(l)
i,dku

(l)
j,p) + cjdiklmu

(l)
i,dku

(l)
l,m,

(c3diku
(n)
i,k )x3=±h = −(1

2c3diku
(l)
l,i u

(l)
l,k+

+cpdiku
(l)
3,pu

(l)
i,k + 1

2c3diklmu
(l)
i,ku

(l)
l,m)x3=±h.

(3.2)

Partial displacement functions of the linear normal waves, which propagate in the
waveguide plain in an arbitrary direction characterized by the angle ϕ and the vector
n, can be represented in a complex exponential form

u
(l)
j (x1, x2, x3, t) = fj(x3) exp{−i(ωt− k(n1x1 + n2x2))} (j = 1, 3), (3.3)

where

fj(x3) is the complex amplitude function;

ω is the circular frequency of the wave;

k is a non-dimensional normalized wave number;

n1 = cos ϕ and n2 = sin ϕ are the components of the wave vector n.

Equations for the amplitude functions fj(x3) are obtained from (3.1):




f ′′1 (x3) + A11f1(x3) + A12f2(x3) + A13f
′
3(x3) = 0,

A21f1(x3) + f ′′2 (x3) + A22f2(x3) + A23f
′
3(x3) = 0,

A31f
′
1(x3) + A32f

′
2(x3) + f ′′3 (x3) + A33f3(x3) = 0;

(3.4)





(in1f3(x3) + f ′1(x3))x3=±h = 0,

(in2f3(x3) + f ′2(x3))x3=±h = 0,

(c12i(n1f1(x3) + n2f2(x3)) + c11f
′
3(x3))x3=±h = 0.

(3.5)

In the above equations Aij are the elements of the Christoffel matrix for the cubic
medium:

A11 = (Ω2 − k2(c11n
2
1 + c44n

2
2))/c44,

A22 = (Ω2 − k2(c44n
2
1 + c11n

2
2))/c44,

A33 = (Ω2 − c44k
2(n2

1 + n2
2))/c44,

A12 = A21 = −k2n1n2∆8/c44,

A13 = A31 = −ikn1∆8/c44,

A23 = A32 = −ikn2∆8/c44.

(3.6)
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Here Ω2 = ρω2R2
∗/C∗ (C∗ = h m) is the non-dimensional frequency parameter.

The characteristic equation for the equation system (3.4) takes the form∣∣∣∣∣∣∣∣∣∣

λ2 + A11 A12 A13

A12 λ2 + A22 A23

A13 A23 λ2 + A33

∣∣∣∣∣∣∣∣∣∣

= 0 . (3.7)

We will assume such a material for the layer that the characteristic equation (3.7) has
three different roots λ1, λ2, λ3 with nonzero real parts. Then the solution to problem
(3.4)-(3.5) can be represented as

fj(x3) =
3∑

m=1

βjm exp(λmx3). (3.8)

The relations between the coefficients βj,m (j = 2, 3) and β1m follow from equation
(3.7) and are

βjm =
Qjm

Dm
β1m (j = 1, 3), (3.9)

where
Q1m = Dm = (λ2

m + A22)(λ2
m + A33)−A2

23,

Q2m = A13A23 −A12(λ2
m + A33),

Q3m = A12A23 −A13(λ2
m + A22).

(3.10)

Substitution of representation (3.8) into the boundary conditions (3.5) results in a
system of linear algebraic equations for the constants β1m (m = 1, 3)

B · (β11, β12, β13)T = 0. (3.11)

The elements of the coefficient matrix B are
B1m = in1 exp(hλm)(Q3mD−1

m + λm);

B2m = in2 exp(hλm)(Q2mD−1
m + λm);

B3m = exp(hλm)(ic12(n1 + n2Q2mD−1
m ) + c11λmQ3mD−1

m ) (m = 1, 3).

(3.12)

The coefficients β1m can be expressed from equations (3.11) as

β1m =
Gm

M
gm (m = 1, 3), (3.13)

where
G1 = M = B22B33 −B23B32,

G2 = B23B31 −B21B33,

G3 = B21B32 −B22B31,

(3.14)
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and gm are arbitrary integration constants.

Equation (3.11) has non-trivial solutions if

detB = 0 . (3.15)

Vanishing of the above determinant yields a transcendental equation for Ω and k, i.e.,
for the spectrum.

Finally, the complex displacement functions for the normal symmetrical linear
waves which propagate in the waveguide plane in an arbitrary direction (n1, n2) and
belong to the mode q, are

u
(l)
jq (x1, x2, x3, t) = [M−1

q

∑3
m=1 D−1

mqgmqQjmqGmqβjmq exp(λmqx3)]×

× exp(−i(ωt− kq(n1x1 + n2x2))) (j = 1, 3).
(3.16)

4. Analytical solution of a heterogeneous problem for a nonharmonic
distortion

After determining the amplitude functions of linear waves, it becomes possible to
obtain the analytical representations for the nonharmonic distortion u

(n)
jq from (3.2):

ρ0ü
(n)
jq − cjdiku

(n)
iq,dk =

∑3
l,m=1 µjlmq exp(−2i(ωt−

−kq(n1x1 + n2x2)) + (λlq + λmq)x3);
(4.1)

(c3diku
(n)
iq,k)x3=±h =

∑3
l,m=1 ηjlmq exp(−2i(ωt−

−kq(n1x1 + n2x2)) + (λlq + λmq)x3) (j = 1, 3).
(4.2)

In these relations the constants µjlmq (j = 1, 2) can be written as

µjlmq = almq
jljmikqnj [2k2

q(n2
j∆1 + 3n2

k∆2)− (λ2
lq + 4λlqλmq + λ2

mq)∆2] +

+almq
lmmlikq[2k2

qnk(n2
j (2∆4 + ∆5) + n2

k∆3)−

−nk(λ2
lq∆6 + λlqλmq (3∆6 + ∆7) + λ2

mq∆7)] +

+almq
llmmikq[2k2

qnk(n2
j (2∆4 + ∆5) + n2

k∆3)−

−nk(λ2
lq∆7 + λlqλmq (3∆6 + ∆7) + λ2

mq∆6)] +

+almq
klkmikqnj [2k2

q(n2
j∆3 + n2

k(2∆4 + ∆5))−

−λ2
lq∆7 − 2λlqλmq(∆6 + ∆7)− λ2

mq∆6] +
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+almq
3l3mikqnj [2k2

q(n2
j∆3 + n2

k(2∆6 + ∆7))− (4.3)

−λ2
lq∆4 − 2λlqλmq(∆4 + ∆5)− λ2

mq∆5] +

+almq
jm3lk

2
q [(n2

j (∆4 + 2∆5) + n2
k(∆6 + 2∆7))λlq +

+3(n2
j∆4 + n2

k∆6)λmq − λlqλmq(λlq + λmq)∆3] +

+almq
jl3mk2

q [3(n2
j∆4 + n2

k∆6)λlq + (n2
j (∆4 + 2∆5) +

+n2
k(∆6 + 2∆7))λmq − λlqλmq(λlq + λmq)∆3] +

+almq
km3lk

2
qn1n2[λlq(∆9 + 2∆10) + 3λmq∆9] +

+almq
kl3mk2

qn1n2[3λlq∆9 + λmq(∆9 + 2∆10)] .

If j = 3 we have

µ3lmq = 2almq
1m3likqn1[k2

q(n2
1∆3 + n2

2(2∆6 + ∆7))−
−λ2

lq∆5 − λlqλmq(3∆4 + ∆5)− λ2
mq∆4] +

+2almq
1l3mikqn1[k2

q(n2
1∆3 + n2

2(2∆6 + ∆7))−
−λ2

lq∆4 − λlqλmq(3∆4 + ∆5)− λ2
mq∆5] +

+2almq
2m3likqn2[k2

q(n2
2∆3 + +n2

1(2∆6 + ∆7))−
−λ2

lq∆5 − λlqλmq(3∆4 + ∆5)− λ2
mq∆4] +

+2almq
2l3mikqn2[k2

q(n2
2∆3 + n2

1(2∆6 + ∆7))−
−λ2

lq∆4 − λlqλmq(3∆4 + ∆5)− λ2
mq∆5] +

+almq
1l1m(λlq + λmq)[k2

q(n2
1(2∆4 + ∆5) + (4.4)

+n2
2(2∆6 + ∆7))− λlqλmq∆3] +

+almq
2l2m(λlq + λmq)[k2

q(n2
1(2∆6 + ∆7) +

+n2
2(2∆4 + ∆5))− λlqλmq∆3] +

+(almq
1m2l + almq

1l2m)(λlq + λmq)k2
qn1n2(2∆9 + ∆10) +

+almq
3l3m(λlq + λmq)(3k2

q(n2
1 + n2

2)∆2 − λlqλmq∆1).
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The constants ηjlmq (j = 1, 2) in the boundary conditions (4.2) are

ηjlmq = (almq
jm3l + almq

jl3m)[k2
q(n1nj∆3 + n2

k∆6)− λlqλmq∆4]+

+(almq
km3l + almq

kl3m)k2
qn1(nj∆7 + n2∆6)−

−(almq
jljmn1∆4 + almq

klkmnj∆6 + almq
3l3mnj∆2)ikq(λlq + λmq)−

−almq
jllmikq(c144n1λlq + +c456nkλmq)− almq

jmmlikq(c456nkλlq + c144n1λmq) .

(4.5)

If j = 3 we have

η3lmq = almq
1l1m[k2

q(n2
1∆5 + n2

2∆7)− λlqλmq∆3]+

+almq
2l2m[k2

qn2
1(∆5 + ∆7)− λlqλmq∆3]+

+(almq
1m2l + almq

1l2m)k2
qn1(c123n1 + c144n2)+

+almq
3l3m[k2

q(n2
1 + n2

2)∆2 − λlqλmq∆1]−

−almq
1m3likqn1(λlq∆5 + λmq∆4)− almq

1l3mikqn1(λlq∆4 + λmq∆5)−

−almq
2m3li× kq(n1λlq∆5 + n2λmq∆4)− almq

2l3mikq(n2λlq∆4 + n1λmq∆5).

(4.6)

In equations (4.3)-(4.5)

almq
dpsr = −(2M2

q DlqDmq)−1glqgmqGlqGmqQdpqQsrqβdpqβsrq; (4.7)

nk =





n1, j = 2;

n2, j = 1.
(4.8)

Problem (4.1) has the analytical solution of the following structure:

u
(n)
jq = [

∑3
l,m=1 γj1lmq exp((λlq + λmq)x3)+

+
∑3

m=1(γj2mq + γj3mqx3) exp(2λmqx3)+

+
∑3

m=1(γj4mq + γj5mqx1 + γj6mqx2) exp(2λmqx3)]×

× exp(−2i(ωt− kq(n1x1 + n2x2))).

(4.9)

The coefficients γj1lmq are determined from the linear equation system

L(l,m) · (γ11lmq, γ21lmq, γ31lmq)T = (µ1lmq, µ2lmq, µ3lmq)T (l 6= m), (4.10)
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where the elements of the matrix L(l,m) are

L
(l,m)
11q = 4k2

q(c11n
2
1 + c44n

2
2)− c44(λlq + λmq)2 − 4Ω2;

L
(l,m)
22q = 4k2

q(c44n
2
1 + c11n

2
2)− c44(λlq + λmq)2 − 4Ω2;

L
(l,m)
33q = 4k2

qc44(n2
1 + n2

2)− c11(λlq + λmq)2 − 4Ω2;

L
(l,m)
12q = L

(l,m)
21q = 4k2

qn1n2∆8;

L
(l,m)
13q = L

(l,m)
31q = −2ikqn1(λlq + λmq)∆8;

L
(l,m)
23q = L

(l,m)
32q = −2ikqn2(λlq + λmq)∆8.

(4.11)

The coefficients γj2mlq (j = 1, 3) are obtained as

γj2mq = γ12mqZ
(2)
jmq(P

(2)
mq )−1, (4.12)

where
Z

(2)
1mq = P

(2)
mq = L

(m,m)
22q L

(m,m)
33q − (L(m,m)

23q )2;

Z
(2)
2mq = [L(m,m)

33q (µ2mmq + χ1mq − L
(m,m)
12q γ12mq)−

−L
(m,m)
23q (µ3mmq + χ2mq − L

(m,m)
13q γ12mq)]γ−1

12mq;

Z
(2)
3mq = [L(m,m)

22q (µ3mmq + χ2mq − L
(m,m)
13q γ12mq)−

−L
(m,m)
23q (µ2mmq + χ1mq − L

(m,m)
12q γ12mq)]γ−1

12mq.

(4.13)

The coefficients L
(m,m)
srq are defined in the same way as in equation (4.11); γ12mq are

arbitrary integration constants;

χ1mq = 2ikqn2γ33mq∆8 + 4c44γ23mqλmq;

χ2mq = 2ikq(n1γ13mq + n2γ23mq)∆8 + 4c11γ33mqλmq.
(4.14)

The coefficients γj3mq (j = 1, 3) have the structure

γj3mq = γ13mqZ
(3)
jmq(P

(3)
mq )−1, (4.15)

where
Z

(3)
1mq = P

(3)
mq = Z

(2)
1mq;

Z
(3)
2mq = L

(m,m)
13q L

(m,m)
23q − L

(m,m)
12q L

(m,m)
33q ;

Z
(3)
3mq = L

(m,m)
12q L

(m,m)
23q − L

(m,m)
13q L

(m,m)
22q ,

(4.16)

and γ13mq are arbitrary integration constants. The coefficients γj4mq (j = 2, 3) are

γj4mq = γ14mqZ
(4)
jmq(P

(4)
mq )−1, (4.17)
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where
Z

(4)
1mq = P

(4)
mq = Z

(2)
1mq;

Z
(4)
2mq = [L(m,m)

33q (ν1mq − L
(m,m)
12q γ14mq)−

−L
(m,m)
23q (ν2mq − L

(m,m)
13q γ14mq)]γ−1

14mq;

Z
(4)
3mq = [L(m,m)

22q (ν2mq − L
(m,m)
13q γ14mq)−

−L
(m,m)
23q (ν1mq − L

(m,m)
12q γ14mq)]γ−1

14mq,

(4.18)

where the constants νsmq (s = 1, 2) have the structure

ν1mq = 2ikq(n1γ16mq + n2γ15mq)∆8+

+4ikq(n1γ25mqc44 + n2γ26mqc11) + 2γ36mqλmq∆8,

ν2mq = 4ikqc44(n1γ35mq + n2γ36mq) + 2λmq(γ15mq + γ26mq)∆8.

(4.19)

The representations for the coefficients γjsmq (s = 5, 6) are

γjsmq = γ1smqZ
(s)
jmq(P

(s)
mq)−1,

Z
(s)
1mq = P

(s)
mq = Z

(2)
1mq; Z

(s)
jmq = Z

(3)
1mq (j = 2, 3).

(4.20)

The coefficients γ1s1q (s = 5, 6) are arbitrary integration constants. The coefficients
γ1smq (s = 5, 6, m = 2, 3) assume the forms

γ1s2q = (d11qd22q − d2
12q)

−1(d22qθ1sq − d12qθ2sq);

γ1s3q = (d11qd22q − d2
12q)

−1(d11qθ2sq − d21qθ1sq),
(4.21)

where
θ1sq = −i exp(2hλ1q)(kqn1γ3s1q + λ1qγ1s1q)−

−ikqn1[exp(2hλ2q)γ3s2q + exp(2hλ3q)γ3s3q];

θ2sq = −c12kq exp(2hλ1q)(n1γ1s1q + n2γ2s1q)−

−c12kqn2[exp(2hλ2q)γ2s2q + exp(2hλ3q)γ3s3q]+

+ic11[λ1q exp(2hλ1q)γ3s1q + λ2q exp(2hλ2q)γ3s2q+

+λ3q exp(2hλ3q)γ3s3q];

(4.22)

and
d1rq = λ(r+1)q exp(2hλ(r+1)q);

d2rq = c12kqn1 exp(2hλ(r+1)q) (r = 1, 2).
(4.23)
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Finally, the constants γ14sq (s = 1, 3) are obtained from the linear equations system

H · (γ141q, γ142q, γ143q)T = (ξ1q, ξ2q, ξ3q)T , (4.24)

where the matrix H is defined as

H1jq = 2c44 exp(2hλjq)(ikqn1Z
(4)
3jq(P

(4)
jq )−1 + λjq);

H2jq = 2c44 exp(2hλjq)(P
(4)
jq )−1(ikqn2Z

(4)
3jq + λjqZ

(4)
2jq);

H3jq = 2 exp(2hλjq)(ikqc12(n1 + Z
(4)
2jq(P

(4)
jq )−1n2)+

+c11Z
(4)
3jq(P

(4)
jq )−1) (j = 1, 3).

(4.25)

The elements ξjq (j = 1, 3) of the right side (4.24) are

ξjq =
∑3

l,m=1(ηjlmq − 2ic44kqnjγ31lmq−

−c44(λlq + λmq)γj1lmq) exp((λlq + λmq)h) (j = 1, 2);

ξ3q =
∑3

l,m=1(η3lmq − 2ic12(n1γ11lmq + n2γ21lmq)−

−c11γ31lmq)(λlq + λmq) exp((λlq + λmq)h).

(4.26)

Finally, we have obtained closed analytical representations for the second harmonics
of normal three-partial waves. These solutions allow us to carry out a detailed analysis
of the nonlinear effects for the anisotropic waveguide considered.

5. Numerical results

Numerical computations have been made for the cubic system monocrystal germa-
nium layer for waves propagating in the plain Ox1x2 along the nonelastoequivalent
direction of the crystal, characterized by the angle ϕ = 15◦.

The analysis of some nonlinear effects for waves which belong to two low linear
modes with zero locking frequency has been performed.

For a germanium monocrystal the density and the second and third order nonzero
normalized elastic constants have the following values:

ρ = 5, 32; c11 = 12, 92; c12 = 4, 79; c44 = 6, 70;

c111 = −7, 10; c112 = −3, 89; c144 = −2, 3;

c155 = −2, 92; c123 = −0, 18; c456 = −0, 53.

(5.1)

The evaluation of the correlation between the longitudinal and cross horizontal
components in the second harmonics of monochromatic normal waves with different
frequencies Ω1 = Ω4 = 6.92, Ω2 = Ω5 = 9.23, Ω3 = Ω6 = 11.53 has been obtained.
The points j in Figure 1 correspond to the waves with frequencies Ωj (they have
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Figure 1. Linear waves spectrum for monocrystal germanium layer

Figure 2. Displacements ul distributions for x3 = 1/2

been analyzed). These correlations are compared with the correlations between the
longitudinal and cross horizontal components in the linear waves.

The longitudinal and cross horizontal components of the normal waves considered
are calculated by using the formulas

ul = u1 cosϕ + u2 sin ϕ; ut = −u1 sin ϕ + u2 cos ϕ, (5.2)

where u1, u2 are the displacements in linear waves or the second harmonics of linear
waves; ϕ is the angle between the wave propagation direction in the middle waveguide
plane and Ox1 is a coordinate direction.

In Figure 2 the wave functions ul
l, un

l for the waveguide section {|x1| ≤ 4h, x2 =
0, x3 = h} and h = 1/2 and at time t = 1 are depicted. Computations have been
made for those waves which belong to the linear spectrum second mode; the curves j
correspond to the waves j in Figure 1. The analogous distributions for the waveguide
section {|x1| ≤ 4h, x2 = 0, x3 = 0} are presented in Figure 3. The values ul

l, un
l are

obtained as

ul
l = Re[u(l)

l /Ω2
∗]; un

l = 105Re[u(n)
l /Ω2

∗]; Ω2
∗ = ρ Ω2/ρ∗. (5.3)
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Figure 3. Displacements ul distributions for x3 = 0

Figure 4. Displacements ut distributions for x3 = 1/2

In Figures 4 and 5 the wave functions ul
t, un

t are shown for the different waveguide
sections x3 = 1/2 and x3 = 0. Here

ul
t = Re[u(l)

l /Ω2
∗]; un

t = 105Re[u(n)
l /Ω2

∗]; Ω2
∗ = ρΩ2/ρ∗. (5.4)

Both for linear waves and for their second harmonics the increasing of frequency
leads to an increasing of the displacement maximum. For linear waves and for a non-
harmonic distortion the increase in frequency and the changeability of the coordinate
x3 have little influence on ul and ut. In case of ul the more intensive displacements
appear in the waveguide area x3 = 0 for linear waves, but the second harmonics are
more vividly expressed on the layer surface while x3 = 1/2. For ut the displacements
in linear waves have higher levels on the layer surface x3 = 1/2, but the characteristics
for the second harmonics are almost equal.

The graphs in Figure 6 show the distributions of the ratio un
l /un

t for the waves which
correspond to points 1 and 4 in Figure 1, that is for waves with similar frequencies,
but belonging to different linear spectrum modes. Computations have been made for
the waveguide area {|x1| ≤ 2h, |x2| ≤ 2h, x3 = 0}. It was found that in linear waves
the first mode is the pseudotransverse mode, and the second is pseudolongitudinal.
From the correlations obtained it is clear that in both cases the second harmonics are
the pseudolongitudinal waves, that is the component un

l is dominant; for the case of
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Ω1 frequency the dependence is monotonic, and for Ω4 frequency case the dependence
is not continuous.

Figure 5. Displacements ut distributions for x3 = 0

Figure 6. Distributions of u
(n)
l /u

(n)
t for x3 = 0

Figure 7. Frequency dependencies of u
(n)
l for x1 = 0

In Figure 7 the dependencies un
t on frequency for the waveguide section {|x1| ≤

4h, x2 = 0, |x3| ≤ h} are shown. The first figure corresponds to frequency Ω1, the
second to frequency Ω2. From the given data it follows that an increase in the first
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mode leads to a decrease in the maximum of un
t . The displacements themselves are

almost constant.

6. Conclusions

The method presented in the paper allows us to analyze the nonlinear normal wave
propagation in an arbitrary direction in the plane of anisotropic elastic layer waveguides.
We have obtained and analyzed how the frequencies depend on the displacement
characteristics, what the distributions for the amplitude characteristics of the linear
normal waves are and what second harmonics they have. The data, obtained by
this method, could be helpful while using a new class of nonlinear devices for signal
information study.

The paper was presented at the 9th International Conference on Numerical Meth-
ods in Continuum Mechanics, Zilina, Slovakia, 9-12 September 2003 and its shortened
version was published in the Conference CD Proceedings.
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