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PARAMETER ESTIMATIONS FOR SPDES WITH MULTIPLICATIVE

FRACTIONAL NOISE

IGOR CIALENCO

Abstract. We study parameter estimation problem for diagonalizable parabolic stochastic partial

differential equations driven by a multiplicative fractional noise with any Hurst parameter H ∈

(0, 1). Two classes of estimates are investigated: traditional maximum likelihood type estimates,

and a new class called closed-form exact estimates. Finally several examples are discussed, including

statistical inference for stochastic heat equation driven by a fractional Brownian motion.
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1. Introduction

Parameter estimation problem for stochastic partial differential equation has been of great inter-

est in the past decade, and besides being a challenging theoretical problem, it finds its roots and

motivations from various applied problems: fluid dynamics [12, 30], biology [9, 10], finance [1, 2, 8],

meteorology [5] etc. At general level the problem is to find or estimate the model parameter ϑ

(could be a vector) based on observations of the underlying process uϑ which is assumed to be a

solution of a stochastic evolution equation in finite or infinite dimensional space. We will follow

traditional continuous time approach and assume that the solution uϑ(t) is observed continuously

in time t ∈ [0, T ]. From statistical point of view, we suppose that there exists a family of probability

measures Pϑ that depends on parameter ϑ ∈ Θ ⊂ Rn, and each Pϑ is the distribution of a random

element. Assuming that a realization of one random element corresponds to a particular value ϑ0,

the goal is to estimate this parameter from given observations. One approach is to select parameter

ϑ that most likely produces the observations. This method assumes that the problem is regular

or absolutely continuous, which means that there exists a reference probability measure Q such

that all measures Pϑ, ϑ ∈ Θ, are absolutely continuous with respect to Q. Then Radon-Nikodym

derivative dPϑ/dQ, also called the likelihood ratio, exists, and the Maximum Likelihood Estimator

(MLE) ϑ̂ of the parameter of interest is computed by maximizing the likelihood ratio with respect

to ϑ. Usually ϑ̂ 6= ϑ and the problem is to study the convergence of MLE to the true parameter

as more information arrives (for example as time passes or by decreasing the amplitude of noise).

If the measures Pϑ are singular for different parameters ϑ, then the model is called singular, and

usually the parameter can be found exactly, at least theoretically. While all regular models are to
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some extend the same, each singular model requires individual approach. For example, estimat-

ing the drift coefficient for finite-dimensional stochastic differential equations is typically a regular

problem, and the parameter can be estimated by means of MLEs, while estimating the diffusion

(volatility) coefficient is a singular problem and one can find the diffusion coefficient exactly through

quadratic variation of the underlying process. For some finite-dimensional systems, estimating the

“drift coefficient” is also a singular problem, and as shown in Khasminskii et al [18] the estimators

have nothing to do with MLEs. Generally speaking statistical inference for finite-dimensional dif-

fusions has been studied widely, and there are established necessary and sufficient conditions for

absolute continuity of corresponding measures (see, for example [23], [21] and references therein).

Some of these results have been extended to infinite dimensional systems in particular to parabolic

Stochastic Partial Differential Equations (SPDE). It turns out that in many cases the estimation

of drift coefficient for SPDEs is a singular problem, and as general theory suggests one can find the

parameter “exactly”. One of the first fundamental result in this area that explorers this singular-

ity is due to Huebner, Rozovskii, and Khasminskii [17]. The idea is to approximate the original

singular problem by a sequence of regular problems for which MLEs exist. The approximation

was done by considering Galerkin-type of projections of the solution on a finite-dimensional space

where the estimation problem becomes regular, and it was proved that as dimension of the projec-

tion increases the corresponding MLE will converge to the true parameter. In [15, 16, 25, 26], the

problem was extended to a general parabolic SPDE driven by additive noise and the convergence

of the estimators was given in terms of the order of the corresponding differential operators. For

recent developments and other types of inference problems in SPDEs see a survey paper by Lotot-

sky [24] and references therein. Statistical inference for SPDEs driven by multiplicative noise is a

more challenging problem. First and only attempt to study equations with multiplicative noise is

given in [6], by considering Wiener (not fractional) type noise without spatial correlation structure.

Besides MLE type estimates, a completely new class of exact estimates were found due essentially

to the very singular nature of the problem.

The aim of this note is to study parameter estimation problem for stochastic parabolic equations

driven by a multiplicative fractional noise with following dynamics

(1) u(t) = u(0) +

∫ t

0
(A0 + θA1)u(s)ds +

∫ t

0
Mu(s)dWH(s),

where A0,A1 and M are some known linear operators, WH is a fractional Brownian motion with

a Hurst parameter H ∈ (0, 1), and θ is a real parameter belonging to a bounded set Θ ⊂ R. For

now, assume that the stochastic integral with respect to fractional Brownian Motion WH is well-

defined, while the exact meaning will be specified in Section 2.1. The main goal is to estimate the

parameter θ based on the observations of the underlying process u(t), t ∈ [0, T ]. Similar problem

for SPDEs driven by additive space-time fractional noise was investigated in [7, 31, 27]. Estimation

of drift coefficient for finite-dimensional fractional Ornstein-Uhlenbeck and similar processes has

been investigated by Tudor and Viens [32] for H ∈ (0, 1), Kleptsyna and Le Breton [19] for H ∈

[1/2, 1), by developing Girsanov type theorems and finding MLEs. Berzin and Leon [3] estimate

simultaneously both drift and diffusion coefficients. Least square estimates for drift coefficients

were established by Hu and Nualart [13], and MLE type estimates for discretely observed process
2



by Hu, Weilin and Weiguo [14]. For a general theory, including Girsanov Theorem and some

results on statistical inference, for finite dimensional diffusions driven by fractional noise see also

the monograph by Mishura [28].

In this paper we continue to explore the impact of the noise in infinite-dimensional evolution

equations and its implications on statistical inference. Besides its theoretical roots, this problem is

also motivated by increasing demand in modeling various phenomena by SPDEs driven by fractional

noise [5, 11]. We assume that the solution of (1) is observed at every t ∈ [0, T ], and hence each

Fourier coefficient uk(t) = (uk(t), hk)H is observable for every t ∈ [0, T ], where H is a Hilbert

space in which the solution leaves and hk, k ≥ 1, is a CONS in H. All results are stated in terms

of Fourier coefficients uk. In the first part of Section 2 we set up the problem and establish the

existence and uniqueness of the solution of the corresponding SPDE. In Subsection 2.2 we introduce

the main notations and find the MLE for fractional Geometrical Brownian Motion (which is not

covered explicitly in any other sources, at our best knowledge). In Section 3 we study the estimates

of drift coefficient θ of equation (1) based on MLE of the corresponding Fourier coefficients. We

establish sufficient conditions on operators A1, A1 andM, that guarantee efficiency and asymptotic

normality of the estimates and some of their versions. Section 4 is dedicated to investigation of a

new type of estimates called closed-form exact estimates, similar to those studied in [6]. We show

that θ can be found exactly by knowing just several (usually two) Fourier coefficients. Moreover,

by the same technics we found an exact estimate of the Hurst parameter H too, in both regimes,

θ known and unknown. Of course there are many other methods of finding the Hurst parameter,

but it is out of scope of this publication to apply them to our equation. Some of the results follow

from simple algebraic evaluations, but the very existence of such estimates is amazing and gives a

better understanding of the nature of the problem’s singularity. Also, we want to mention that,

despite of memory property of the fractional Brownian Motion which is spilled over the solution

too, the exact estimates are based only on observations at time zero and some future time T . In

contrast, the MLEs require observation of the whole trajectory u(t), t ∈ [0, T ]. We conclude the

paper with two examples which are of interest along: stochastic heat equation with parameter θ

next to Laplace operator, and a general second order parabolic SPDE with θ next to a lower order

operator.

While we assume that data is sampled continuously in time, in practice usually this is not the

case. For the MLEs derived in Section 3 the problem is reduced to approximate some integrals of

a deterministic function with respect to the solution u and eventually to the fractional Brownian

motion. However, the Exact Estimates from Section 4 depend only on the values of the solution

at initial time t = 0 and some future time t = T , and thus do not depend on how the solution is

observed in time.

2. Preliminary results

2.1. The equation and existence of the solution. Let H be a separable Hilbert space with the

inner product (·, ·)0 and the corresponding norm ‖ · ‖0. Let Λ be a densely-defined linear operator

on H with the following property: there exists a positive number c such that ‖Λu‖0 ≥ c‖u‖0 for

every u from the domain of Λ. Then the operator powers Λγ , γ ∈ R, are well defined and generate

the spaces Hγ : for γ > 0, Hγ is the domain of Λγ ; H0 = H; for γ < 0, Hγ is the completion of H
3



with respect to the norm ‖ · ‖γ := ‖Λ · ‖0 (see for instance Krein at al. [20]). By construction, the

collection of spaces {Hγ , γ ∈ R} has the following properties:

• Λγ(Hr) = Hr−γ for every γ, r ∈ R;

• For γ1 < γ2 the space Hγ2 is densely and continuously embedded into Hγ1 : Hγ2 ⊂ Hγ1 and

there exists a positive number c12 such that ‖u‖γ1 ≤ c12‖u‖γ2 for all u ∈ Hγ2 ;

• for every γ ∈ R and m > 0, the space Hγ−m is the dual of Hγ+m relative to the inner

product in Hγ , with duality 〈·, ·〉γ,m given by

〈u1, u2〉γ,m = (Λγ−mu1,Λ
γ+mu2)0, where u1 ∈ Hγ−m, u2 ∈ Hγ+m.

Let (Ω,F , {Ft},P) be a stochastic basis with usual assumptions.

Definition 1. A fractional Brownian motion with a Hurst parameter H ∈ (0, 1) is a Gaussian

process WH with zero mean and covariance

EWH(t)WH(s) =
1

2
(t2H + s2H − |t− s|2H), t, s ≥ 0.

Consider the following evolution equation

(2)




du(t) = [(A0 + θA1)u(t) + f(t)]dt+ (Mu(t) + g(t))dWH(t), 0 < t < T,

u(0) = u0 ,

where A0,A1,M are linear operators in H, f and gk are adapted H-valued processes, u0 ∈ H,

WH is a fractional Brownian Motion with Hurst parameter H ∈ (0, 1), and θ is a scalar parameter

bellowing to an open set Θ ⊂ R.

Definition 2. Equation (2) is called diagonalizable if the operators A0, A1 and M have point

spectrum and a common system of eigenfunctions {hj , j ≥ 1}.

Denote by ρk, νk, and µk the eigenvalues of the operators A0, A1, and M:

(3) A0hk = ρkhk, A1hk = νkhk, Mhk = µkhk, k ≥ 1,

and also denote by αk(θ) := ρk + θνk, k ≥ 1, the eigenvalues of operator A0 + θA1. Without loss

of generality we assume that the operator Λ has the same eigenfunctions as operators A0, A1, M:

Λhk = λkhk, k ≥ 1.

Definition 3. The equation (2) is called parabolic in the triple (Hγ+m,Hγ ,Hγ−m), for some positive

m and real γ, if there exists positive real numbers δ, C1 and a real number C2 such that, for all

k ≥ 1 and all θ ∈ Θ,

λ−2m
k |ρk + θνk| ≤ C1;(4)

2(ρk + θνk) + µ2
k + δλ2m

k ≤ C2.(5)

This definition is equivalent to the classical definition of parabolic equations, but written in terms

of eigenvalues of corresponding operators.

Theorem 4. Assume that equation (2) is diagonalizable and parabolic in the triple (Hγ+m,Hγ ,Hγ−m),

the initial conditions u0 is deterministic and belongs to Hγ , the process f = f(t) is Ft-adapted with
4



values in Hγ−m, and E
∫ T
0 ‖f(t)‖2γ−mdt < ∞, the process g = g(t) is Ft-adapted with values in Hγ

and E
∫ T
0 ‖g(t)‖2γ dt < ∞. Then the process u defined by

(6) u(t) =
∑

k≥1

uk(t)hk,

where

uk(t) = uk(0) exp

(
[αk(θ) + fk(t)]t−

1

2
[µk + gk(t)]

2t2H + [µk + gk(t)]W
H(t)

)
,(7)

f(t) =
∑

k≥1

fk(t)hk, g(t) =
∑

k≥1

gk(t)hk,

is an Hγ-valued stochastic process.

Proof. Since WH(t) is a Gaussian random variable with zero mean and variance t2H , we have

E|uk(t)|
2 = u2k(0) exp

(
2(αk(θ) + fk(t))t+ (µk + gk(t))

2t2H
)
.

Hence,

E‖u(t)‖2γ =
∑

k≥1

λ2γ
k |uk(t)|

2 ≤ C
∑

k≥1

exp
(
2αk(θ)t+ µ2

kt
2H
)
.

By parabolicity condition (5), the last series converges uniformly in t, and the theorem follows. �

The functions uk formally represent the Fourier coefficients of the solution of equation (2) with

respect to the basis {hk}k≥1 and the uniqueness of u follows. Since the equation is diagonalizable,

naturally we conclude that formally uk has the following dynamics

(8) duk(t) = (θνk + ρk)uk(t)dt+ µkuk(t)dW
H(t), k ≥ 1, t ≥ 0.

Specifying the stochastic integration in (2) is equivalent to specifying in what sense we understand

the integration with respect to fractional Brownian Motion for the Fourier coefficients (8). Con-

sequently, since the equation has constant coefficients, specifying the solution of (8) is the same

as to stipulate the sense of stochastic integration in (8). If the integration is understood in Wick

sense then uk, k ≥ 1, defined in (7) is the unique solution of equation (8) for all H ∈ (0, 1) (see

for instance [4], Theorem 6.3.1). All results stated here are easily transferable to any other form of

integration, by caring out the relationship between different form of integration and consequently

adjusting the form of the solution of equation (8) (for comparison of various form of integration

with respect to fBM see [4], Chapter 6). Our choice was just to have a unified theory and same

formulas for all H ∈ (0, 1).

Definition 5. The process u constructed in Theorem 4 is called the solution of equation (2).

It should be mentioned that the above result, with some obvious adjustments, also holds true

for diagonalizable equations driven by several independent fractional Brownian Motions, even with

different Hurst parameters.
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2.2. Parameter estimation for geometrical fractional Brownian motion. In this section

we will present some auxiliary results about parameter estimation for one dimensional diffusion

processes driven by multiplicative fractional noise. For similar results for equations with additive

noise see for instance Kleptsyna and Le Breton [19], Tudor and Viens [32], or Mishura [28], Chap-

ter 6. The results essentially follow from Girsanov type theorem for diffusions driven by fractional

Brownian motion.

Let Γ and B denote the Euler Gamma-functions. Following Mishura [28] we introduce the

following notations

CH =

(
Γ(3− 2H)

2HΓ(32 −H)3Γ(12 +H)

) 1

2

,

lH(t, s) = CHs
1

2
−H(t− s)

1

2
−H

I0<s<t,(9)

MH
t :=

∫ t

0
lH(t, s)dWH

s , ,

where H ∈ (0, 1), and the integration with respect to fractional Brownian Motion is understood in

Wiener sense (for more details see [28], Chapter 1). The process MH
t is a martingale, also called

the fundamental martingale associated with fractional Brownian motion WH
t (see for instance [29]

or [28], Theorem 1.8.1). MH
t has quadratic characteristic 〈MH〉t = t2−2H , and by Lévy theorem,

there exists a Wiener process {Bt, t ≥ 0} on the same probability space such that

MH
t = (2− 2H)

1

2

∫ t

0
s

1

2
−HdBs.

Moreover, σ(WH
s , 0 ≤ s ≤ t) = σ(Bs, 0 ≤ s ≤ t).

Let us consider the stochastic process of the form

Xt = X0 exp

(
θt−

1

2
σ2t2H + σWH(t)

)
, t ≥ 1 ,

which can be called the Geometric Fractional Brownian Motion, and as mentioned in the previous

subsection it is the unique solution of the stochastic equation

dXt = θXtdt+ σXtdW
H
t , X0 = x0, t ∈ [0, T ].

Let Yt := lnXt/X0 = θt − σ2t2H

2 + σWH
t , and consider the process Ỹt :=

∫ t
0 lH(t, s)dYs. Note

that observing one path of the process {Ys, 0 ≤ s ≤ t} implies that the one path of process

{Ỹs, 0 ≤ s ≤ t} is observable too. By (9) we have

(10) Ỹt = σMH
t + θb1t

2−2H − σ2Hb2t, t > 0 ,

where b1 = CHB(3/2 −H, 3/2−H), b2 = CHB(1/2 +H, 3/2 −H).

For a fixed parameter θ ∈ Θ, let us denote by Pθ the distribution of the process Ỹt and by P0

the distribution of the process Ỹ 0
t := σMH

t = σb0
∫ t
0 s

1/2−2HdBs. The measure Pθ is absolutely

continuous with respect to P0 and the Radon-Nikodym derivative, or the likelihood ratio, has

the following form (see for instance [23], Theorem 7.19 or apply classical Girsanov Theorem for
6



martingales)

dPθ

dP0
(Ỹt) = exp

(
−

∫ t

0

θ(2− 2H)b1s
1−2H − σ2Hb2

σ2b20s
1−2H

dỸs +
1

2

∫ t

0

[θ(2− 2H)b1s
1−2H − σ2Hb2]

2

σ2b20s
1−2H

ds

)
.

The MLE is obtained by maximizing the log-likelihood ratio with respect to θ. Since

∂

∂θ
ln

dPθ

dP0
(Ỹt) = −

(2− 2H)b1
σ2b0

Ỹt + θ
(2− 2H)b21t

2−2H

σ2b20
−

(2− 2H)b1Hb2t

b20
,

the MLE for parameter θ has the form

(11) θ̂t =
Ỹt

b1t2−2H
+

σ2Hb2
b1t1−2H

.

Proposition 1. The estimate θ̂t, t > 0, is an unbiased estimate for parameter θ0; lim
t→∞

θ̂t = θ0 with

probability one, i.e. θ̂t is a strong consistent estimate of θ0; t
1−H(θ̂t − θ0) converges in distribution

to a Gaussian random variable with zero mean and variance σ2/b21.

Proof. Using the definition of the process Ỹt, we represent the estimate θ̂t as follows

(12) θ̂t = θ0 +
σMH

t

b1t2−2H
,

where θ0 is the true parameter.

The unbiasedness and asymptotic normality follows immediately from (12) and the fact that

MH
t is a Gaussian random variables with zero mean and variance t2−2H . Since MH

t is a square

integrable martingale with unbounded quadratic characteristic t2−2H → ∞, as t → ∞ a.s., by

Law of Large Numbers for Martingales [22], Theorem 2.6.10, MH
t /〈MH〉t → 0 a.s., and hence

consistency follows. �

Note that, in particular, for H = 1/2 we have b1 = b2 = 1, and we recover the classical estimate

for the drift coefficient of geometric Brownian Motion

θ̂t =
Yt

t
+

σ2

2
=

ln(Xt/X0)

t
+

σ2

2
= θ0 +

σWt

t
, t > 0 ,

and its corresponding asymptotic behavior.

3. Maximum Likelihood Estimator for SPDEs

Consider the diagonalizable equation

(13) du(t) = (A0 +A1)u(t)dt+Mu(t)dWH(t),

with solution u(t) =
∑

k≥1 uk(t)hk given by (7). As mentioned in Introduction, if u is observ-

able, then all its Fourier coefficients uk can be computed. Thus, we assume that the processes

u1(t), . . . , uN (t) can be observed for all t ∈ [0, T ] and the problem is to estimate the parameter θ

based on this observations. Also, we assume that the Hurst parameter H ∈ (0, 1) is known for now.

By Definition 5 of the solution of equation (13) the Fourier coefficients uk, k ∈ N, have the

following dynamics

(14) duk(t) = αk(θ)uk(t)dt+ µkuk(t)dW
H(t), t ∈ [0, T ],

where αk(θ) = ρk + θνk, k ∈ N.
7



For every non-zero uk(0), k ∈ N, denote by vk(t) = ln(uk(t)/uk(0)), and ṽk(t) =
∫ t
0 l(t, s)dvk(s),

where l(·, ·) is defined in (9). By results of Section 2.2 it follows that there exists a Maximum

Likelihood Estimate for αk(θ) and it has the form

(15) α̂k(θ) =
ṽk(t)

b1t2−2H
+

Hb2µ
2
k

b1t1−2H
, k ≥ 1.

Since αk(θ) is a strictly monotone function in θ, by invariant principle of MLE under invertible

transformations, we can find an MLE for the parameter θ

(16) θ̂k,t =
ṽk(t)

νkb1t2−2H
+

Hb2µ
2
k

νkb1t1−2H
−

ρk
νk

, k ≥ 1, t ∈ [0, T ].

Using the definition of the process ṽk, the estimate θ̂k,T can be represented as follows

(17) θ̂k,T = θ0 +
µkM

H
T

b1νkT 2−2H
,

and by similar arguments to the proof of Proposition 1, we have the following result.

Theorem 6. Assume that equation (13) is diagonalizable and parabolic in the triple (Hγ+m,Hγ ,Hγ−m)

for some γ ∈ R, m > 0 and u0 ∈ Hγ. Then,

(1) For every k ≥ 1 and T > 0, θ̂k,T is an unbiased estimator of θ0.

(2) For every fixed k ≥ 1, as T → ∞, the estimator θ̂k,T converges to θ0 with probability one

and T 1−H(θ̂k,T − θ0) converges in distribution to a Gaussian random variable with zero

mean and variance µ2
k/b

2
1ν

2
k .

(3) If, in addition,

(18) lim
k→∞

∣∣∣∣
µk

νk

∣∣∣∣ = 0,

then for every fixed T > 0, lim
k→∞

θ̂k,T = θ0 with probability one, and |νk/µk|(θ̂k,T − θ0) con-

verges in distribution to a Gaussian random variable with zero mean and variance T 2H−2/b21.

Remark 7. The parabolicity conditions (4)-(5) and MLE consistency condition (18) in general are

not connected. In terms of operator’s order, parabolicity states that the order of operator M from

the diffusion term is smaller than half of the order of the operators A0 and A1 from deterministic

part. Condition (18), that guarantees the consistency of MLE as number of Fourier coefficients

increases, assumes that the order of operator M from the diffusion part does not exceed the order

of the operator A1 from deterministic part that contains the parameter of interest θ.

By Theorem 6 it follows that the consistency and asymptotic normality of the estimates θ̂k,T can

be achieved in two ways: by increasing time T or by increasing the number of Fourier coefficients

k. In both cases the quality of the estimate is improved by decreasing its variance.

It is interesting to note that Var
(
θ̂k,T − θ0

)
= µ2

kT
2H−2/b21ν

2
k also depends on Hurst parameter

H. For H > 1/2 the constant 1/b1 is close to one, and increases as function of H for H ∈ (0, 1/2).

The function t2H−2 increases in H for any t > 1. The constants µk and νk, k ≥ 1, do not depend

on H. Overall, T 2H−2/b21 increases in H for any t > 1 and thus quality of the estimates is higher

for smaller H.
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As mentioned before, due to the fact that the probability measures generated by the solution u

of the original SPDE are singular, it is possible to estimate θ exactly on any finite interval of time

[0, T ]. A natural question is wether we can improve the quality of the estimates by considering

several Fourier coefficients uk(t). The answer is that by statistical methods used above this is not

possible. First, note that the measures associated to any two or more processes uk are singular,

and thus MLE does not exist for such vector-valued functions. In other words, by considering two

or more Fourier coefficients uk, we get a singular model, a fact that will be explored in the next

section. Also, since each process uk is driven by the same noise, each individual Fourier coefficient uk

contains the same amount of information: the sigma-algebra generated by uk(t), t ∈ [0, T ] coincides

with the sigma-algebra generated by WH(t), t ∈ [0, T ]. However, the speed of convergence of the

sequence θ̂k,T can be improved by using accelerating convergence technics from numerical analysis.

Two methods have been discussed into details in [6]: the weighted average method and Aitken’s

∆2 method. For sake of completeness, we will state here the corresponding results applied to the

sequence {θ̂k,T }k≥1.

Weighted averaging. Suppose that βk, k ≥ 1, is a sequence of non-negative numbers such that∑
k≥1 βk = +∞, and consider the weighted averaging estimator

(19) θ̂(N,T ) =
N∑

k=1

βk θ̂k,T

/ N∑

k=1

βk N ≥ 1, T > 0 .

Then (a) θ̂(N,T ) is an unbiased estimator of θ0 for every N ≥ 1 and T > 0; (b) lim
T→∞

θ̂(N,T ) = θ0

a.e. for every N ≥ 1 (consistency in T ); (c) if in addition the consistency condition (18) is fulfilled,

then lim
N→∞

θ̂(N,T ) = θ0 with probability one for every T > 0 (consistency in N).

Aitken’s ∆2 method. Define the following sequence of estimates

(20) θ̃k = θ̂k,T −
(θ̂k+1,T − θ̂k,T )

2

θ̂k+2,T + 2θ̂k+1,T − θ̂k,T
.

One can show that the new sequence θ̃k converges to the true parameter θ0 with probability one.

Moreover, if µk/νk ∼ αk−δ for some α, δ > 0, then

E(θ̃k − θ0)
2

(̂θk,T − θ0)2
∼

1

(1 + δ1)2
,

and if µk/νk = (−1)k/k, then

E(θ̃k − θ0)
2

(̂θk,T − θ0)2
∼

c

k2
, c > 0.

In both cases, the new sequence θ̃k converges faster than θ̂k,T to θ0.

The proofs of the above results follows from Theorem 6 and some direct computations, which

will be omitted here.
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4. Exact Estimates

In regular models the unknown parameter can be found only approximatively, and the consistency

is gained either in large sample or small noise regime. For singular models the parameter can be

found exactly. For example, if all Fourier coefficients of the solution u of equation (2) are known,

according to the results from previous sections, one can find the value of θ0 exactly, on any interval of

time [0, T ]. The possibility to evaluate θ0 exactly is based on singularity of the measures generated

by uθ for different values of θ. However, while theoretically it is possible to estimate the true

parameter exactly, in practice we (or computer) can perform only a finite number of operations.

Recall that the measures associated to an individual Fourier coefficient uθk are regular, while a

vector consisting of any two or more Fourier coefficients will produce measures that are singular.

In this section we will explore this singularity, and show that in fact the true parameter can be

estimated exactly from a finite number of Fourier coefficients. Moreover, the described method

allow to find both parameters θ and H, either individually or simultaneously.

Following [6] we say that an estimator is closed-form exact if it produces the exact value of the

parameter of interest after finite number of additions, substraction, multiplications, and divisions

on the elementary functions of the observations.

Closed-form exact estimates exists for the model (2) if we assume that observations are uk(t), k ≥

1, t ∈ [0, T ]. For every non-zero Fourier coefficient uk of the form (14), set vk(t) = lnuk(t)/uk(0), t ∈

[0, T ]. Then

(21) vk(t) = (ρk + θνk)t−
1

2
µ2
kt

2H + µkW
H(t) .

Case 1. θ unknown, H known. Assume that νkµm 6= νmµk for some k,m ∈ N. Then, taking (21)

for these k and m, by direct arithmetic evaluations, one gets the exact estimate of the parameter θ

(22) θ =
µmvk − µkvm + (ρmµk − ρkµm)t+ 1

2(µ
2
kµm − µ2

mµk)t
2H

t(νkµm − νmµk)
,

for any t > 0 and k,m ∈ N for which νkµm 6= νmµk.

Note that if µk = µm then the above exact estimate does not depend on H, and θ can be

evaluated even if H is unknown. This is the case, for example, if M is the identity operator (see

Example 1 below).

Case 2. H unknown, θ known. Assume now that the parameter of interest is the Hurst

parameter H and assume that θ is known. By the same arguments as above, one can solve for

H the system of two equations generated by (21) for some k and m, and get the following exact

estimate for H

(23) H =
1

2 ln t
ln

[
(ρk + θνk)tµm − (ρm + θνm)tµk − vkµm + vmµk

2µkµm(µk − µm)

]
,

for any t > 0, k 6= m, and under assumption that the expression under logarithm is positive and

finite.

Case 3. Both θ and H unknown. Denote by αk,m := (νkµm−νmµk)t, βk,m := 1/2(µ2
mµk−µ2

kµm)

and δk,m := vkµm−vmµk−ρkµmt−ρmµkt. Assume that for some m,k, i, j ∈ N, αk,mβi,j 6= αk,mβi,j.
10



Then the following exact estimate for θ holds true

(24) θ =
δk,mβi,j − δi,jβk,m
αk,mβi,j − αi,jβk,m

.

If in addition δk,mαi,j 6= δi,jαk,m, then there exists an exact estimate for Hurst parameter H given

by

(25) H =
1

2
logt

δk,mαi,j − δi,jαk,m

βk,mαi,j − βi,jαk,m
.

Note that for this case, generally speaking, it is sufficient to know only three Fourier coefficients,

i.e. some of the indices k,m, i, j can coincide.

Remark 8.

(a) Applying the above idea, closed-form exact estimates can be obtained for equations driven

by several fractional Brownian motions, even with different Hurst parameters. If we assume

that the noise is driven by n fBMs, and that one of the parameters θ or H is known,

then by considering n + 1 Fourier coefficients we can eliminate all noises and get a closed-

form estimate as a solution, under some non-degeneracy assumptions. Respectively, if

both parameters are unknown, then one can estimate them by considering n + 2 Fourier

coefficients.

(b) Note that the construction of the exact estimates assumed only the existence of the solution

and did not impose any additional assumptions on the order of the operators A0, A1, M, in

contrast to MLE estimates where the consistency holds only under additional assumptions

on order of corresponding operators.

(c) The MLE θ̂k,T depend on the whole trajectory of the Fourier coefficient uk(t), t ∈ [0, T ].

All exact estimates depend only on initial and terminal value of uk’s.

5. Examples

We conclude the paper with two practical examples where we explore some of the estimates

proposed above.

Example 1. Stochastic heat equation. Let θ be a positive number, and consider the following

equation

(26) du(t, x) = θuxx(t, x)dt + u(t, x)dWH(t), t > 0, x ∈ (0, 1),

with zero boundary conditions and some nonzero initial value u(0) ∈ L2(0, 1). In this case the oper-

ator A1 is the Laplace operator on (0, 1) with zero boundary conditions that has the eigenfunctions

hk(x) =
√

2/π sin(kx), k > 0, and eigenvalues νk = −k2, ρk = 0, µk = 1, k > 0. Assume that

u(t, x) is known for x ∈ [0, 1] and t ∈ [0, T ], hence uk(t) :=
∫ 1
0 hk(x)u(t, x)dx, k ∈ N, is observable.

Denote by vk(t) := log(uk(t)/uk(0)) for every k ∈ N, and uk(0) 6= 0. By Theorem 6, the MLE for

θ has the form

θ̂k = −

∫ T
0 l(T, s)dvk(s)

k2b1T 2−2H
−

Hb2
k2b1T 1−2H

, k ∈ N.

11



The exact estimates (22) for θ are given by

θ =
1

T (m2 − k2)
ln

uk(T )um(0)

um(T )uk(0)
,

for any k 6= m and T > 0. Note that the exact estimates do not depend on H. However there are

no exact-type estimates for H.

Example 2. Assume that G is a bounded domain in Rd, and let ∆ be the Laplace operator on G

with zero boundary conditions. Then ∆ has only point spectrum with countable many eigenvalues,

call them σk, k ∈ N. Moreover, the set of corresponding eigenvalues forms an orthonormal basis

in L2(G); the eigenvalues can be arranged so that 0 < −σ1 ≤ −σ2 ≤ . . .; the eigenvalues have

the asymptotic σk ∼ k2/d. In the space H0(G) let us consider the following stochastic evolution

equation

du(t) = [∆u(t) + θu(t)]dt+ (1−∆)ru(t)dWH(t) ,

with some nonzero initial values in H0(G), and some r ∈ R. According to our notations we have

the operators A0 = ∆, A1 = I, M = (1 − ∆)r, with corresponding eigenvalues νk = 1, ρk =

σk, µk = (1 + σk)
r. The equation is diagonalizable, and by Theorem 4, it has a unique solution in

the triple (H1,H0,H−1) for any r ≤ 1/2.

The maximum likelihood estimate in this case has the form

θ̂N,t =
ṽk(t)

b1σkt2−2H
+

Hb2(1− σk)
2r

σkb1t1−2H
−

1

σk
, t > 0, k ∈ N,

which is an unbiased estimate of the parameter θ.

(2a) Large time asymptotics. lim
t→∞

θ̂k,t = θ0 a.s. for all k ≥ 1; lim
t→∞

t1−H(θ̂k,t − θ0)
d
= ξ, where

ξ ∼ N (0, (1 − σk)
2/b21).

(2b) Consistency in number of spatial Fourier coefficients. Assume that r < 0. Then lim
k→∞

θ̂k,t = θ0

a.s., for every t > 0, and the sequence (1− σk)
−1(θ̂k,t − θ0) converges in distribution to a Gaussian

random variable with mean zero and variance t2H−2/b21. If r ∈ [0, 1/2] the solution still exists in

the space H0(G), while the estimate θ̂k,t is not consistent in k.

(2b) Exact estimates. Let vk(t) = ln(uk(t)/uk(0)). Assume that Hurst parameter H is known.

Then we have the following exact estimate for θ

θ =
(1− σm)rvk − (1− σk)

rvm
t((1− σm)r − (1− σk)r)

+
σm(1− σk)

r − σk(1− σm)r

(1− σm)r − (1− σk)r

+
t2H−1

2

(1− σk)
2r(1− σm)r − (1− σm)2r(1− σk)

r

(1− σm)r − (1− σk)r
,

for any k 6= m and t > 0.

If θ is known, then the Hurst parameter H can be found by

H =
1

2
logt

[(σk + θ)(1− σm)r − (σm + θ)(1− σk)
r]t− vk(1− σk)

r + vm(1− σm)r

2(1 − σk)2r(1− σm)r − (1− σm)2r(1− σk)r
,

for any k 6= m, t > 0.

Finally one can write the exact estimates (24) and (25) for the case when both parameters θ and

H are unknown. Note that the exact estimates exists for all r as long as the solution exists (maybe

in a larger space) and the Fourier coefficients uk(t) are computable.
12



References

1. S. I. Aihara and A. Bagchi, Stochastic hyperbolic dynamics for infinite-dimensional forward rates and option

pricing, Math. Finance 15 (2005), no. 1, 27–47.

2. , Parameter estimation of parabolic type factor model and empirical study of US treasury bonds, System

modeling and optimization, IFIP Int. Fed. Inf. Process., vol. 199, Springer, New York, 2006, pp. 207–217.

3. C. Berzin and J. R. León, Estimation in models driven by fractional Brownian motion, Ann. Inst. Henri Poincaré
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