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Abstract— We analyse the prequential plug-in codes relative
to one-parameter exponential familiesM. We show that if data
are sampled i.i.d. from some distribution outsideM, then the
redundancy of any plug-in prequential code grows at rate larger
than 1

2
lnn in the worst case. This means that plug-in codes, such

as the Rissanen-Dawid ML code, may behave inferior to other
important universal codes such as the 2-part MDL, Shtarkov and
Bayes codes, for which the redundancy is always1

2
lnn+O(1).

However, we also show that a slight modification of the ML
plug-in code, “almost” in the model, does achieve the optimal
redundancy even if the the true distribution is outsideM.

I. I NTRODUCTION

We resolve two open problems from [1] concerning uni-
versal codes of the predictive plug-in type, also known as
“prequential” codes. These codes were introduced indepen-
dently by Rissanen [2] in the context of MDL learning and
by Dawid [3], who proposed them as probability forecasting
strategies rather than directly as codes. Roughly, the plug-in
codes relative to parametric modelM = {Mθ | θ ∈ Θ}
work by sequentially coding each outcomexi based on an an
estimatorθ̄i−1 = θ̄(xi−1) for all previous outcomesxi−1 =
x1, . . . , xi−1, leading to codelength (log loss)− lnMθ̄i−1

(xi),
whereMθ denotes the probability density or mass function
indexed byθ. If we take θ̄i = θ̂i equal to the ML (maximum
likelihood) estimator, we call the resulting code the “ML plug-
in code”.

There are many papers about the redundancy and/or ex-
pected regret for the ML plug-in codes, for a large variety
of models including multivariate exponential families, ARMA
processes, regression models and so on. Examples are [4],
[5], [6]. In all these papers the ML plug-in code is shown
to achieve an asymptotic expected regret or redundancy of
k
2 lnn + O(1), wherek is the number of parameters of the
model andn is the sample size. This matches the behaviour
of the Shtarkov, Bayesian and two-part universal codes and is
optimal in several ways, see [7]; since the ML plug-in codes
are often easier to calculate than any of these other three
codes, this appears to be a strong argument for using them
in practical data compression and MDL-style model selection.
Yet, more recently [8], [9], [10], it was shown that, at least
for single-parameter exponential family models, when the data
are generated i.i.d.∼ P , the redundancy in fact grows as
1
2 lnn · varPX

varMX , where M is the distribution inM that is
closest toP in Kullback-Leibler divergence, i.e. it minimizes
D(P‖M); a related result for linear regression is in [11]. In
contrast to the other cited works, [8], [9], [10], [11] do not

assume thatP ∈ M: the model may bemisspecified. Yet
if P ∈ M, then we haveM = P so that the redundancy
grows like it does in the other universal models. But when
M 6= P , the Shtarkov, Bayes and universal codes typically
still achieve asymptotic expected regret1

2 lnn, whereas the
plug-in codes behave differently. [8], [10] show that this leads
to substantially inferior performance of the plug-in codesin
practical MDL model selection.

A. The Two Open Problems/Conjectures

In general, the estimator forM based onxi−1 need not
be an element of the parametric modelM; for example,
we may think of the Bayesian predictive distribution as an
estimator relative toM, even though it is “out-model”: rather
than a single element ofM, it is a mixture of distributions
in M, each weighted by their posterior density (see Sec-
tion IV for an example). We may thus re-interpret Bayesian
universal codes as prequential codes based on “out-model”
estimators. From now on, we reserve the term “prequential
plug-in code”, abbreviated to just “plug-in code”, for codes
based on “in-model” estimators, i.e. estimators required to
lie within M. When we call a code just “prequential”, it
may be sequentially constructed from either in-model or out-
model estimators. [9] established a nonstandard redundancy,
different from (k/2) lnn, only for ML and closely related
plug-in codes. [1, Open Problem Nr. 2] conjectured that a
similar result should hold forall plug-in codes, even if they
are based on in-model estimators very different from the ML
estimator: the conjecture was thatno plug-in code can achieve
guaranteed redundancy of(k/2) lnn if data are i.i.d.∼ P and
P 6= M . Our first main result, Theorem 1 below, shows that,
essentially, this conjecture is true for general one-parameter
exponential families(k = 1). Specifically, the redundancy can
become much larger than(1/2) lnn if P 6∈ M.

The second related conjecture [1, Open Problem Nr. 3]
concerned the fact that for the normal location family with
constant varianceσ2, the Bayesian predictive distribution
based on dataxi−1 and a normal prior looks “almost” like
an in-model estimator forxi−1, and hence the resulting code
looks “almost” like a plug-in code: the Bayes predictive
distribution is equal to the normal distribution forXi with
mean equal to the ML estimator̂µ(xi−1) but with a variance
of orderσ2+O(1/n), i.e. slightly larger than the varianceσ2

of Pµ̂(xi−1) (see Section IV for details). Since the Bayesian
predictive distribution does achieve the redundancy(1/2) lnn
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even if P 6∈ M, this means that ifM is the normal
location family, then there does exist an “almost” in-model
estimator (i.e. a slight modification of the ML estimator)
that does achieve(1/2) lnn even if P 6∈ M. Although this
example does not extend straightforwardly to other exponential
families, [1] conjectured that there should nevertheless be
some general definition for “almost” in-model estimators that
achieve(k/2) lnn redundancy even ifP 6∈ M. Here we show
that this conjecture is true, at least ifk = 1: we propose
the slightly squashedML estimator, a modification of the
ML estimator that puts it slightly outside modelM, and in
Theorem 2 we show that this estimator achieves(1/2) lnn
redundancy even ifP 6∈ M. This result is important in practice
since, in contrast to the Bayesian predictive distribution, the
slightly squashed ML estimator is in general just as easy to
compute as the ML estimator itself.

II. N OTATION AND DEFINITIONS

Throughout this text we use nats rather than bits as units of
information. A sequence of outcomesz1, . . . , zn is abbreviated
to zn. We writeEP as a shorthand forEZ∼P , the expectation
of Z under distributionP . When we consider a sequence of
n outcomes independently distributed∼ P , we useEP even
as a shorthand for the expectation of(Z1, . . . , Zn) under the
n-fold product distribution ofP . Finally, P (Z) denotes the
probability mass function ofP in caseZ is discrete-valued,
and it denotes the density ofP , in caseZ takes its value in
a continuum. When we write ‘density function ofZ ’, then,
if Z is discrete-valued, this should be read as ‘probability
mass function ofZ ’. Note however that in our second main
result, Theorem 2 we do not assume that the data-generating
distributionP admits a density.

Let Z be a set of outcomes, taking values either in a finite or
countable set, or in a subset ofk-dimensional Euclidean space
for somek ≥ 1. Let X : Z → R be a random variable onZ,
and letX = {x ∈ R : ∃z ∈ Z : X(z) = x} be the range of
X . Exponential family models are families of distributions on
Z defined relative to a random variableX (called ‘sufficient
statistic’) as defined above, and a functionh : Z → [0,∞).
Let Z(η) :=

∫

z∈Z
e−ηX(z)h(z)dz (the integral to be replaced

by a sum for countableZ), andΘnat := {η ∈ R : Z(η) < ∞}.
Definition 1 (Exponential family):The single parameter

exponential family[12] with sufficient statisticX andcarrier
h is the family of distributions with densitiesMη(z) :=
1

Z(η)e
−ηX(z)h(z), whereη ∈ Θnat. Θnat is called thenatural

parameter space. The family is calledregular if Θnat is an
open interval ofR.

In the remainder of this text we only consider single
parameter, regular exponential families, but this qualification
will henceforth be omitted. Examples include the Poisson,
geometric and multinomial families, and the model of all
Gaussian distributions with a fixed variance or mean.

The statisticX(z) is sufficient for η [12]. This suggests
reparameterizing the distribution by the expected value ofX ,
which is called themean value parameterization. The function

µ(η) = EMη
[X ] maps parameters in the natural parameteriza-

tion to the mean value parameterization. It is a diffeomorphism
(it is one-to-one, onto, infinitely often differentiable and has
an infinitely often differentiable inverse) [12]. Therefore the
mean value parameter spaceΘmean is also an open interval
of R. We write M = {Mµ | µ ∈ Θmean} whereMµ is the
distribution with mean value parameterµ.

We are now ready to define the plug-in universal model.
This is a distribution on infinite sequencesz1, z2, . . . ∈ Z∞,
recursively defined in terms of the distributions ofZn+1

conditioned onZn = zn, for all n = 1, 2, . . .. In the definition,
we use the notationxi := X(zi). Note that we use the
term “model” both for a single distribution (“plug-in universal
model”, a common phrase in information theory) and for a
family of distributions (“statistical model”, a common phrase
in statistics).

Definition 2 (Plug-in universal model):Let M = {Mµ |
µ ∈ Θmean} be an exponential family with mean value
parameter domainΘmean. GivenM, constant̄µ0 ∈ Θmean and
a sequence of functions̄µ(z1), µ̄(z2), . . ., such that̄µ(zn) =:
µ̄n ∈ Θmean, we define theplug-in universal model(or plug-in
modelfor short)U by setting, for alln, all zn+1 ∈ Zn+1:

U(zn+1 | zn) = Mµ̄n
(zn+1),

where U(zn+1 | zn) is the density/mass function ofzn+1

conditional onZn = zn.

We usually refer to plug-in universal model in terms of
the codelength function of the corresponding plug-in universal
code:

LU (z
n) =

n−1
∑

i=0

LU (zi+1 | zi) =
n−1
∑

i=0

− lnMµ̄i
(zi+1). (1)

The most important plug-in model is the ML (maximum
likelihood) plug-in model, defined as follows:

Definition 3 (ML plug-in model):Given M and constants
x0 ∈ Θmean andn0 > 0, we define theML plug-in modelÛ
by setting, for alln, all zn+1 ∈ Zn+1:

Û(zn+1 | zn) = Mµ̂(zn)(zn+1),

where

µ̂(zn) = µ̂n :=
x0 · n0 +

∑n
i=1 xi

n+ n0
. (2)

To understand this definition, note that for exponential
families, for any sequence of data, the ordinary maximum
likelihood parameter is given by the averagen−1

∑

xi of
the observed values ofX [12]. Here we define our plug-in
model in terms of a slightly modified maximum likelihood
estimator that introduces a ‘fake initial outcome’x0 with
multiplicity n0 in order to avoid infinite code lengths for the
first few outcomes (a well-known problem sometimes called
the “inherent singularity” of predictive coding [7], [1]) and to
ensure that the plug-in ML code of the first outcome is well-
defined. In practice we can taken0 = 1 but our result holds
for anyn0 > 0.



Definition 4 (Relative redundancy):Following [13], [8],
we definerelative redundancywith respect toP of a code
U that is universal on a modelM, as:

RU (n) := EP [LU (Z
n)]− inf

µ∈Θmean

EP [− lnMµ(Z
n)], (3)

whereLU is the length function ofU .
We use the termrelative redundancyrather than justredun-

dancy to emphasize that it measures redundancy relative to
the element of the model that minimizes the codelength rather
than toP , which is not necessarily an element of the model.
From now on, we only considerP under which the data are
i.i.d. Under this condition, letMµ∗ be the element ofM that
minimizes KL divergence toP :

µ∗ := arg min
µ∈Θmean

D(P‖Mµ) = arg min
µ∈Θmean

EP [− lnMµ(Z)],

where the equality follows from the definition of KL diver-
gence. IfMµ∗ exists, it is unique, and ifEP [X ] ∈ Θmean,
then µ∗ = EP [X ] [1, Ch. 17], and the relative redundancy
satisfies

RU (n) = EP [LU (Z
n)]− EP [− lnMµ∗(Zn)]. (4)

III. F IRST RESULT: REDUNDANCY OF PLUG-IN CODES

The three major types of universal codes, Bayes, NML and
2-part, achieve relative redundancies that are (in an appropriate
sense) close to optimal. Specifically, under the conditionson
M described above, and if data are i.i.d.∼ P , then, under
some mild conditions onP , these universal codes satisfy:

RU (n) =
1

2
lnn+O(1), (5)

(where theO(1) may depend onµ and the universal code
used), wheneverP ∈ M or P 6∈ M. (5) is the famous ‘k
over 2 log n formula’ (k = 1 in our case), refinements of
which lie at the basis of practical approximations to MDL
learning [1].

While it is known that forP ∈ M, the fourth major type
of universal code, the ML plug-in code, satisfies (5) as well,
it was shown by [8], [9] that whenP is not in the model,
the ML plug-in code may behave suboptimally. Specifically,
its relative redundancy satisfies:

RÛ (n) =
1

2

varPX
varMµ∗X

lnn+O(1), (6)

and can be significantly larger than (5), when the variance of
P is large.

In this paper, we show that not only the ML plug-in
code, buteveryplug-in code may behave suboptimally, when
P /∈ M. In other words, modifying the ML estimator̂µn

or introducing any other sequence of estimatorsµ̄n, and
constructing the plug-in code based on that sequence will
not help to satisfy (5). Thus the optimal redundancy can only
be achieved by codes outsideM, unlessM is the Bernoulli
family (since we assume the data are i.i.d., in the Bernoulli
case we must have thatP ∈ M; but the Bernoulli case is the
only case in which we must haveP ∈ M).

Our main result, Theorem 1, concerns the case in whichP
is itself a member of some exponential familyP , but P is
in general different thanM. Then, the suboptimal behavior
of plug-in codes follows immediately as Corollary 1, stated
further below.

Theorem 1:Let M = {Mµ | µ ∈ Θmean} andP = {Pµ |
µ ∈ Θmean} be single parameter exponential families with the
same sufficient statisticX and mean-value parameter space
Θmean. Let U denote any plug-in model with respect toM
based on the sequence of estimatorsµ̄0, µ̄1, µ̄2, . . .. Then, for
Lebesgue almost allµ∗ ∈ Θmean(i.e. all apart from a Lebesgue
measure zero set), forX,X1, X2, . . . i.i.d. ∼ Pµ∗ ∈ P :

lim inf
n→∞

RU (n)
1
2 lnn

≥
varPµ∗X

varMµ∗X
.

Proof: (rough sketch; a detailed proof is in the Appendix)
The proof is based on a theorem stated by Rissanen [14]
(see also [1], Theorem 14.2), a special case of which says
the following. LetΘ0 ⊂ Θmean be a closed, non-degenerate
interval,P be defined as above,P (n)

µ be a joint distribution
of n outcomes generated i.i.d. fromPµ, Q be an arbitrary
probabilistic source, i.e. a distribution on infinite sequences
z1, z2, . . . ∈ Z∞, and letQ(n) be its restriction to the firstn

outcomes. Define:gn(µ∗) =
D(P

(n)

µ∗ ‖Q(n))
1
2 lnn

. Then for Lebesgue
almost allµ∗ ∈ Θ0, lim infn→∞ gn(µ

∗) ≥ 1.
We apply Rissanen’s theorem by constructing a sourceQ,

specifying the conditional probabilitiesQ(zn+1|zn) := Pµ̄n
,

for everyn ≥ 1. We now have:

D(P
(n)
µ∗ ‖Q(n)) =

n−1
∑

i=0

EPµ∗

[

lnPµ∗(Zi+1)− lnQ(Zi+1|Z
i)
]

=

n−1
∑

i=1

EPµ∗ [D(Pµ∗‖Pµ̄i
)] . (7)

To see how (7) is related to our case, let us first rewrite the
redundancy in a more convenient form:

RU (n) =

n−1
∑

i=0

EPµ∗ [D(Mµ∗ ‖ Mµ̄i
)] . (8)

The derivation of (8) make use of a standard result in the
theory of exponential families and can be found e.g. in [1].

Comparing (7) and (8), we see that although in both
expressions, the expectation is taken with respect toPµ∗ , (7)
is a statement about KL divergence between the members of
P , while (8) speaks about the members ofM. The trick,
which allows us to relate both expressions, is to examine
their second-order behavior. By expandingD(Pµ∗‖Pµ̄i

) into
a Taylor series aroundµ∗, we get:

D(Pµ∗‖Pµ̄i
) ≃ 0+D(1)(µ∗)(µ̄i−µ∗)+

1

2
D(2)(µ∗)(µ̄i−µ∗)2,

where we abbreviatedD(k)(µ) = dk

dµkD(Pµ∗‖Pµ). The term
D(1)(µ∗) is zero, sinceD(µ∗‖µ) as a function ofµ has
its minimum atµ = µ∗ [12]. As is well-known [12], for
exponential families the termD(2)(µ) coincides precisely with



the Fisher informationIP (µ) evaluated atµ. Another standard
result [12] for the mean-value parameterization says that for
all µ, IP (µ) = 1

varPµX . Therefore, we getD(Pµ∗‖Pµ̄i
) ≃

1
2
(µ̄i−µ∗)2

varPµ∗X , and similarly,D(Mµ∗‖Mµ̄i
) ≃ 1

2
(µ̄i−µ∗)2

varMµ∗ X , so that

D(Mµ∗‖Mµ̄i
) ≃ D(Pµ∗‖Pµ̄i

)
varPµ∗ X

varMµ∗X , and using (7) and (8):

RU (n) ≃ D(P
(n)
µ∗ ‖Q(n))

varPµ∗X

varMµ∗ X .

The last step of the proof is to use Rissanen’s theorem and
conclude thatlim infn→∞

RU (n)
1
2 lnn

is equal to

lim infn→∞
D(P

(n)

µ∗ ‖Q(n))
1
2 lnn

varPµ∗X

varMµ∗ X ≥
varPµ∗X

varMµ∗ X ,

for Lebesgue almost allµ∗ ∈ Θ0, and thus for Lebesgue
almost allµ∗ ∈ Θmean.
We now use Theorem 1 to show that the redundancy of plug-in
codes is suboptimal for all exponential families which satisfy
the following very weak condition:

Condition 1: Let M = {Mµ | µ ∈ Θmean} be a single
parameter exponential family with sufficient statisticX and
mean-value parameter spaceΘmean. We require that there exists
another single-parameter exponential familyP = {Pµ | µ ∈
Θmean} with the same mean-value parameter space asM, but
with strictly larger variance thanM for everyµ ∈ Θmean.

The Condition 1 is widely satisfied among known expo-
nential families. WhenX = [a, b], we definePµ to be a
“scaled” Bernoulli model, by putting all probability mass
on {a, b} in such a way thatEPµ

= µ. It is easy to
show, that such distribution has the highest variance among
all distributions defined on[a, b] with a given mean value
µ; therefore varPµ

X > varMµ
X , unlessM is a “scaled”

Bernoulli itself. WhenX = R, P can be chosen to be a
normal family with fixed, sufficiently large varianceσ2. For
X = [0,∞), P can be taken to be a gamma family with
sufficiently large scale parameter. WhenX = {0, 1, 2, . . .}, P
can be taken to be negative binomial (with expected “number
of successes” sufficiently small).

Thus, we see that for all commonly used exponential
families, except for Bernoulli, Condition 1 holds. On the other
hand if M is Bernoulli, Corollary 1 is no longer relevant
anyway, since thenP must lie inM.

Corollary 1: Let M = {Mµ | µ ∈ Θmean} a single
parameter exponential family with sufficient statisticX and
mean-value parameter spaceΘmean, satisfying Condition 1. Let
U denote any plug-in model with respect toM based on any
sequence of estimators̄µ1, µ̄2, . . .. Then, there exists a family
of distributionsP = {Pµ | µ ∈ Θmean}, such that for Lebesgue
almost allµ∗ ∈ Θmean, for X,X1, X2, . . . i.i.d. ∼ Pµ∗ :

lim inf
n→∞

RU (n)

lnn
≥

1

2

varPµ∗X

varMµ∗X
>

1

2
,

so that the set ofµ∗ for which U achieves the regret12 lnn+
O(1) is a set of Lebesgue measure zero.

Proof: Immediate from Theorem 1.

IV. SECOND RESULT: OPTIMALITY OF SQUASHED ML

We showed that every plug-in code, including the ML plug-
in code, behaves suboptimally for 1-parameter familiesM
unlessM is Bernoulli. This fact does not, however, exclude
the possibility that a small modification of the ML plug-in
code, which puts the predictions slightly outsideM, will
lead to the optimal redundancy (5). An argument supporting
this claim comes from considering the Bayesian predictive
distribution whenM is the normal family with fixed variance
σ2. In this case, the Bayesian code based on priorN (µ0, τ

2
0 )

has a simple form [1]:

UBayes(zn+1 | zn) = fµn,τ2
n+σ2(zn+1),

wherefµ,σ2 is the density of normal distributionN (µ, σ2),

µn =
(
∑

n
i=1 xi)+

σ2

τ2
0
µ0

n+σ2

τ2
0

, and τ2n = σ2

n+σ2

τ0

.

Thus, the Bayesian predictive distribution is itself a Gaussian
with mean equal to the modified maximum likelihood estima-
tor (with n0 = σ2/τ20 ), albeit with a slightly larger variance
σ2 + O(1/n). This shows that for the normal family with
fixed variance, there exists an “almost” in-model code, which
satisfies (5). This led [1] to conjecture that something similar
holds for general exponential families. Here we show that this
is indeed the case: we propose a simple modification of the ML
plug-in universal model, obtained by predictingzn+1 using a
slightly “squashed” versionM ′

µ̂n
of the ML estimatorMµ̂n

,
defined as:

M ′
µ̂n

(zn+1) := Mµ̂n
(zn+1)

1 + 1
2nIM(µ̂n)(xn+1 − µ̂n)

2

1 + 1
2n

,

where µ̂n is defined as in (2) andIM(µ) is the Fisher
information for modelM. Note thatM ′

µ̂n
(zn+1)(·) repre-

sents a valid probability density: it is non-negative due to
IM(µ̂n) > 0 (property of exponential families), and it is
properly normalized:

∫

X
M ′

µ̂n
(zn+1)(z)dz =

(

1 + 1
2n

)−1
(

∫

X
Mµ̂n

(z)dz

+ 1
2n IM(µ̂n)

∫

X
(X(z)− µ̂n)

2Mµ̂n
(z)dz

)

= 1,

where the final equality follows because for exponential fam-
ilies, IM(µ) = (varMµ

X)−1. While M ′ 6∈ M, we have
D(M ′

µ̂n
‖Mµ̂n

) = O(1/n), i.e. M ′ is “almost” in-model
estimator.

Definition 5 (Squashed ML prequential model):GivenM,
constantsx0 ∈ Θmean and n0 > 0, we define theslightly
squashed ML prequential modelU by setting, for alln, all
zn+1 ∈ Zn+1:

U(zn+1 | zn) = M ′
µ̂n

(zn+1),

whereM ′ is the slightly squashed ML estimator as above.
The codelengths of the corresponding slightly squashed ML
prequential code are not harder to calculate than those of the
ordinary ML plug-in model and in some cases they are easier



to calculate than the lengths of the Bayesian universal code.
On the other hand, we show below that the slightly squashed
ML code always achieves the optimal redundancy, satisfying
(5).

Theorem 2:LetX,X1, X2, . . . be i.i.d.∼ P , with EP [X ] =
µ∗. Let M be a single parameter exponential family with
sufficient statisticX and µ∗ an element of the mean value
parameter space. LetU denote the slightly squashed ML
model with respect toM. If M andP satisfy Condition 2
below, then:

RU (n) =
1

2
lnn+O(1). (9)

Condition 2: We require that the following holds both for
T := X andT := −X :

• If T is unbounded from above then there is ak ∈
{4, 6, . . .} such that the firstk moments ofT exist under
P , that d2

dµ2 IM(µ) = O
(

µk−4
)

, d4

dµ4D(Mµ∗‖Mµ) =

O(µk−6) and that eitherIM(µ) is constant orIM(µ) =
O
(

µk/2−3
)

.
• If T is bounded from above by a constantg then

d2

dµ2 IM(µ), d4

dµ4D(Mµ∗‖Mµ), andIM(µ) are polynomial
in 1/(g − µ).

The usefulness of Theorem 2 depends on the validity of
Condition 2 among commonly used exponential families. As
can be seen from Figure 1, for some standard exponential
families, our condition applies whenever the fourth momentof
P exists. Proof: (of Theorem 2; rough sketch — a detailed
proof is in the Appendix)We express the relative redundancy
of the slightly squashed ML plug-in codeU by the sum of the
relative redundancy of the ordinary ML plug-in codêU and
the difference in expected codelengths betweenU and Û :

RU (n) = EP [LU (Z
n)]− EP [− lnMµ∗(Zn)] =

EP [LU (Z
n)− LÛ (Z

n)] +RÛ (n) =

EP [LU (Z
n)− LÛ (Z

n)] + 1
2

varPX
varMµ∗X lnn+ O(1),

where the last equality follows from (6). We have:

LU (Z
n)− LÛ (Z

n) =
∑n−1

i=0

(

− lnU(Zi+1 | Zi) + ln Û(Zi+1 | Zi)
)

=
∑n−1

i=0

(

ln
(

1 + 1
2i

)

− ln
(

1 + 1
2iIM(µ̂i)(Xi+1 − µ̂i)

2
))

.

Sinceln
(

1 + 1
2i

)

= 1
2i +O(i−2), we get

∑n−1
i=0 ln

(

1 + 1
2i

)

=
1
2 lnn+O(1). DenotingVi =

1
2iIM(µ̂i)(Xi+1− µ̂i)

2, we also
get ln(1 + Vi) = Vi +O(i−2). Next, we considerEP [Vi]:

EP [Vi] =
1
2iEP

[

IM(µ̂i)(Xi+1 − µ∗ + µ∗ − µ̂i)
2
]

=
1
2iEP

[

IM(µ̂i)
(

varPµ∗X + (µ∗ − µ̂i)
2
)]

=
1
2i

(

varPµ∗XEP [IM(µ̂i)] + EP

[

IM(µ̂i)(µ
∗ − µ̂i)

2
])

.

The second termEP

[

IM(µ̂i)(µ
∗ − µ̂i)

2
]

is O(i−1) as
EP [(µ

∗−µ̂i)
2] = O(i−1) andE[IM(µ̂i)] = IM(µ∗)+O(i−1)

(follows from expandingIM(µ̂i) up to the first order around
µ∗). Similarly, the first term is(varPµ∗X)IM(µ∗) + O(i−1).
Thus, usingIM(µ∗) = 1

varMµ∗ X , we finally get:

EP [− ln(1+Vi)] = −EP [Vi]+O(i−2) =
1

2i

varPµ∗X

varMµ∗X
+O(i−2).

Fig. 1. Fisher information, its second derivative and a fourth derivative of the
divergence for a number of exponential families. For the normal distribution
with fixed mean we use mean 0 and the density of the squared outcomes is
given as a function of the variance.

Distribution I(µ) d2

dµ2 I(µ)
d4

dµ4 D(Mµ∗‖Mµ)

Bernoulli 1
µ(1−µ)

2
µ3 + 2

(1−µ)3
6µ∗

µ4 + 6(1−µ∗)
(1−µ)4

Poisson 1
µ

2
µ3

6µ∗

µ4

Geometric 1
µ(µ−1)

− 2
µ3 + 2

(1−µ)3
6µ∗

µ4 −
6(µ∗+1)

(µ+1)4

Gamma (fixedk) k
µ2

6k
µ4 − 6k

µ4 + 24kµ∗

µ5

Normal (fixed mean) 1
2µ2

3
µ4 − 3

µ4 + 12µ∗

µ5

Normal (fixed variance) σ2 0 0

Taking all together, we see that the terms
varPµ∗X

varMµ∗ X cancel

and we finally getRU (n) = 1
2 lnn + O(1). Condition 2 is

necessary to ensure that all Taylor expansions above hold.

V. FUTURE WORK

In future work, we hope to extend our results concerning
the slightly squashed ML estimator to the multi-parameter
case and establish almost-sure variation of Theorem 2. We
also plan to analyze the estimator in the individual sequence
framework, along the lines of [15], [16].
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APPENDIX

PROOF OFTHEOREM 1

Before we show the main result, we need to prove the
following lemmas.

Lemma 3:Let M = {Mµ | µ ∈ Θmean} andP = {Pµ |
µ ∈ Θmean} be single parameter exponential families with the
same sufficient statisticX and mean-value parameter space
Θmean. Let Θ0 ⊂ Θmeanbe any non-degenerate closed interval.
Let X,X1, X2, . . . be i.i.d. ∼ Pµ∗ for someµ∗ ∈ Θ0. Let
µ̄0, µ̄1, µ̄2, . . . be a sequence of estimators, such thatµ̄i =
µ̄i(z

i) and µ̄i ∈ Θ0 for all i ≥ 1. Then, for Lebesgue almost
all µ∗ ∈ Θ0:

lim inf
n→∞

∑n−1
i=0 EPµ∗ [(µ̄i − µ∗)2]

lnn
≥ V P

whereV P := infµ∈Θ0 varPµ
X .

Proof: The proof is based on a theorem stated by
Rissanen [14] (see also [1], Theorem 14.2), a special case
of which says the following.

Let P and Θ0 be defined as above,P (n)
µ be a joint

distribution of n outcomes generated i.i.d. fromPµ, Q be
an arbitrary probabilistic source, i.e. a distribution on infinite
sequencesz1, z2, . . . ∈ Z∞, and letQ(n) be its restriction
to the first n outcomes (marginalized overzn+1, zn+2, . . .).
Define:

gn(µ
∗) = inf

n′≥n

{

D(P
(n′)
µ∗ ‖Q(n′))
1
2 lnn

′

}

. (10)

Then for Lebesgue almost allµ∗ ∈ Θ0, limn→∞ gn(µ
∗) ≥ 1.

We construct the sourceQ by specifying the conditional
probabilities:

Q(zn+1|z
n) := Pµ̄n

,

for everyn ≥ 1. This definition is valid, becausēµn depends
only on zn. Now, we have:

D(P
(n)
µ∗ ‖Q(n)) = E

Zn∼P
(n)

µ∗

[lnPµ∗(Zn)− lnQ(Zn)]

=

n−1
∑

i=0

E
Zi∼P

(i)

µ∗

[

lnPµ∗(Zi+1)− lnQ(Zi+1|Z
i)
]

=

n−1
∑

i=1

E
Zi∼P

(i)

µ∗

[D(Pµ∗‖Pµ̄i
)] .

ExpandingD(Pµ∗‖Pµ̄i
) into a Taylor series aroundµ∗ yeilds:

D(Pµ∗‖Pµ̄i
) = 0+D(1)(µ∗)(µ̄i−µ∗)+

1

2
D(2)(µ)(µ̄i−µ∗)2,

for some µ between µ̄i and µ∗, where we abbreviated
D(k)(µ) = dk

dµkD(Pµ∗‖Pµ). The termD(1)(µ∗) is zero, since
D(µ∗‖µ) as a function ofµ has its minimum atµ = µ∗

[12]. As is well-known [12], for exponential families the term
D(2)(µ) coincides precisely with the Fisher informationIP (µ)
evaluated atµ. Another standard result [12] for the mean-value
parameterization says that for allµ,

IP (µ) =
1

varPµ
X

. (11)

Therefore (using shorter notationEPµ∗ for E
Zi∼P

(i)

µ∗

):

D(P
(n)
µ∗ ‖Q(n)) = 1

2

∑n−1
i=0 EPµ∗

[

(µ̄i−µ∗)2

varPµX

]

≤ 1
2

1
V

P

∑n−1
i=0 EPµ∗

[

(µ̄i − µ∗)2
]

.
(12)

Note, thatV P > 0 is an infimum of a continuous and positive
function on a compact set. From (10) and (12) we have:

inf
n′≥n

{

1
2

∑n′−1
i=0 EPµ∗

[

(µ̄i − µ∗)2
]

1
2 lnn

′

}

≥ gn(µ
∗)V P ,

and thus Rissanen’s theorem proves the lemma.
Lemma 4:Let M,P ,Θ0, X,X1, X2, . . ., be defined as in

Lemma 3. LetU denote any plug-in model with respect toM
based on a sequence of estimatorsµ̄1, µ̄2, . . . (notice that now
we do not restrict̄µi to be inΘ0, as in Lemma 3). Then, for
Lebesgue almost allµ∗ ∈ Θ0:

lim inf
n→∞

∑n−1
i=0 EPµ∗ [D(Mµ∗‖Mµ̄i

)]

lnn
≥

1

2

V P

V M

,

for V P := infµ∈Θ0 varPµ
X andV M := supµ∈Θ0

varMµ
X .

Proof: Let us denoteΘ0 = [µ0, µ1]. We define a
truncated sequence of estimators(µ̄′

i) as follows:

µ̄′
i =







µ1 if µ̄i ≥ µ1

µ̄i if µ0 < µ̄i < µ1

µ0 if µ̄i ≤ µ0

,

so thatµ̄′
i ∈ Θ0. Note, thatD(Mµ∗‖Mµ̄i

) ≥ D(Mµ∗‖Mµ̄′
i
),

as there existsλ ∈ [0, 1] such that we can expressµ̄′
i = λµ∗+

(1 − λ)µ̄i andD(Mµ∗‖Mλµ∗+(1−λ)µ̄i
) is strictly decreasing

in λ [1]. Using this fact and expandingD(Mµ∗‖Mµ̄′
i
) into

Taylor series as in Lemma 3, we get:

EPµ∗ [D(Mµ∗‖Mµ̄i
)] ≥ EPµ∗ [D(Mµ∗‖M ′

µ̄i
)]

=
1

2
EPµ∗

[

(µ̄i − µ∗)2

varMµ
X

]

≥
1

2

1

V M

EPµ∗

[

(µ̄i − µ∗)2
]

.

Summing overi = 0, . . . , n− 1 and using Lemma 3 finishes
the proof.

Before we prove Theorem 1, we further need a simple
lemma to rewrite the redundancy in a more convenient form:

Lemma 5:Let U andM be defined as in Theorem 1. We
have:

RU (n) =

n−1
∑

i=0

EPµ∗ [D(Mµ∗ ‖ Mµ̄i
)] .

The usefulness of this lemma comes from the fact that the
KL divergenceD(·‖·) is defined as an expectation overMµ∗

rather thanPµ∗. The proof makes use of a standard result in
the theory of exponential families and can be found e.g. in [1]
(see also related Lemma 1 in [9]).

Proof: (of Theorem 1)Choose anyµ∗ ∈ Θ and span
around it a non-degenerate closed intervalΘ′

µ∗ ⊂ Θmean, so
that µ∗ ∈ intΘ′

µ∗ . Fix someǫ > 0. It follows from general
properties of exponential families (see, e.g., [12]) that varMµ

X
and varPµ

X are continuous (with respect toµ), therefore



if we choose the intervalΘ′
µ∗ small enough, we will have

V
P

V M

>
varPµ∗ X

varMµ∗X − ǫ, with V P := infµ∈Θ′

µ∗
varPµ

X and

V M := supµ∈Θ′

µ∗
varMµ

X . Using Lemma 4 withΘ0 = Θ′
µ∗ ,

and Lemma 5, we have for Lebesgue almost allµ ∈ Θ′
µ∗ .

lim inf
n→∞

RU (n)

lnn
≥

1

2

V P

VM

>
1

2

(

varPµ∗X

varMµ∗X
− ǫ

)

.

Note, that w.l.o.g.Θ′
µ∗ can be chosen to have rational ends.

The family of all intervalsΘ′
µ∗ ⊂ Θmeanwith rational ends and

rationalµ∗, i.e. Ξ = {Θ′
µ∗ = [µ0, µ1] | µ∗, µ0, µ1 ∈ Θmean∩

Q}, is countable and coversΘmean,
⋃

Θ′

µ∗∈ΞΘ′
µ∗ = Θmean.

Therefore,

For Lebesgue almost allµ∗ ∈ Θmean:

lim inf
n→∞

RU (n)

lnn
>

varPµ∗X

varMµ∗X
− ǫ (13)

Since this holds for everyǫ > 0, this also means that

lim infn→∞
RU (n)
lnn ≥

varPµ∗ X

varMµ∗X for Lebesgue almost allµ∗ ∈

Θmean. To show this, assume the contrary, that the setA =
{

µ∗ : lim infn→∞
RU (n)
lnn <

varPµ∗X

varMµ∗ X

}

has positive Lebesgue

measure,L(A) > 0. Let ǫ1, ǫ2, . . . be any sequence of
positive numbers converging to0 and let us defineAi =
{

µ∗ : lim infn→∞
RU (n)
lnn <

varPµ∗X

varMµ∗ X − ǫi

}

. Obviously,A1 ⊂

A2 ⊂ . . ., and
⋃

i Ai = A. From continuity of measure,
we must haveL(Ai) > 0 for i large enough, which is a
contradiction with (13). The theorem is proved.

PROOF OFTHEOREM 2

We will make use of the following two theorems, proofs of
which can be found in [9].

Theorem 6:Let X,X1, . . . be i.i.d., let µ̂n := (n0 · x0 +
∑n

i=1 Xi)/(n + n0) andµ∗ = E[X ]. If the first k moments

of X exist, thenE[(µ̂n − µ∗)k] = O(n−⌈ k
2 ⌉).

Theorem 7:LetX,X1, . . . be i.i.d. random variables, define
µ̂n := (n0 · x0 +

∑n
i=1 Xi)/(n + n0) and µ∗ = E[X ]. Let

k ∈ {0, 2, 4, . . .}. If the first k moments exists thenP (|µ̂n −

µ∗| ≥ δ) = O
(

n−⌈ k
2 ⌉δ−k

)

.
Before we prove the main theorem, we need the following

lemma:
Lemma 8:Fix any s ∈ {0, 2, 4}. Let f(µ) be some contin-

uous function ofµ. Suppose it holds for bothT := X and
T := −X that:

• If T is unbounded from above then there is ak ∈
{4, 6, . . .} such that the firstk moments ofT exist under
P and thatf(µ) = O(µk−s−2).

• If T is bounded from above by a constantg thenf(µ) is
polynomial in1/(g − µ).

Then the expressionEP [f(µ)(µ̂i − µ∗)s], for µ betweenµ∗

and µ̂i, is of orderO(i−s/2).
Proof: The proof follows very closely part of the proof

of Lemma 2 in [9]; we nevertheless give here a complete proof
for the sake of clarity.

Let us denoteδi := µ̂i − µ∗. We distinguish a number of
regions in the value space ofδi: let ∆− = (−∞, 0) and let
∆0 = [0, a) for some constant valuea > 0. If the individual
outcomesX are bounded on the right hand side by a value
g then we require thata < g and we define∆1 = [a, g);
otherwise we define∆j = [a+ j − 1, a+ j) for j ≥ 1. Now
we want to analyze asymptotic behavior of:

EP [f(µ)δi
s] =

∑

j

P (δi ∈ ∆j)EP [f(µ)δi
s | δi ∈ ∆j ] .

If we can establish the proper asymptotic behaviorO(i−s/2)
for all regions∆j for j ≥ 0, then we can use a symmetrical
argument to establish the behavior for∆− as well, so it
suffices if we restrict ourselves toj ≥ 0. First we show it
for ∆0. In this case, the basic idea is that since the remainder
f(µ) is well-defined over the intervalµ∗ ≤ µ < µ∗ + a,
we can bound it by its extremum on that interval, namely
m := supµ∈[µ∗,µ∗+a) |f(µ)|. Now we get:

|P (δi ∈ ∆0)E [f(µ)δi
s | δi ∈ ∆0]| ≤ 1 · E [δi

s |f(µ)|] ,

which is less or equal thanmE [δi
s]. Using Theorem 6 we find

that E[δi
s] is O(i−s/2), which is what we want. Theorem 6

requires that the first four moments ofP exist, but this is
guaranteed to be the case: either the outcomes are bounded
from both sides, in which case all moments necessarily exist,
or the existence of the required moments is part of the
condition on the main theorem.

Now we distinguish between the unbounded and bounded
cases. First we assumeX is unbounded from above. In this
case, we must show, hat:

∞
∑

j=1

P (δi ∈ ∆j)E [f(µ)δi
s | δi ∈ ∆j ] = O(i−s/2) (14)

We bound this expression from above. Theδi in the expec-
tation is at mosta + j. Furthermoref(µ) = O(µk−s−2) by
assumption, whereµ ∈ [a + j − 1, a + j). Depending onk
and s, both boundaries could maximize this function, but it
is easy to check that in both cases the resulting function is
O(jk−s−2). So we bound (14) from the above by:

∞
∑

j=1

P (|δi| ≥ a+ j − 1)(a+ j)sO(jk−s−2).

Since we know from the condition on the main theorem that
the first k ≥ 4 moments exist, we can apply Theorem 7 to
find thatP (|δi| ≥ a + j − 1) = O(i−⌈

k
2 ⌉(a + j − 1)−k) =

O(i−
k
2 )O(j−k) (sincek has to be even); plugging this into

the equation and simplifying we obtainO(i−
k
2 )

∑

j O(j−2),
which is of orderO(i−s/2), since the sum

∑

j O(j−2) con-
verges andk ≥ s.

Now we consider the case where the outcomes are bounded
from above byg. This case is more complicated, since now
we have made no extra assumptions as to existence of the
moments ofP . Of course, if the outcomes are bounded from
both sides, then all moments necessarily exist, but if the
outcomes are unbounded from below this may not be true.



To remedy this, we map all outcomes into a new domain
in such a way that all moments of the transformed variables
are guaranteed to exist. Any constantx− defines a mapping
g(x) := max{x−, x}. We define the random variablesYi :=
g(Xi), the initial outcomey0 := g(x0) and the mapped
analogues ofµ∗ and µ̂i, respectively:µ† is defined as the
mean ofY underP and µ̃i := (y0 · n0 +

∑i
j=1 Yj)/(i+ n0).

Sinceµ̃i ≥ µ̂i, we can bound:

P (δi ∈ ∆1) |E [f(µ)δi
s | δi ∈ ∆1]|

≤ P (µ̂i − µ∗ ≥ a) sup
δi∈∆1

|f(µ)δi
s|

≤ P (|µ̃i − µ†| ≥ a+ µ∗ − µ†)gs sup
δi∈∆1

|f(µ)|

By choosingx− small enough, we can bringµ† and µ∗

arbitrarily close together; in particular we can choosex− such
that a + µ∗ − µ† > 0 so that application of Theorem 7 is
safe. It reveals that the summed probability isO(i−

k
2 ) for any

evenk ∈ N. Now we boundf(µ) which is O((g − µ)−m)
for somem ∈ N by the condition on the main theorem.
Here we use thatµ ≤ µ̂i; the latter is maximized if all
outcomes equal the boundg, in which case the estimator
equalsg − n0(g − x0)/(i+ n0) = g −O(i−1). Putting all of
this together, we getsup |f(µ)| = O((g − µ)−m) = O(im);
if we plug this into the equation we obtain:

. . . ≤
∑

i

O(i−
k
2 )gsO(im) = gs

∑

i

O(im− k
2 )

This is of orderO(i−s/2) if we choosek ≥ 6m+s. We can do
this because the construction ofg(·) ensures that all moments
exist, and therefore certainly the first6m+ s moments.

We can now proceed to prove the theorem:
Proof: (of Theorem 2)We express the relative redundancy

of the slightly squashed ML plug-in codeU by the sum of the
relative redundancy of the ordinary ML plug-in codêU and
the difference in expected codelengths betweenU and Û :

RU (n) = EP [LU (Z
n)]− EP [− lnMµ∗(Zn)].

= EP [LU (Z
n)− LÛ (Z

n)] +RÛ (n)

= EP [LU (Z
n)− LÛ (Z

n)] +
1

2

varPX
varMµ∗X

lnn+O(1),

where the last equality follows from (6), which is valid under
the conditions imposed ond

4

dµ4D(Mµ∗‖Mµ) (see Condition 1
in [9] for details). We have:

LU (Z
n)− LÛ (Z

n)

=
∑n−1

i=0

(

− lnU(Zi+1 | Zi) + ln Û(Zi+1 | Zi)
)

=
∑n−1

i=0

(

ln
(

1 + 1
2i

)

− ln
(

1 + 1
2iIM(µ̂i)(Xi+1 − µ̂i)

2
))

.

Sinceln
(

1 + 1
2i

)

= 1
2i +O(i−2), we have:

n−1
∑

i=0

ln

(

1 +
1

2i

)

=
1

2
lnn+O(1). (15)

To analyze the second term in the sum, we use the fact that
for arbitarya ≥ 0:

−a ≤ − ln(1 + a) ≤ −a+
1

2
a2,

which follows e.g. from expanding the logarithm into Taylor
expansion up to the second order. In our case,a = Vi :=
1
2iIM(µ̂i)(Xi+1− µ̂i)

2. We will show thatEP [V
2
i ] is O(i−2),

and thenEP [− ln(1 + Vi)] = −EP [Vi] +O(i−2). We have:

EP

[

V 2
i

]

= 1
4i2EP

[

I2M(µ̂i) (Xi+1 − µ̂i)
4
]

= 1
4i2EXi∼P

[

I2M(µ̂i)EXi+1∼P

[

(Xi+1 − µ∗ + µ∗ − µ̂i)
4
]]

= 1
4i2EP

[

I2M(µ̂i)
(

m(4)
P − 4δim

(3)
P + 6δ2i varPµ∗X + δ4i

)]

,

where m(k)P is EP [(X − µ∗)k], the k-th central moment
of Pµ∗ , and δi = µ̂i − µ∗. We will show that the terms
under expectation are bounded. IfIM(µ̂i) is constant, then
we apply Theorem 6 withk = 1, k = 2 and k = 4
to the second, third and fourth term, respectively and thus
all the terms under expectation areO(1). If IM(µ̂i) is not
constant, then by Condition 2 the assumptions of Lemma 8
are satisfied withf(µ) = I2M(µ) and s = 0, 2, 4. Applying
the lemma subsequently to the first, third and fourth term
(with s = 0, 2, 4, respectively), we see that all those terms
areO(1). The second term is alsoO(1) by applying Lemma
8 once again withf(µ) = µI2M(µ) and s = 0 (assumptions
are again satisfied by Condition 2). Thus, we showed that
EP [V

2
i ] = O(i−2).

Next, we considerEP [Vi]:

EP [Vi] =
1

2i
EP

[

IM(µ̂i)(Xi+1 − µ∗ + µ∗ − µ̂i)
2
]

=
1

2i
EP

[

IM(µ̂i)
(

varPµ∗X + δ2i
)]

=
1

2i

(

varPµ∗XEP [IM(µ̂i)] + EP

[

IM(µ̂i)δ
2
i

])

.

The second termEP

[

IM(µ̂i)δ
2
i

]

is O(i−1) by Lemma 8
applied withf(µ) = IM(µ) and s = 2. To analyze the first
term we expandIM(µ̂i) into Taylor series aroundµ∗:

EP [IM(µ̂i)] = IM(µ∗)+EP

[

d

dµ
IM(µ∗)δi +

d2

d2µ
IM(µ)δ2i

]

,

for some µ betweenµ∗ and µ̂i. The linear term in the
expansion isO(i−1) by Theorem 6 applied withk = 1.
The quadratic term isO(i−1) by applying Lemma 8 with
f(µ) = d2

d2µIM(µ) and s = 2; Condition 2 guarantees that
assumptions of the lemma are satisfied. Thus, using (11):

EP [Vi]=
1

2i
IM(µ∗)varPµ∗X+O(i−2)=

1

2i

varPµ∗X

varMµ∗X
+O(i−2),

so that:

EP [− ln(1 + Vi)] = −
1

2i

varPµ∗X

varMµ∗X
+O(i−2), (16)

Taking together (16) and (15) we have:

LU (Z
n)− LÛ (Z

n) =
1

2
lnn−

1

2

varPµ∗X

varMµ∗X
lnn+O(1),

and thus:
RU (n) =

1

2
lnn+O(1).
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