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Abstract

The convergence of U -statistics has been intensively studied for estimators based
on families of i.i.d. random variables and variants of them. In most cases, the indepen-
dence assumption is crucial [Lee90, de99]. When dealing with Feynman-Kac and other
interacting particle systems of Monte Carlo type, one faces a new type of problem.
Namely, in a sample of N particles obtained through the corresponding algorithms,
the distributions of the particles are correlated -although any finite number of them
is asymptotically independent with respect to the total number N of particles. In the
present article, exploiting the fine asymptotics of particle systems, we prove convergence
theorems for U -statistics in this framework.

Keywords : interacting particle systems, Feynman-Kac models, U-statistics, fluc-
tuations, limit theorems.

Introduction

The convergence of U -statistics has been intensively studied for estimators based on families
of i.i.d. random variables and variants of them. In most cases, the independence assumption
is crucial. When dealing with Feynman-Kac and other interacting particle systems of Monte-
Carlo type, one faces a new type of problem. Namely, in a sample of N particles obtained
through the corresponding algorithms, the distributions of the particles are correlated -
although any finite number of them is asymptotically independent with respect to the total
number N of particles. It happens so (and this is the main contribution of the present article
to show) that this asymptotic independence is enough in practice to insure the convergence
of U -statistics based on interacting particle systems. In the following, we prove therefore
the convergence of U -statistics for different particle systems under mild assumption that
are satisfied by Feynmann-Kac particle systems. The case of Bird and Nanbu systems
also fits in this framework and will be treated elsewhere by the third Author [Rub09]. To
study the asymptotics of Feynman-Kac systems, whose properties are crucial to ensure the
convergence of the statistics, we will use a functional representation, as introduced in [De09]
in the framework of discrete interacting particle systems.

The article is organized as follows. To fix the notations and the general framework
of interacting particle systems, we first recall the (Feynman-Kac, continuous) interacting
particle model. The model first appeared in quantum physics, in the work of Feynman and
Kac in the 1940-50’s, as a way to encode the motion of a quantum particle evolving in a
potential (e.g. the interaction potential of a quantum field theory, viewed as a perturbation
of the free Hamiltonian) in terms of path-integral formulas. It was realized progressively that
interacting particle systems could be used in incredibly many different settings in probability
and statistics. A detailed list of the (still expanding) application areas of these models is
contained in [De04], to which we refer for further informations. Recall simply, since we
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focus here on its statistical features, that the model is mainly used, in applied statistics,
as a Bayesian nonlinear filtering model: the motion of the particles is driven by a diffusion
process and the potential encodes the likewood of the states with respect to observations or
to some reference path.

We study then the associated empirical joint distributions of a finite number k of particles
and study the convergence of the distributions in terms of the total number N of particles of
the system. This is closely related to our previous joint work [De09] on discrete Feynman-
Kac models -although the continuous hypothesis we use in the present article leads to some
simplification of the tricky combinatorics that showed up in the discrete framework.

We turn then to U -statistics for interacting particle systems and prove that under mild
asumptions on the behavior of the system (satisfied e.g. by Feynman-Kac and Boltzmann
systems) several asymptotic normality properties holds.

1 Feynman-Kac particle systems

Let us consider a E-valued Markov process Xt, where E = Rd (or an arbitrary metric
space) with a time-inhomogeneous infinitesimal generator Lt, continuous trajectories, and a
positive bounded potential function Vt, 0 ≤ Vt(x) ≤ V∞. We assume that the distribution of
X0 is γ0 = η0. Notice that these hypothesis are meaningful for most applications, but could
be accomodated to more general ones, see [De04]. We are interested in the unnormalized
(resp. normalized) distribution flows γt and ηt that are solutions, for sufficiently regular test
functions f and under appropriate regularity conditions, of the nonlinear equations:

d

dt
γt(f) = γt(Lt(f))− γt(fVt)

and
d

dt
ηt(f) = ηt(Lt(f)) + ηt(f(ηt(Vt)− Vt)).

In terms of Xt, we have:

γt(f) = E

(

f(Xt) exp

(

−
∫ t

0

Vs(Xs)ds

))

, ηt(f) =
γt(f)

γt(1)
.

1.1 Definitions and notations

Let us fix first of all some notations. For q ∈ N∗, we write [q] := {1, . . . , q}. For q,N ∈ N∗,
we set 〈q,N〉 := {s ∈ [N ][q], s injective}. For q even, we write Iq for the set of partitions of
[q] in pairs. We have

#Iq =
q!

2q/2
(

q
2

)

!
.

The set of smooth bounded (resp. smooth bounded symmetric) functions on Eq is written
Bb(Eq) (resp. Bsym

b (Eq)). We also write Bsym
0 (Eq) for the set of symmetric functions:

Bsym
0 (Eq) :=

{

F ∈ Bsym
b (Eq) :

∫

E

F (x1, . . . , xq)γt(dxq) = 0

}

.

Notice that the set of functions Bsym
0 (Eq) depends on t, so that a better notation would be

Bsym
0,t (Eq). However, since in practice the abbreviated notation should not lead to confusion,

we decided not emphasize this dependency for notational simplicity. We write simply B0(E)
for the centered functions: F ∈ Bb(E) :

∫

E F (x)γt(dx) = 0
The empirical (possibly random) measure associated to a (possibly random) vector x =

(x1, . . . , xN ) ∈ EN is given by

m(x) =
1

N

N
∑

i=1

δxi .
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We have, for all q ∈ N∗, F : Eq → R:

m(x)⊗q(F ) =
1

N q

∑

s∈[N ][q]

F (xs(1), . . . , xs(q)) .

We also consider the corresponding U -statistics:

m(x)⊙q(F ) =
1

(N)q

∑

s∈〈q,N〉

F (xs(1), . . . , xs(q))

=

(

N

q

)−1
∑

1≤i1<...<iq≤N

Fsym(xi1 , . . . , xiq ) ,

where (N)q = N !
(N−q)! = #〈q,N〉 and (F )sym(y1, . . . , yq) := 1

q!

∑

σ∈Sq
F (yσ(1), . . . , yσ(q)) ,

with Sq the symmetric group of order q.
The notion of differential for sequences of signed measures1 will also be useful. The total

variation norm is written || ||tv, so that, for any linear operator L on Bb(Eq),

||L||tv := sup
f∈Bb(Eq):‖f‖≤1

|L(f)|

Let (ΘN )N≥1, be a uniformly bounded sequence of measures on Eq, in the sense that
supN≥1 ‖ΘN‖tv <∞. The sequence ΘN is said to converge strongly to some measure Θ, as
N ↑ ∞ if and only if

∀f ∈ Bb(E) lim
N↑∞

ΘN(f) = Θ(f)

Definition 1.1. Let us assume that ΘN converges strongly to Θ. The discrete derivative of
the sequence (ΘN)N≥1 is the sequence of measures (∂ΘN)N≥1 defined by

∂ΘN := N
[

ΘN −Θ
]

We say that ΘN is differentiable, if ∂ΘN is uniformly bounded, and if it converges strongly
to some measure ∂Θ, called simply the derivative of ΘN , as N ↑ ∞.

The discrete derivative ∂ΘN of a differentiable sequence can itself be differentiable. In
this situation, the derivative of the discrete derivative is called the second derivative of ΘN

and it is denoted by ∂2Θ = ∂ (∂Θ), and so on.
A sequence ΘN that is differentiable up to order (k+1), has the following representation

ΘN =
∑

0≤l≤k

1

N l
∂lΘ+

1

Nk+1
∂k+1ΘN

with supN≥1 ‖∂k+1ΘN‖tv <∞ , and the convention ∂0Θ = Θ, for l = 0.

1.2 A genetic particle model

A particle system approaching the measures ηt (and therefore also γt) is the following. At
t = 0, the random vector Ξt = (ξ1t , . . . , ξ

N
t ) is a family of i.i.d. random variables distributed

according to γ0 = η0. Each entry ξit of the vector diffuses according to the generator Lt,
independently of the other entries. Each entry ξit has an exponential clock of parameter V∞

(independent of all the other variables defined up to now). When the clock of ξit rings, say
at τ , it can

• jump to a randomly (and uniformly) chosen particle in the family, including itself,

with a probability
Vτ (ξ

i
t)

V∞

• stay where it is with probability 1− Vτ (ξ
i
t)

V∞

.

1From now on, measure will have the more general meaning of signed measure
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Up to a renormalization of the jump type generators (which is convenient for our present
purposes), this is the model described in [De04, Sect. 1.5.2]. Notice that the law of ξit
depends on N , so that a more consistent notation for ξit would be ξN,i

t -whenever we want to
emphasize the dependency on N , we will switch to this second notation. The corresponding
empirical2 measures and empirical U-statistics are given (and related) by:

ηNt = m(Ξt) = m(ξ1t , . . . , ξ
N
t ),

γN
t = γN

t (1) · ηNt ,with γN
t (1) = exp

(

−
∫ t

0

ηNs (Vs)ds

)

,

(γN
t )⊙q(F ) = γN

t (1)q · (ηNt )⊙q(F ).

These are the analogs in continuous time to the random measures and U-statistics defined
and studied in [De09] in a discrete time setting. We recall that ηNt and γN

t are known to
converge as N →∞ to ηt and γt [De04].

In oder to study the convergence of the (empirical) U-statistics (γN
t )⊙q and (ηNt )⊙q, we

are going to rewrite them by means of functional expansions (actually, Laurent series in the
parameter N). These expansions will allow us, later, to control the convergence and (among
others) to extend to particle systems the classical central limits theorems for U-statistics.
Deriving these expansions is the main purpose of the first part of the article, together with
first results of convergence.

For these purposes, it is useful to introduce an auxiliary q-particle system. The reasons
for its introduction will become clear later and stem from a backward analysis of Feynman-
Kac trajectories of families of q particles.

Definition 1.2. The auxiliary system of q particles, ξ̂1t , . . . , ξ̂
q
t is defined as follows: the

random variables ξ̂10 , . . . , ξ̂
q
0 are independant of law η0. Moreover, the particles

ξ̂1t , . . . , ξ̂
q
t diffuse according to Lt (1.1)

(one more time, independently of one another) and undergo the following jumps. For any
(i, j) ∈ [q]2, i 6= j, there is an exponential clock of parameter V∞/N and a corresponding

Poisson point process T
(i,j)
1 , T

(i,j)
2 , . . . of parameter V∞/N . The T

(i,j)
1 , T

(i,j)
2 , . . . are named

the ringing times. At a ringing time t ∈ {T (i,j)
1 , T

(i,j)
2 , . . . },

ξ̂it

{

← ξ̂jt with proba.
Vt(ξ̂

i
t)

V∞

← ξ̂jt with proba. 1− Vt(ξ̂
i
t)

V∞

.
(1.2)

The notation ξ̂it ← ξ̂jt means that ξ̂it jumps to (or is substituted by) ξ̂jt . When q = N ,

the particle systems (ξ̂1t , . . . , ξ̂
N
t )t≥0 has the same law as (ξ1t , . . . , ξ

N
t )t≥0.

We set, for an arbitrary F ∈ Bb(Eq),

F e((ξ̂1s , . . . , ξ̂
q
s )0≤s≤t) = F (ξ̂1t , . . . , ξ̂

q
t ) exp

(

−
∫ t

0

[Vs(ξ̂
1
s ) + · · ·+ Vs(ξ̂

q
s )]ds

)

.

and
Et,k(F ) := E

{

F e((ξ̂1s , . . . , ξ̂
q
s )0≤s≤t)|k rings on[0; t]

}

.

Notice, for further use, that Et,k(F ) does not depend onN . This is because, as a consequence
of the general properties of Poisson point processes, conditionally to the hypothesis that there
are k rings on [0, t], the distribution of the ringing times is uniform on [0, t] and therefore
independent of the parameter V∞/N ; since the other parameters of the process (Lt and the

jump probabilities
Vt(ξ̂

i
t)

V∞

) are independent of N , the property follows.

2The adjective empirical refers, in the present article, to any measure, process or statistics obtained from
a particle system approximation.

4



1.3 Expansion of the unnormalized measure

Let us write for an arbitrary F ∈ Bb(Eq),

QN
t,q(F ) := E((γN

t )⊙q(F )).

We refer to QN
t,q as to the empirical unnormalized measure associated to the particle system

ξit . Since the joint distribution of the sequence ξ1t , . . . , ξ
N
t is invariant by permutations,

QN
t,q(F ) = QN

t,q(Fsym), and we can assume without restriction that F is a symmetric function.
The first question we adress is the (exact) computation of the speed of convergence of the
empirical unnormalized measure QN

t,q to γ⊗q
t .

Theorem 1.3. For F ∈ Bsym
b (Eq), we have the Laurent expansion

QN
t,q(F ) =

∞
∑

k=0

(λt)ke−λt

k!
Et,k(F ) (1.3)

= γ⊗q
t (F ) +

∞
∑

k,i≥0

k+i≥1

(−1)i (λt)
k+i

k!i!
Et,k(F ) (1.4)

= γ⊗q
t (F ) +

∞
∑

r=1

1

N r

r
∑

k=0

(

(−1)r−k

k!(r − k)!
(q(q − 1)V∞t)

r
Et,k(F )

)

(1.5)

where λ := q(q − 1)V∞

N . In particular, QN
t,q is differentiable up to any order with

∂rQt,q(F ) =

r
∑

k=0

(−1)r−k

k!(r − k)!
(q(q − 1)V∞t)

r
Et,k(F ) .

Notice in particular that, although the Et,k(F )s depend on the choice of the upper bound
V∞ for the potential function V , the coefficients of the development do not (they are the
derivatives of Qt,q, that do not depend on V∞).

Proof of Theorem 1.3.
We have first, for f ∈ Bb(E)

d

dt
E(ηNt (f)) = E(ηNt (Lt(f))) +

N
∑

i,j=1

E





Vt(ξ
i
t)
(

f(ξjt )− f(ξit)
)

N2





and

d

dt
E(γN

t (f)) = E(γN
t (Lt(f)))− E(ηNt (Vt)γ

N
t (f)) + E



γN
t (1)

N
∑

i,j=1

Vt(ξ
i
t)
(

f(ξjt )− f(ξit)
)

N2





For F ∈ Bsym
b (Eq), let us introduce the useful notation: Fi : E

q−1 −→ Bb(E),

Fi(x1, ..., xq−1)(y) := F (x1, ..., xi−1, y, xi, ..., xq−1)

and let us extend Lt to functions in Bsym
b :

Lt(F )(x1, ..., xn) :=

q
∑

i=1

Lt(Fi(x1, ..., xi−1, xi+1, ..., xn))(xi).

We get:

d

dt
E((γN

t )⊙q(F )) (1.6)

= E((γN
t )⊙q(Lt(F ))) − E(qηNt (Vt)(γ

N
t )⊙q(F ))

+E







γN
t (1)q

∑

s∈<q,N>

q
∑

i=1

N
∑

k=1

Vt(ξ
s(i))

×
(

Fi(ξ
s(1)
t , . . . , ξ

s(i−1)
t , ξ

s(i+1)
t , . . . , ξ

s(q)
t )(ξkt )− F (ξ

s(1)
t , . . . , ξ

s(i)
t , . . . , ξ

s(q)
t )

N · (N)q

)}
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The second term in the right hand side of (1.6) reads:

E



−q γN
t (1)q

N · (N)q

∑

s∈<q,N>

N
∑

k=1

F (ξ
s(1)
t , . . . , ξ

s(q)
t )Vt(ξ

k
t )



 =

E



−q γN
t (1)q

N · (N)q

∑

s∈<q,N>

F (ξ
s(1)
t , . . . , ξ

s(q)
t )(Vt(ξ

s(1)
t ) + · · ·+ Vt(ξ

s(q)
t ))



 +

E



−q γN
t (1)q

N · (N)q

∑

s∈<q+1,N>

F (ξ
s(1)
t , . . . , ξ

s(q)
t )Vt(ξ

s(q+1)
t )



 .

Similarly, making use of the symmetry properties of F , the last term in the right hand
side of (1.6) reads:

E



q
γN
t (1)q

N · (N)q

∑

s∈<q,N>

N
∑

k=1

Vt(ξ
s(q)
t )F (ξ

s(1)
t , . . . , ξ

s(q−1)
t , ξkt )



−

E





γN
t (1)q

(N)q

∑

s∈<q,N>

F (ξ
s(1)
t , . . . , ξ

s(q−1)
t , ξ

s(q)
t )(Vt(ξ

s(1)
t ) + · · ·+ Vt(ξ

s(q)
t ))





The first term in this last sum decomposes then into (making use once again of the
symmetry properties of F ):

E





γN
t (1)q

N · (N)q

∑

s∈<q,N>

(Vt(ξ
s(1)
t ) + · · ·+ Vt(ξ

s(q)
t ))F (ξ

s(1)
t , . . . , ξ

s(q−1)
t , ξ

s(q)
t )



 +

E



q
γN
t (1)q

N · (N)q

∑

s∈<q,N>

q−1
∑

k=1

Vt(ξ
s(q)
t )F (ξ

s(1)
t , . . . , ξ

s(q−1)
t , ξ

s(k)
t )



 +

E



q
γN
t (1)q

N · (N)q

∑

s∈<q+1,N>

F (ξ
s(1)
t , . . . , ξ

s(q−1)
t , ξ

s(q)
t )Vt(ξ

s(q+1)
t )





Reorganizing the summands in these expansions, we get finally that the two last terms
of (1.6) sum up to :

−E





γN
t (1)q

(N)q

∑

s∈<q,N>

F (ξ
s(1)
t , . . . , ξ

s(q)
t )(Vt(ξ

s(1)
t ) + · · ·+ Vt(ξ

s(q)
t ))



+

E

( γN
t (1)q

N · (N)q

∑

s∈<q,N>

q
∑

i,r=1

Vt(ξ
s(i)
t )

[

F (ξ
s(1)
t , . . . , ξ

s(i−1)
t , ξ

s(r)
t , ξ

s(i+1)
t , . . . , ξ

s(q)
t )

−F (ξ
s(1)
t , . . . , ξ

s(q)
t )

] )

.

We set

FVt(x1, . . . , xq) := (Vt(x1) + · · ·+ Vt(xq))F (x1, . . . , xq)

F
(i,r)
Vt

(x1, . . . , xq) = Vt(xi)(F (x1, . . . , xi−1, xr, xi+1, . . . , xq)− F (x1, . . . , xq)).

Then the equations above give

d

dt
QN

t,q(F ) = QN
t,qLt(F )−QN

t,q(FVt) +
∑

1≤i,r≤q

1

N
QN

t,q(F
(i,r)
Vt

) .
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And so

QN
t,q(F ) = E

(

F (ξ̂1t , . . . , ξ̂
q
t ) exp

(

−
∫ t

0

Vt(ξ̂
1
s ) + · · ·+ Vt(ξ̂

q
s )ds

))

. (1.7)

We then obtain Equation (1.3) of the theorem by noticing that

P(k rings on[0, t]) =
(λt)ke−λt

k!
.

We obtain Equation (1.4) by developping the term e−λt and by noticing that

Et,0(F ) = γ⊗q
t (F ) .

1.4 Wick theorem for interacting particle systems

We say that two particles of the auxiliary system ξ̂i, ξ̂j , i 6= j interact at t if and only if
ξ̂it jumps to ξ̂j or ξ̂jt jumps to ξ̂i at t. We say that a trajectory of the auxiliary system of

particles ξ̂1t , . . . , ξ̂
q
t is exactly Wick-coupled on [0, t] if and only each particle of the system has

exactly one interaction with another particle between 0 and t (notice that the existence of
such trajectories requires q to be even). We writeWt for the set of Wick-coupled trajectories
on [0, t]; the set Wt embeds into the set of trajectories with exactly q/2 rings on [0, t].

Theorem 1.4. If F ∈ Bsym
0 (Eq) then, for r < q/2, ∂rQN

t,q(F ) = 0. Moreover, for q even,

∂q/2Qt,q(F ) =
(q(q − 1)V∞t)q/2

(q/2)!
Et,q/2(F )

In particular,

lim sup
N→+∞

N q/2|QN
t,q(F )| ≤ (q(q − 1)V∞t)q/2

(q/2)!
‖F‖∞. (1.8)

Proof of Thm 1.4. Recall that F is symmetric and belongs to Bsym
0 (Eq) so that, for any

i ≤ q,
∫

E F (x1, ..., xq)γt(dxi) = 0.
The proof follows then from Thm 1.3 together with the observation that, if there are

strictly less than q/2 rings, then at least one of the particles does not interact with the
others so that, if k < q

2 , Et,k(F ) = 0.

Corollary 1.5. With the assumptions of Thm 1.3 and q even, we have:

∂q/2Qt,q(F ) =
q!

(q/2)!
(V∞t)q/2E((F e(ξ̂1s , . . . , ξ̂

q
s )0≤s≤t)|Wt).

If, furthermore, F = (f1⊗ · · ·⊗ f q)sym (with f1, . . . , f q centered with respect to γt) then
we have the Wick-type expansion

E(F e((ξ̂1s , . . . , ξ̂
q
s )0≤s≤t)|Wt) =

2q/2(q/2)!

q!

∑

Iq∈Iq

∏

{i,j}∈Iq

E′
t,1(f

i ⊗ f j)

where the sum is over the set Iq of partitions Iq of [q] into pairs, i, j being paired if {i, j} ∈ Iq
and where, for a function G of two variables

E′
t,1(G) := E(G(µ̂1

t , µ̂
2
t ) exp

(

−
∫ t

0

[Vs(µ̂
1
s) + Vs(µ̂

2
s)]ds

)

|one ring on [0, t])

with µ̂1
t , µ̂

2
t an auxiliary system of two particles (defined with the same rules as a general

auxiliary system of q particles).

7



Proof. Indeed, from the enumeration of possible interactions between particles and the gen-
eral properties of Poisson processes, we have:

P(Wt|q/2 rings on [0, t]) =
q!

(q(q − 1))q/2
.

The first part of the Corollary follows.
The last part follows from the observation that the distributions of two particles (or

of blocks of particles) are independent conditionnally to the assumption that they do not
interact (either directly or through interactions with other particles), so that quantities such

as E(F e((ξ̂1s , . . . , ξ̂
q
s )0≤s≤t)|Wt) may be computed by disjoint integrations over blocks (pairs

in this particular case) of interacting particles. Since Card(Iq) = q!
2q/2(q/2)!

, the Corollary

follows.

1.5 Expansion of the normalized measure

The purpose of the present section is to prove for the measures associated to the empirical
U -statistics (ηNt )⊙q properties similar to the ones obtained in the unnormalized case. We
conclude the section with a Wick formula in this setting.

We set, for F ∈ Bb(Eq):

PN
t,q(F ) = E((ηNt )⊙q(F )) .

Theorem 1.6. The sequence (PN
t,q) is differentiable up to any order.

Let us mention that an explicit formula (that we omit) for the derivatives ∂lPt,q follows
immediately from Fla 1.13 in our proof.

Proof. Let us expand first (ηNt )⊙q in terms of (γN
t )⊙q. Let, in the following, F be a bounded

symmetric function of q variables. We first have:

(ηNt )⊙q(F ) = (γN
t )⊙q(F )γN

t (1)−q

= (γN
t )⊙q(F )

1

γt(1)q
1

(

1−
(

1− γN
t (1)
γt(1)

))q .

We set F̌t :=
F

γt(1)q
and get:

(ηNt )⊙q(F ) = (γN
t )⊙q(F̌t)

1
(

1−
(

1− γN
t (1)
γt(1)

))q = (γN
t )⊙q(F̌t)

1

(1 − uN
t )q

,

with

uN
t = 1− γN

t (1)

γt(1)
.

Recall the decomposition (that holds for any m, see [De09, Lemma 4.11]):

1

(1 − uN
t )q

=
∑

0≤k≤m

(q − 1 + k)k
(uN

t )k

k!
+ (uN

t )m
∑

1≤k≤q

Ck+m
q+m

(

uN
t

1− uN
t

)k

from which it follows that:

(ηNt )⊙q(F ) = (γN
t )⊙q(F̌t)

∑

0≤k≤m

(q − 1 + k)k
(uN

t )k

k!

+ (γN
t )⊙q(F̌t)(u

N
t )m

∑

1≤k≤q

Ck+m
q+m

(

uN
t

1− uN
t

)k

=: (1) + (2) .

8



For an arbitrary function f on E, we set: θt(f) :=
f−ηt(f)
γt(1)

. Then, recalling the equality

γt(1) = exp
(

−
∫ t

0 ηs(Vs)ds
)

, we get

γN
t (1)

γt(1)
= e−

∫ t
0
[ηN

u (Vu)−ηu(Vu)]du

= 1−
∫ t

0

[ηNu (Vu)− ηu(Vu)]
γN
u (1)

γu(1)
du

= 1−
∫ t

0

γN
u (θu(V ))du ,

where the last identity follows from the rewriting

[ηNu (Vu)− ηu(Vu)]
γN
u (1)

γu(1)
= ηNu

(

Vu − ηu(Vu)

γu(1)

)

γN
u (1) = γN

u (θu(Vu)).

In particular, we get, for an arbitrary k > 0,

(

1− γN
t (1)

γt(1)

)k

=

∫

s1,...sk∈[0,t]

k
∏

i=1

γN
si (θsi(Vsi ))ds1 . . . dsk (1.9)

= k!

∫

0≤s1≤···≤sk≤t

k
∏

i=1

γN
si (θsi(Vsi ))ds1 . . . dsk.

We therefore have

(1) =
∑

0≤k≤m

(q − 1 + k)k

∫

0≤s1≤···≤sk≤t

[

k
∏

i=1

γN
si (θsi(Vsi))

]

(γN
t )⊙q(F̌t)ds1 . . . dsk

=
∑

0≤k≤m

(q − 1 + k)k ×
∫

0≤s1≤···≤sk≤t

γk,q,N
s,t (Sk,q

s1,...,sk,t
(F ))ds1 . . . dsk (1.10)

with s := {s1, . . . , sk}, γk,q,N
s,t = γN

s1⊗. . . γN
sk⊗(γN

t )⊙q, Sk,q
s,t (F ) = θs1(Vs1 )⊗· · ·⊗θsk(Vsk )⊗F̌t.

We introduce the operators (for G of k + q variables, j ≤ k)

DjG(x1, . . . , xk+q) =
N − q − k + j

N
G(x1, . . . , xk+q) +

1

N

∑

j+1≤i≤k+q

Gj(x1, . . . , xk+q)(xi)

We then have, for any empirical measure m(x) = 1
N

∑

1≤i≤N δxi and for any function G

of k + q ≤ N variables and any measure µ on Ej−1

µ⊗ (m(x) ⊗m(x)⊙(k+q−j))(G) = µ⊗m(x)⊙(k+q−j+1)(DjG) .

For G function of q + k variables and s ≤ t and j ≤ k + q, we define then the Markov
operator

Rj
s,tG(x1, . . . , xk+q) = (1.11)

E(G(x1, . . . , xk+q−j , ξ̂
1
t−s, . . . , ξ̂

j
t−s)e

−
∫ t−s
0

(Vs+u(ξ̂
1
u)+···+Vs+u(ξ̂

j
u))du

|ξ̂10 = xk+q−j+1, . . . , ξ̂
j
0 = xk+q) ,

where the ξ̂i are defined as before, excepted for the initial condition that reads now ξ̂i0 = xk+i.

Reasoning as before (and using the auxiliary system ξ̂is as in Sect. 1.3), we get for sk ≤ t
and H a function of k + q variables, µ a measure on Ej−1,

E(µ ⊗ (γN
sk ⊗ (γN

t )⊙q)(H)|Fsk) = µ⊗ (γN
sk ⊗ (γN

sk)
⊙q)Rq

sk,t(H)

= µ⊗ (γN
sk)

⊙(q+1)Dq+1R
q
sk,t(H) ,
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where Ft stands for the natural filtration on the probability space underlying the particle
system. Here, we took advantage of the Markovian properties of the system and of Eq 1.7.
So, by recurrence :

E(γk,q,N
s,t (G)) = (η0)

⊗(k+q)Rk+q
0,s1

D1R
k−1+q
s1,s2 . . . DkR

q
sk,t(G) .

We proceed now as for the unnormalized measure and introduce still another more general
auxiliary particle system (ξ̌1t , . . . , ξ̌

k+q
t )t≥0. The system depends on k (and q), but we do not

emphasize this dependency to abbreviate the notations. This should not create ambiguities
since the dependency on k should be obvious from the context in the following formulas.

Let S1, S2, . . . , Sk be the order statistics of k uniform random variables in [0, t] (we take
k i.i.d. uniform variables in [0, t] and sort them). The Si are independent of all the other
variables. We set Si := t for k < i ≤ k + q. The system (which agrees with the auxiliary

system ξ̂it when k = 0) is defined as follows:

• The law of (ξ̌10 , . . . , ξ̌
k+q
0 ) is η⊗k+q

0

• The particles ξ̌is diffuse according to Ls and undergo the following jumps:

• Each couple (i, j) ∈ [q+k]2 has an exponential clock of parameter V∞/N . At a ringing
time s:

– If s > Si or s > Sj , then nothing happens.

– Else,

ξ̌is

{

← ξ̌js with proba. Vs(ξ̌
i)

V∞

← ξ̌is with proba. 1− Vs(ξ̌
i)

V∞

– At s = Si, we make the following replacement (with U sampled uniformly in
{i+ 1, . . . , k + q})

ξ̌Us ← ξ̌is with proba.
k − i+ q

N
.

We say that there has been a parasite at s, so that the system has at most k
parasites.

With the notation

Šk,q
S,t (ξ̌

1
S1
, . . . , ξ̌kSk

, ξ̌k+1
t , . . . , ξ̌k+q

t )

:= Sk,q
S,t (ξ̌

1
S1
, . . . , ξ̌kSk

, ξ̌k+1
t , . . . , ξ̌k+q

t )e−
∫ S1
0 ...

∫ t
0
Vu(ξ̌

1
u)du...Vu(ξ̌

k+q
u )du ,

the equation (1.10) gives

E((1)) =
∑

0≤k≤m

(k − 1 + q)k
k!

E(Šk,q
S,t (ξ̌

1
S1
, . . . , ξ̌kSk

, ξ̌k+1
t , . . . , ξ̌k+q

t ))

=
∑

0≤k≤m

(k − 1 + q)k
k!

× E

{

+∞
∑

r=0

(ΛSV∞/N)r e−ΛsV∞/N

r!
E(Šk,q

S,t (ξ̌
1
S1
, . . . )|r rings , S1, . . . , Sk)

}

with

ΛS := q(q − 1)(t− Sk) + (q + 1)q(Sk − Sk−1) + · · ·+ (q + k)(q + k − 1)(S1 − 0) ,

for which we will use the crude bound ΛS ≤ (q + k)2t.
We set

Ēk,r,l = E(Λl
SE(Š

k,q
S,t (ξ̌

1
s1 , . . . )|r rings , S1, . . . , Sk)) ,
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and notice that the parasites are sampled independently of the Si and of the ringing times,
so that:

Ēk,r,l =
k
∑

i=0

P(i parasites)E(Λl
SE(Š

k,q
S,t (ξ̌

1
S1
, . . . )|i parasites, r rings, S1, . . . , Sk)) .

The probability P(i parasites) depends on t, q and k, but we omit the corresponding indices
to simplify the notation. The following lemma is crucial:

Lemma 1.7. For i+ r < k
2 , we have:

D̄k,r,l,i := E(Λl
SE(Š

k,q
S,t (ξ̌

1
s1 , . . . )|i parasites, r rings, S1, . . . , Sk)) = 0 ,

so that:

Ēk,r,l =

k
∑

i=(⌈ k
2 ⌉−r)+

P(i parasites)D̄k,r,l,i .

where ⌈x⌉ stands for inf{k ∈ N : k ≥ x}.
Indeed, for i+r < k

2 , at least one of the ξ̌
j , j ≤ k does not interact with the other particles,

so that, by Fubini’s lemma, θSj (VSj )(ξ̌
j
Sj
)e−

∫ Sj
0 Vu(ξ̌

j
u)du can be integrated independently.

However, conditionnally to the assumption that ξ̌j does not interact with the other particles,
we have:

E(θSj (VSj )(ξ̌
j
Sj
)e−

∫ Sj
0 Vu(ξ̌

j
u)du) = ηSj (θSj (VSj )) = 0,

and the lemma follows.
We then have (by developping the exponential in E((1)))

E((1)) =
∑

0≤k≤m

(k + q − 1)k
k!

+∞
∑

r=0

V r
∞

N rr!

+∞
∑

i=0

(−1)i
i!

(

V∞

N

)i

Ēk,r,r+i (1.12)

=
∑

0≤k≤m

(k + q − 1)k
k!

+∞
∑

r=0

V r
∞

N rr!

+∞
∑

i=0

(−1)i
i!

(

V∞

N

)i

(1.13)

k
∑

j=(⌈ k
2 ⌉−r)+

P(j parasites)D̄k,r,r+i,j .

By the construction of the auxiliary system of particles, P(j parasites) = O( 1
Nj ). For further

use, the explicit formula is:

P(j parasites )

=
∑

1≤k1≤···≤kj≤k





(q + k1 − 1)

N
. . .

q + kj − 1

N

∏

l∈[k]\{k1,...,kj}

(

1− q + l − 1

N

)



 ,

so that there exists coefficients (al) (depending on k and q, as usual we omit the correspond-
ing indices for notational simplicity) such that

P(j parasites ) =

k
∑

l=j

al
N l

.

Because of the condition i + r < k
2 in Lemma 1.7, it follows that the coefficient of any

1
Np in the expansion of E((1)) is a finite sum of coefficients which are independent of N .
This is essentially all what we need in order to prove the Thm. 1.6, provided we are able
(Step 1 below) to give a suitable upper bound for the remainder terms in the expansion of
E((1)) at a given order, and (Step 2) to give a suitable upper bound to E((2)). This is the
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(cumbersome) purpose of the following conclusion to the proof of the Thm. 1.6, that we
include for completeness sake but that the reader may skip, if she/he wishes.

Step 1: Upper bound for the remainder terms in the expansion of E((1)) at the order p,
assuming that m is even and m = 2p.

Notice that for an arbitrary bounded function F ,

‖F̌‖∞ ≤ ‖F‖∞etV∞q ,

‖Sk,q
S,t‖∞ ≤ 2kV k

∞et(k+q)V∞‖F‖∞ ,

and so
|Ēk,r,r+i| ≤ (t(q + k)2)r+i2kV k

∞et(k+q)V∞‖F‖∞ .

In the Fla 1.12 for the expectation E((1)), the sum of the terms with a factor 1/N r+i,

r + i ≥ p is, in absolute value, equal to (we use here: ∀x ≥ 0,
∑

i≥j
xi

i! ≤ xj

j! e
x)

∣

∣

∣

∣

∣

∣

∑

0≤k≤2p

(k + q − 1)k
k!

+∞
∑

r=0

V r
∞

N rr!

∑

i≥(p−r)+

(−1)i
i!

(

V∞

N

)i

Ēk,r,r+i

∣

∣

∣

∣

∣

∣

≤
∑

0≤k≤2p

(k + q − 1)k
k!

[

p−1
∑

r=0

V r
∞

N rr!
2kV k

∞et(k+q)V∞‖F‖∞

× 1

(p− r)!

(

V∞t(q + k)2

N

)p−r

exp

(

V∞t(q + k)2

N

)

(t(k + q)2)r

+

+∞
∑

r=p

V r
∞

N rr!
2kV k

∞et(k+q)V∞‖F‖∞ exp

(

V∞t(q + k)2

N

)

(t(q + k)2)r

]

≤ 1

Np

∑

0≤k≤2p

(k + q − 1)k
k!

×
[

p−1
∑

r=0

V p+k
∞ 2ket(k+q)V∞‖F‖∞

1

(p− r)!r!
(t(q + k)2)pe

V∞t(q+k)2

N

+2k
(t(k + q)2)pV k+p

∞

p!
eV∞t(k+q)‖F‖∞e2

V∞t(q+k)2

N

]

= O(
1

Np
) .

Since, by Fla 1.13, E((1)) is the sum of this term with a polynomial in 1
N , the proof of

the Step 1 is concluded.
Step 2: Upper bound to E((2)).

Since γt(1) = e−
∫

t
0
ηu(Vu)du and γN

t (1) = e−
∫

t
0
ηN
u (Vu)du, we get:

|E((2))| ≤ ‖F‖∞etqV∞





∑

1≤k≤q

Ck+2p
q+2p (e

tV∞ + 1)k



E((uN
t )2p) .

We have, with the same auxiliary system of the ξ̌’s as before but with q = 0, k = 2p and
with S1, . . . , S2p the order statistics of 2p uniform variables on [0, t],

E((uN
t )2p)

= E(θS1(VS1)⊗ · · · ⊗ θS2p(VS2p)(ξ̌
1
S1
, . . . , ξ̌2pS2p

)e
−

∫ S1
0 ...

∫ S2p
0 Vu1 (ξ̌

1
u1

)...Vup (ξ̌
2p
u2p

)du1...du2p) .

We get (with, now, ΛS = (2p)(2p−1)S1+(2p−1)(2p−2)(S2−S1)+ · · ·+1× (S2p−S2p−1))

12



E((uN
t )2p) = E(

+∞
∑

r=0

(

ΛSV∞

N

)r
1

r!
e−ΛSV∞/NE(θS1(VS1)⊗ · · · ⊗ θS2p(VS2p)

(ξ̌1S1
, . . . , ξ̌2pS2p

)e
−

∫ S1
0 ...

∫ S2p
0 Vu1 (ξ̌

1
u1

)...Vup (ξ̌
2p
u2p

)du1...du2p |r rings, S1, . . . , S2p))

= E(

+∞
∑

r=0

(

ΛSV∞

N

)r
1

r!
e−ΛSV∞/N

2p−1
∑

i=0

P(i parasites)

× E(θS1(VS1)⊗ · · · ⊗ θS2p(VS2p)(ξ̌
1
S1
, . . . , ξ̌2pS2p

)

e
−

∫ S1
0 ...

∫ S2p
0 Vu1 (ξ̌

1
u1

)...Vup (ξ̌
2p
u2p

)du1...du2p |r rings, i parasites, S1, . . . , S2p)) .

We have

P(i parasites) ≤ Ci
2p−1

(

2p− 1

N

)i

and know that, if r + i < p

E(θS1(VS1)⊗ · · · ⊗ θS2p(VS2p)(ξ̌
1
S1
, . . . , ξ̌2pS2p

)

e
−

∫ S1
0 ...

∫ S2p
0 Vu1 (ξ̌

1
u1

)...Vup (ξ̌
2p
u2p

)du1...du2p |r rings, i parasites, S1, . . . , S2p)) = 0 .

So that

E((uN
t )2p) ≤ 1

Np

+∞
∑

r=0

(t(2p)2V∞)r

r!

2p−1
∑

i=(p−r)+

Ci
2p−1(2p− 1)ie2ptV∞22pV 2p

∞

and

|E((2))| ≤ 1

Np
× ‖F‖∞etqV∞





∑

1≤k≤q

Ck+2p
q+2p (e

tV∞ + 1)k





× et(2p)
2V∞

2p−1
∑

i=0

Ci
2p−1(2p− 1)ie2ptV∞22pV 2p

∞ = O(
1

Np
),

and the proof of the Thm is complete.

Corollary 1.8. If F ∈ Bsym
0 (Eq), then

• ∂lPt,q(F ) = 0, ∀l < q/2

• for q even, ∂q/2Pt,q(F ) simplifies to

∂q/2Pt,q(F ) =
V

q/2
∞

(q/2)!
(q(q − 1)t)q/2E(F̌ e(ξ̂1t , . . . , ξ̂

q
t )|

q

2
rings) ,

or

∂q/2Pt,q(F ) =
∂q/2Qt,q(F )

γt(1)q
.

Proof of Corollary 1.8. Indeed, the same argument as in the proof of Lemma 1.7 shows
that, for a centered function F ∈ Bsym

0 , the terms Dk,r,r+i,j vanish for j + r < k+q
2 (this is

because at least one of the ξ̌j , j ≤ k + q does not interact with the other particles if there
are less than k+q

2 rings and parasites). It follows that, if q is even (resp. odd), q
2 (resp.

q+1
2 ) is the smallest power of 1

N appearing in the expansion of E((1)) for m > q and that

the contribution of (2) is negligible with respect to 1/N q/2, from which the first part of the
Corollary follows.

The same reasoning shows that, for q even, only the case k = i = j = 0 and r = q
2

contributes to the coefficient of ( 1
N )

q
2 . As noticed before, for k = 0, the systems (ξ̌) and (ξ̂)

have the same law. The second statement follows.
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2 First results on asymptotic normality

The empirical measure ηNt converges weakly to ηt: for all bounded f , ηNt (f)
a.s.−→

N→+∞
ηt(f).

The Wick theorem (Cor. 1.8) allowed us to improve on this convergence result. Namely, we
know from the previous section that

• For q odd and F ∈ Bsym
0 (Eq): N q/2E((ηNt )⊙q(F )) −→

N→∞
0,

• For q even, F ∈ Bsym
0 (Eq): N q/2E((ηNt )⊙q(F )) −→

N→∞
∆q/2(F ),

where ∆q/2 is a shortcut for the signed measure:

∆q/2(F ) =
(q(q − 1)tV∞)q/2

(q/2)!
E(F̌ e(ξ̂1t , . . . , ξ̂

q
t )|

q

2
rings) .

Furthermore, for F = (f1 ⊗ ...⊗ fq)sym, with fi ∈ B0(E), this formula simplifies to:

∆q/2(F ) =
(2V∞t)q/2

γt(1)q

∑

Iq∈Iq

∏

{i,j}∈Iq

E′
t,1(fifj) =

∑

Iq∈Iq

∏

{i,j}∈Iq

Wt(fi ⊗ fj),

where Wt :=
2V∞t
γt(1)2

E′
t,1.

A striking consequence of this Wick theorem for interacting particle systems and their
U-statistics is that it leads immediately to an explicit result of asymptotic normality for the
vector-valued random measures (ηNt )q. Notice that the same properties hold for the system
studied in [Rub09] and so we have the same asymptotic normality result for this system.
More precisely:

Theorem 2.1. ∀f1, . . . , fq ∈ B0(E),

N1/2(ηNt (f1), . . . , η
N
t (fq))

law−→
N→+∞

N (0,K)

with K(i, j) = ηt(fifj) + E(Wt(fi ⊗ fj)).

Proof. For any u1, . . . , uq, we have:

E

(

exp

(

NηNt

(

log

(

1 +
iu1f1 + · · ·+ iuqfq√

N

))))

= E



exp





∑

k≥1

(−1)k+1

k
N1−k/2ηNt ((iu1f1 + . . . iuqfq)

k)









∼
N→+∞

E(exp(
√
N(iu1η

N
t (f1) + · · ·+ iuqη

N
t (fq))))

× exp

(

−1

2
ηt((u1f1 + · · ·+ uqfq)

2))

)

,

where the last equivalence follows from the differentiability of PN
t,1.
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We also have

E

(

exp

(

NηNt

(

log

(

1 +
iu1f1 + . . . iuqfq√

N

))))

= E





N
∏

j=1

(

1 +
iu1f1(ξ

j
t ) + · · ·+ iuqfq(ξ

j
t )√

N

)





= E





∑

0≤k≤N

1

Nk/2

∑

1≤j1,...,jk≤q

ikuj1 . . . ujk

∑

1≤i1<···<ik≤N

fj1(ξ
i1
t ) . . . fjk(ξ

ik
t )





= E





∑

0≤k≤N

(N)k
Nk/2

∑

1≤j1,...,jk≤q

ikuj1 . . . ujk

1

k!
(ηNt )⊙k(fj1 ⊗ · · · ⊗ fjk)





−→
N→+∞

∑

k≥0,k even

(−1)k/2
∑

1≤j1,...,jk≤q

uj1 . . . ujk

k!

∑

Ik∈Ik

∏

{a,b}∈Ik

Wt(fa ⊗ fb)

=
∑

k≥0,k even

(−1)k/2
2k/2(k/2)!

∑

1≤j1,...,jk≤q

uj1 . . . ujkE(Wt(fj1 ⊗ fj2)) . . .E(Wt(fjk−1
⊗ fjk))

=
∑

k≥0,k even

(−1)k/2
2k/2(k/2)!





∑

1≤j1,j2≤q

uj1uj2E(Wt(fj1 ⊗ fj2))





k/2

= exp



−1

2

∑

1≤j1,j2≤q

uj1uj2E(Wt(fj1 ⊗ fj2))





The Theorem follows.

3 Convergence of empirical U-statistics.

3.1 Hoeffding’s decomposition

We want here to study the convergence under fairly general assumptions of a sequence of
empirical U-statistics (ηNt )⊙q(F ) when N → +∞, where the ηNt s are empirical measures on
some space E and F is a bounded symmetrical function on Eq.

Let us first write an analog of Hoeffding’s decomposition (cf. [Lee90], [de99]). We fix
some measure ηt. For 1 ≤ k ≤ q and any F bounded symmetrical on Eq, we define

F (k)(x1, . . . , xq) =

∫

Eq−k

F (x1, . . . , xk, xk+1, . . . , xq)η
⊗(q−k)
t (dxk+1, . . . , dxq) .

Notice that F (q) = F and that, for an arbitrary k, F (k) is symmetrical on Ek. We de-
fine recursively (the function F being fixed –for notational simplicity, we do not stress the
dependency of θ, h(i)... in the following formulas):

θ =

∫

Eq
n

F (x1, . . . , xq)η
⊗q
t (dx1, . . . , dxq)

h(1)(x1) = F (1)(x1)− θ

h(k)(x1, . . . , xk) = F (k)(x1, . . . , xk)−
k−1
∑

j=1

∑

(k,j)

h(j) − θ ,

where
∑

(k,j) h
(j) is an abbreviation for

∑

1≤i1<···<ij≤k[h
(j)(xi1 , . . . , xij )].

The h(k) are bounded and symmetrical. They are constructed so as to be centered and
to satisfy, for l < k, (h(k))l = 0, see e.g. [Lee90, Sect. 1.6].
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3.2 Asymptotic normality for empirical U-statistics.

As for classical U-statistics, the Hoeffding decomposition can be used to study the conver-
gence of the empirical U-statistics (ηNt )⊙q. Notice first that, ∀N ,

(ηNt )⊙q(F ) = (ηNt )⊙q(h(q)) + (ηNt )⊙q(

q−1
∑

j=1

∑

(q,j)

(h(j))) + θ . (3.1)

Notice that, ∀1 ≤ j ≤ q − 1,

∑

(q,j)

h(j) =
1

j!

∑

b∈〈j,q〉

h(j)(xb(1), . . . , xb(j)) .

So, with the notations of the first sections:

(ηNt )⊙q(
∑

(q,j)

h(j)) =
1

(N)q

∑

a∈〈q,N〉

1

j!

∑

b∈〈j,q〉

h(j)(ξ
a◦b(1)
t , . . . , ξ

a◦b(j)
t )

=
1

j!(N)q
× (N − j)(q−j)(q)j

∑

a′∈<j,N>

h(j)(ξ
a′(1)
t , . . . , ξ

a′(j)
t )

=
(q)j
j!

(ηNt )⊙j(h(j)) . (3.2)

Theorem 3.1. Suppose we have, for all j ≥ 2 and f ∈ Bsym
0 (Ej),

E(((ηNt )⊙j(f))2) ≤ C

N j
, (3.3)

for some constant C depending on t, N, j, ‖f‖∞. Assume further that, with F as above,

√
NηNt (h(1)) =

√
N(ηNt (F (1))− θ)

law−→
N→+∞

N (0, σ2) , (3.4)

then √
N((ηNt )⊙q(F )− θ)

law−→
N→+∞

N (0, q2σ2) . (3.5)

The Theorem follows from Hoeffding’s decomposition, together with the identity

(ηNt )⊙q(
∑

(q,1)

h(1)) = q ηNt (h(1)).

Corollary 3.2. For the Feynman-Kac particle systems of the first sections, we have:

√
N((ηNt )⊙q(F )− θ) −→ N (0, q2ηt((F

(1))2)).

Indeed, notice first that the Eq 3.4 holds for Feynman-Kac particle systems e.g. as a
Corollary of Th. 2.1. The Corollary follows then from the following Lemma.

Lemma 3.3. For the particle system described in Section 1, we have, ∀j, ∀f ∈ Bsym
0 (Ej),

E(((ηNt )⊙j(f))2) ≤ C

N j
,

for some constant C (depending on t, ‖f‖∞).
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Proof.

((ηNt )⊙j(f))2 =
1

((N)j)2

∑

a,b∈〈j,N〉

f(ξ
a(1)
t , . . . , ξ

a(j)
t )f(ξ

b(1)
t , . . . , ξ

b(j)
t )

=
1

((N)j)2

j
∑

k=0

∑

a,b∈〈j,N〉

#Im(a)∩Im(b)=k

f(ξ
a(1)
t , . . . , ξ

a(j)
t )f(ξ

b(1)
t , . . . , ξ

b(j)
t )

=
1

((N)j)2

j
∑

k=0

∑

a∈〈2j−k,N〉

Ck
j f(ξ

a(1)
t , . . . , ξ

a(j)
t )

× f(ξ
a(1)
t , . . . , ξ

a(k)
t , ξ

a(j+1)
t , . . . , ξ

a(2j−k)
t )

=
(N)2j
((N)j)2

(ηNt )⊙2j(f ⊗ f)

+

j
∑

k=1

Ck
j (N)2j−k

((N)j)2
1

(N)2j−k

∑

a∈〈2j−k,N〉

f(ξ
a(1)
t , . . . , ξ

a(j)
t )

×f(ξa(1)t , . . . , ξ
a(k)
t , ξ

a(j+1)
t , . . . , ξ

a(2j−k)
t )

Notice first that, because of the very definition of (ηNt )⊙2j (as an average over arbitrary
configurations of distinct systems of 2j particles), although f ⊗ f is not a symmetrical
function, (ηNt )⊙2j(f ⊗ f) = (ηNt )⊙2j(Sym(f ⊗ f)), where Sym stands for the canonical
symmetrization map from Bsym

0 (Eq) ⊗ Bsym
0 (Eq) to Bsym

0 (E2q). Therefore, by Corollary

1.8, ∃C0,
(N)2j
((N)j)2

E((ηNt )⊙2j(f ⊗ f)) ≤ C0

Nj . For k ∈ {1, . . . , j}, we set gk(x1, . . . , x2j−k) =

f(x1, . . . , xj)f(x1, . . . , xk, xj+1, . . . , x2j−k). We then have

1

(N)2j−k

∑

a∈〈2j−k,N〉

f(ξ
a(1)
t , . . . , ξ

a(j)
t )× f(ξ

a(1)
t , . . . , ξ

a(k)
t , ξ

a(j+1)
t , . . . , ξ

a(2j−k)
t )

= (ηNt )⊙(2j−k)(gk) .

This function gk has the particular feature that there are α = 2j − 2k indexes i such that
∫

E2j−k gk(x1, . . . , x2j−k)ηt(dxi) = 0 (namely i = k + 1, . . . , 2j − k). As for the proof of
Corollary 1.8, we go back to the proof of Lemma 1.7. For the function gk defined above, the
terms Dk′,r,r+i,j′ vanish for j′ + r < k′+α

2 . So j − k is the smallest power of N appearing

in the Laurent-type expansion of E((ηNt )⊙(2j−k)(gk)) and ∃Ck,E((η
N
t )⊙(2j−k)(gk)) ≤ Ck

Nj−k .
This finishes the proof.

3.3 Wiener integrals expansions

The convergence of symmetric statistics to multiple Wiener integrals has been studied in-
tensively, see e.g. the seminal [DM83] or the account of the classical theory in [Lee90]. We
are interested here in proving that the main statements of the theory still hold for empir-
ical U-statistics and focus on a particular example, namely the one of a symmetrical and
bounded kernel constructed as a product of centered functions.

From the technical point of view, the key issue w.r. to the classical theory of limit distri-
butions for U-statistics based on i.i.d. assumptions is related to the existence of interactions
between the particles of the system. Taking these interactions into account amounts in prac-
tice to replace the central limit theorem by the analogous statement for interacting particle
systems, namely Thm. 2.1.

Let us consider a kernel (a symmetrical bounded fonction on Eq) F of the form F =
(f1 ⊗ ...⊗ fq)sym with fi ∈ B0(E). Then, F (k) = h(k) = 0 for k = 1, ..., q− 1, and we expect
N

q
2 (ηNt )⊙q(F ) to converge in law. This is indeed the case.
Let us start with some classical results (see e.g. [RW97] for a systematical approach by

means of the poset of partitions). For an empirical signed measure m(x) =
∑

1≤i≤N

δxi , we
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first have the formula of Rubin and Vitale ([DM83],[Lee90] p. 85):

m(x)⊙q(F ) =
∑

P

∏

V ∈P

(−1)|V |−1(|V | − 1)!m(x)(fV )

where fV , V = {v1, ..., vk}, stands for fv1 ...fvk and P runs over the set of partitions of [q]
into disjoint subsets.

Assume now that m(x) = N · ηNt =: mN . For |V | = 1, N− 1
2mN (fV ) converges in law

to N (0, ηt(f
2
V ) + E(Wt(fV ⊗ fV )). For |V | ≥ 2, and since ηNt converges to ηt, N

−1mN (fV )
converges to ηt(fV ).

Let us consider now a partition P of [q] with j1 sets with 1 element, j2 sets with 2
elements, ..., jq sets with q elements. We notice that j1 + 2j2 + 2j3 + ...+ 2jp < j1 + 2j2 +
...+ qjq = q excepted if j3 = ... = jq = 0 (and then the two terms are equal). In particular,
N− q

2

∏

V ∈P

(−1)|V |−1(|V | − 1)!mN(fV ) converges in probability to 0 if j3 + ... + jq > 0. By

Slutsky’s theorem it follows that, if N− q
2m⊙q

N (F ) = N
q
2 (ηNt )⊙q(F ) converges in law, it

converges to the same limit as
∑

P

∏

V ∈P

(−1)|V |−1(|V |−1)!mN (fV ), where the sum is restricted

now to partitions P of [q] with j3 = ... = jq = 0. The next theorem follows.

Theorem 3.4. With the above asumptions, we have the convergence in law:

N
q
2 (ηNt )⊙q(F )→

⌈ q2⌉
∑

k=0

(−1)k
∑

1≤i1<...<iq−2k≤q

I(fi1)...I(fiq−2k
)
∑

J

ηt(fJ1)....ηt(fJk
).

Here, J runs over the partitions of [q]−{i1, ..., iq−2k} in ordered pairs J1 = {j1, j′1}, ..., Jk =
{jk, j′k} (where ji < j′i and j1 < ... < jk). Besides, ⌈x⌉ stands for the integer part of a real
number x (the highest integer less or equal to x). The I(fi), i = 1, ..., q are Wiener integrals
of the functions fi. They form a Gaussian family with E[I(fi)] = 0 and E[I(fi)I(fj)] =
ηt(fifj) + E(Wt(fi ⊗ fj)).

Corollary 3.5. In the particular case F = f⊗q with ηt(f
2) = 1, we get the convergence in

law:
N

q
2 (ηNt )⊙q(F )→ Hk(I(f))

where Hk stands for the k-th Hermite polynomial.

Indeed, in that case, since the number of partitions of [q] with q − 2k singletons and k
pairs is q!

2k(q−2k)!k!
, the Theorem simplifies to a convergence in law of N− q

2 (ηNt )⊙q(F ) to

⌈ q
2⌉
∑

k=0

(−1)k q!

2k(q − 2k)!k!
I(f)q−2k,

where one recognizes the expansion of the qth (“probabilistic”) Hermite polynomial:

Hq(x) =

⌈ q
2⌉
∑

k=0

(−1)k q!

2k(q − 2k)!k!
xq−2k.
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